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ABSTRACT 
A tensor product of near-field space and sub near-field space over a near-field defined. But it turned out to be an 
abelian group. In order to avoid this special situation, this concept is generalized further by Dr N V Nagendram in this 
paper. Now there are two tensor products for the same pair of sub near-field spaces of a near-field space over a near-
field. This situation fits better in the theory of near-field spaces and their sub near-field spaces over a near-field. It has 
been seen here that there may be two dual near-field spaces for a pair of sub near-field spaces over a near-field. 
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SECTION 1: INTRODUCTION  
 
We write maps on the right and hence use left near-field spaces and the traditional sub near-field spaces are right sub 
near-field spaces.  
 
Definition 1.1 (N-sub near-field space): Let (N, +, .) be a left near-field space. A sub near-field space (M, +) is called 
an N-sub near-field space i.e. traditional one if there is a near-field space homo-morphism θ : N → Map(M). As usual, 
we write gn to mean g(nθ) for g ∈ M and n ∈ N. In this case the group elements distribute over the near-field spaces.  
 
Definition 1.2 (Complementary N-near-field space): M is called a complementary N-sub near-field space or N – co 
sub near-field space, for short, if there is a semi sub near-field space elements distribute over the sub near-field space 
elements and the action of N is usually written on the left of the elements of M. 
 
Definition 1.3 ((N, T) – bi sub near-field space): Let N and T be two left near-field spaces. A sub near-field space M 
is called an (N, T) – bi sub near-field space if  

(a) M is an N-co sub near field space  
(b) M is an T-sub near-field space and (c) (ng)t = n(gt), ∀ g ∈ M, n ∈ N, t ∈ T. 

 
Definition 1.4 (left strong N-sub near-field space): M is called left strong N-sub near-field space if the action of N is 
defined on the left of M satisfying the following conditions ∀ n, n′ ∈ N and g, g’ ∈ M  

(a) (nn’)g  = n(n’g)  
(b)  n (g + g’ ) = ng + ng’ and (c) (n + n’)g  = ng + n’g. 

 
Note-1.5: A right strong N-sub near-field space is defined similarly. (N, +) is an (N – N ) – bi sub near-field space for 
the left as well as right near-field space N over a near-field. If N is distributive near-field space then (N, +) is a left as 
well as right strong N-sub near-field space. Many more examples of these structures are given in near-field space 
related topic. 
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Definition 1.6 (N-homomorphism): Let M and K be two N-sub near-field spaces (N-co sub near-field space. A sub 
near-field space homomorphism θ : M → K is called an N-homomorphism if for any g ∈ M and n ∈ N, (gn)θ = (gθ)n, 
((rg)θ = r(gθ)). 
 
Note-1.7: An (N – T) – homomorphism for (N – T)-bi sub near-field space are defined in a similar way. 
 
SECTION 2: TENSOR PRODUCT 
 
Let N be left near-field space, A an N-sub near-field space and B an N-co sub near-field space. Let E be the free 
collection of sub near-field spaces on A × B. Let P and Q be the normal sub near-field spaces of E generated by  
{(a + a|, b) – (a′, b) – (a, b), (ar, b) – (a, rb) | a, a′ ∈ A, b ∈ B, r ∈ N} and 
{(a, b + b′) – (a, b′) – (a, b), (ar, b) – (a, rb) | a ∈ A, b, b′ ∈ B, r ∈ N} respectively.  
 
We call E/P the left tensor product of A and B and denote it by AN ⊗ B and call E/Q the right tensor product of A and B 
and denote it by A ⊗ NB. The coset (a, b) + P is denoted by al ⊗ b and (a, b) + Q  is denoted by a ⊗ rb. The coser P is 
denoted by 0 in both cases. Since E  is generated by A × B, E/P = AN ⊗ B and E/Q = A ⊗ NB are generated by             
{al ⊗ b/a ∈ A, b ∈ B} and {a ⊗ rb|a ∈ A, b ∈ B} respectively. An element of AN ⊗ B (A ⊗ NB) is a finite sum of the 
form ∑∑ ⊗∈⊗⊗∈ ))()(( iriiiii babla , where each ∈i = ± 1. 
 
The following result is a direct consequence of the definition of tensor product of near-field space and sub near-field 
space over a near-field. 
 
Theorem 2.1: ∀ a, a′ ∈ A, b ∈ B, r ∈ N the following are satisfied in AN⊗B: 

(i) (a + a′)l ⊗ b = al ⊗ b + a′l ⊗ b  
(ii) arl ⊗ b = a; ⊗ rb 
(iii) 0Al ⊗ b = 0 
(iv) (-a)l ⊗ b = - ( al ⊗ b ). 

 
Theorem 2.2: ∀ a ∈ A, b, b′ ∈ B, r ∈ N the following are satisfied in A ⊗ NB: 

(i) (a )l ⊗ (b + b′)′ = a ⊗ rb + a ⊗ rb′  
(ii) ar ⊗ rb = a ⊗ rrb 
(iii) a ⊗ rBb = 0 
(iv) a ⊗ r( -b) = - ( a ⊗ rb ). 

 
Remark 2.3: In general ( a + a′ )r ≠ ar + a′r in A as A is an N-sub near-field space. But we have 

(a + a′)rl ⊗ b = (a + a′)l ⊗ rb = al ⊗ rb + a′l ⊗ rb 
 = arl ⊗ b + a′rl ⊗ b 
 = ( ar + a′r )l ⊗ b. 

 
This shows that in AN ⊗ B with b ≠ 0. 
 
Remark 2.4: It is possible that a ⊗ rb = 0 in A ⊗ NB, with b ≠ 0. Later on we will show these by examples and we 
generalize the definition of a middle linear map. 
 
Definition 2.5 (left N-middle linear map(LNMLM)): Let N, A and B be as before and let C be any sub near-field 
space with a map f : A × B → C. then we call f  a left N-middle linear map if (a + a′, b) f = (a, b ) f + (a′ , b) f, (ar, b)        
f = (a, rb ) f , ∀ a, a′ ∈ A, b ∈ B, r ∈ N. 
  
Definition 2.6 (Right N-middle linear map(RNMLM)): Let N , A and B be as before and let C be any sub near-field 
space with a map f : A × B → C. then we call f  a left N-middle linear map if (a, b + b′) f = (a, b ) f + (a , b′) f, (ar, b)       
f = (a, rb ) f , ∀ a, a′ ∈ A, b,b′ ∈ B, r ∈ N. 
  
It is easy to see that θl = jπP : A × B → AN ⊗ B = E/P, (a, b)   al ⊗ b and 
        θl = jπQ : A × B → A ⊗ NB = E/Q, (a, b)   a ⊗ rb are  
 
LNMLM and RNMLM respectively. Here j : A × B → E is the inclusion map and πP : E → E/P and πQ : E → E/Q are 
the natural homomorphisms. We call θl (θr) the canonical LNMLM (RNMLM). 
 
Now we prove the universal property of the tensor product of near-field space and sub near-field space over a near-field 
N. 
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Theorem 2.7: Let N be a left-near field space, A be an N-sub near-field space and B an N-co sub near-field space. Let 
C be a group with a function   f : A × B → C, and θl (θr ) be as above. 
 
(a). If f is a LNMLM, then there exists a unique sub near-field space homomorphism g : AN ⊗ B → C, such that θl g = f 
(b). If f is a RNMLM, then there exists a unique sub near-field space  homomorphism g : A ⊗ NB → C, such that             
       θr g = f . 
 
Proof: Given N be a left-near field space, A be an N-sub near-field space and B an N-co sub near-field space. Let C be 
a group with a function                   f : A × B → C.  
 
To prove (a):  Let us consider the following diagrammatic expression of near-field spaces over a near-field N. 

 
where h is the unique homomorphism extending f, as E is the free sub near-field space on A × B. Since f is an 
LNMLM, P ⊆ Ker h. This gives us a unique sub near-field space homomorphism g: E/P → C, such that πPg = h. It 
follows then θlg = jπLg = jh = f. Now for the uniqueness let g′ be another homomorphism from E/P to C with θlg′ = f. 
then  
(al ⊗ b)g′ = (a, b) θlg′  = (a, b) f  = (a, b)jh = (a, b) jπLg = (a, b)θlg  = (al ⊗ b)g. 
 
Therefore, g and g′  agree on the generators of AN ⊗ B and hence are equal. 
 
Hence proved (b). In similar manner (b) can be proved. This comples the proof of the theorem. 
 
Corollary 2.8: Let A, A′ be N-sub near-field spaces and B, B′ be N-co sub near-field spaces over a near-field              
N, f : A → A′ and g : B → B′ be N-homomorphisms of N-sub near-field spaces and N-co sub near-field spaces 
respectively. Then there are unique sub near-field space homomorphisms φ : AN ⊗ B → A′ N ⊗ B′ and                         
Ψ : A ⊗ N B → A′ ⊗ N B′ such that (al ⊗ b)φ = af  l ⊗ bg and ( a ⊗ rb) Ψ = af ⊗ r bg.   
 
Note-2.9: The homomorphism φ and Ψ in the above corollary are denoted by f  l ⊗ g and f  ⊗ rg  respectively. 
 
If A, A′, A′′ are N-sub near-field spaces of a near-field space over a near-field N and B, B′, B′′ are N-sub near-field 
spaces of a near-field space over a near-field N with N-homomorphisms f : A → A′ , f ′ : A → A ′′ , g : B → B′ and        
g ′ : B → B′′ , then ( f l ⊗ g ) ( f ′ l ⊗ g ′ ) = f f  ′  l ⊗ gg ′ and ( f  ⊗ rg ) ( f ′ ⊗ ⊗ rg ′) = f  f ′ ⊗ r gg ′. Moreover, if f and g 
are isomorphisms then f l ⊗ g and f  ⊗ r g are isomorphisms. 
 
Theorem 2.10: Let N and T be left near-field spaces over a near-field, A an (N – T)  - bi sub near-field space and B  an 
T- co sub near-field space over a near-field. The A T ⊗ B and A ⊗ T B are N – co sub near-field spaces over a near-field 
N. 
 
Proof: ∀ n ∈ N, define αn : A × B → A T ⊗ B by (a, b) αn = na l ⊗ b, for all (a, b) ∈ A × B. We claim that αn is a 
LTMPM. For all a , a′ ∈ A, b ∈ B and  t ∈T then we have the following relation as 
(a + a′, b) αn  = n (a +  a′) l ⊗ b = (na + na′ ) l ⊗ b = na l ⊗ b + na′  l ⊗ b = (a, b) αn  + (a′, b) αn.  
(at, b) αn = n(at) l ⊗ b = (na) t l ⊗ b = na l ⊗ sb = (a, sb) αn. 
 
By theorem 2.9 there is a unique endomorphism βn of AT  ⊗ B such that θl βn = αn, where θl  is the canonical       
LTMPM : A × B → A T ⊗ B. The action of N on A T ⊗ B is now defined by nu = uβn for n ∈ N and u ∈ A T  ⊗ B. We 
claim that this action defines AT ⊗ B  as an N-co sub near-field space over a near-field N. For all u, u′ ∈ A T ⊗ B and   
n, n′ ∈ N we have n( u + u′ ) = ( u + u′ ) βn = u  βn  + u′ βn = nu +nu′. In order to prove that (nn′)u = n(n′u) , it is enough 
to prove that βnn′ = βn′βn for all n, n′ ∈ N. we look at their action on generators of AT ⊗ B. 
 
(a l ⊗ b) βnn′ = (a, b)θ l βnn′ = (a, b) αnn′  = (nn′)a l ⊗ b = n(n′a) l ⊗ b = (n′a, b)αn = (n′a l ⊗ b) βn = (a, b) αn′ βn = (a l  ⊗ b) 
βn′βn. The fact that A T ⊗ B is N-co sub near-field space over a near-field and similar manner one can prove that           
A ⊗ T B is an N-co sub near-field space over a near-field. This completes the proof of the theorem. 
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Note-2.11: NN ⊗ B and N ⊗ N B are co sub near-field spaces for any N-co sub near-field space B over a near-field. 
 
Note-2.12:  Let N be a left near-field space with 1, and B be any unital N-co sub near-field space. Then for n ∈ N and   
b ∈ B, we have n l  ⊗ b = 1 l ⊗ nb and n ⊗ n b = 1 ⊗ n nb. Therefore we have the following results: 

(a) N N ⊗ B is generated by { 1 l ⊗ b | b ∈ B } 
(b) N ⊗ N B is generated by {0 ⊗ n b, 1 ⊗ n b / b ∈ B \ {0}}. 
(c) θ b : N → N N ⊗ B defined by nθb = n l ⊗ b is a sub near-field space homomorphism . 
(d) θ b : N → N ⊗ N B defined by nθb = n ⊗ nb is not a sub near-field space homomorphism in general. 

 
Theorem 2.13: let N and T be left near-field spaces, A an N-sub near-field space and B an (N – T)-bi sub near-field 
space. Then A N ⊗ B is an T-sub near-field space with T acting on the right. If in addition B is a right strong T-sub 
near-field space then A ⊗ NB is also a T-co sub near-field space with T acting on the right. 
 
Proof: For t ∈ T define αt : A × B → AN ⊗ B by (a, b) αt = a l ⊗ bt. It is easy to see that αt  is a LNMLM.  
 
This gives us a unique endomorphism βt of AN ⊗ B such that θl βt = αt, where θl: A × B → AN ⊗ B is the canonical 
LNMLM. For all ( al  ⊗ b ) ∈ AN ⊗ B, we have (a l ⊗ b ) βt  = (a, b) θl βt  = (a, b) αt = a l ⊗ (bt). 
 
Now we define an action of T on AN ⊗ B by ut = uβt ∀ u ∈ AN ⊗ B. Clearly, (u + u′)t = ut + u′t, ∀ u , u′ ∈ AN ⊗ B.  
 
For the other condition we need to show that βtt′ = βt βt′ ∀ t, t′ ∈ T. It is enough to look at their behaviour on the 
generators. 
(a l ⊗ b) βtt′  = a l ⊗ b (tt′) = a l ⊗ (bt) t′  =  (a l ⊗ (bt)) βt′ = (a l ⊗ b) βt βt′. The second part can be proved in similar 
manner. This completes the proof of the theorem. 
 
Corollary 2.14: AN ⊗ B is an N-co sub near-field space with N acting on the right. If N is distributive near-field space 
then AN ⊗ N and A ⊗ NN is an N- co sub near-field space with N acting on the right. 
 
Note-2.15: Let N be a left near-field space with 1 and A be a unital N-sub near-field space. Then we have AN ⊗ N is 
generated by notation of a set {a1 ⊗ 1, a l ⊗ 0 | a ∈ A \ {0}} and A ⊗ NN is generated by {a ⊗ r1 | a ∈ A}. 
 
Note-2.16: If A is any sub near-field space and B is an abelian sub near-field space then AZ ⊗ B and A ⊗ ZB are right 
Z-co sub near-field spaces and hence are abelian sub near-field spaces over a near-field N. 
 
Note-2.17: If N is a near-field and A is an N-sub near-field space in the near-field spaces sense, that is (A, +) is not 
necessarily abelian, then AN ⊗ B and A ⊗ NB can be constructed, which may be different.  
 
The structure of tensor products of near-field spaces can be explored further and these proofs here to show the 
importance of this concept. 
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