International Journal of Mathematical Archive-2(8), 2011, Page: 1-9

Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

Slightly vg-continuous functions

S. Balasubramanian*

Department of Mathematics, Government Arts College (Autonomous), Karur-639 005 (T.N.), India

E-mail: mani55682@rediffmail.com

(Received on: 04-08-11; Accepted on: 17-08-11)

Abstract

In this paper we discuss new type of continuous functions called slightly vg-continuous functions; its properties and interrelation with other continuous functions are studied.

Keywords: slightly continuous functions; slightly semi-continuous functions; slightly pre-continuous; slightly β -continuous functions; slightly γ -continuous functions and slightly v-continuous functions.

AMS-classification Numbers: 54C10; 54C08; 54C05

1. Introduction

In 1995 T. M. Nour introduced slightly semi-continuous functions. After him T. Noiri and G. I. Chae further studied slightly semi-continuous functions in 2000. T. Noiri individually studied about slightly β -continuous functions in 2001. C. W. Baker introduced slightly precontinuous functions in 2002. Erdal Ekici and M. Caldas studied slightly γ -continuous functions in 2004. Arse Nagli Uresin and others studied slightly δ -continuous functions in 2007. Recently S. Balasubramanian and P. A. S. Vyjayanthi studied slightly *v*-continuous functions in 2011. Inspired with these developments I introduce in this paper slightly *vg*-continuous function and study its basic properties and interrelation with other type of such functions available in the literature. Throughout the paper a space X means a topological space (X, τ).

2. Preliminaries

Definition 2.1: $A \subset X$ is called

(i) closed if its complement is open.

- (ii) r α -open [ν -open] if $\exists U \in \alpha O(X)[RO(X)]$ such that $U \subset A \subset \alpha cl(U)[U \subset A \subset cl(U)]$.
- (iii) semi-θ-open if it is the union of semi-regular sets and its complement is semi-θ-closed.

(iv) Regular closed[α -closed; pre-closed] if $A = cl\{A^o\}$ [resp:(cl(A^o))° $\subseteq A$; cl($(cl\{A\})$)° $\subseteq A$].

- (v) Semi closed [v-closed] if its complement if semi open [v-open].
- (vi) g-closed [rg-closed] if cl $A \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (vii) sg-closed [gs-closed] if $s(cl A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open { open } in X.
- (viii) pg-closed [gp-closed] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is pre-open[open; regular-open] in X.

(ix) αg -closed [g α -closed; rg α -closed; r αg -closed] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open[α -open; r α -open; ropen] in X.

(x) vg-closed if $vcl(A) \subseteq U$ whenever $A \subseteq U$ and U is v-open in X.

Corresponding author: S. Balasubramanian,*E-mail: mani55682@rediffmail.com

S. Balasubramanian*/Slightly vg-continuous functions/IJMA-2(8), August-2011, Page: 1-9 Definition 2.2: A function $f:X \rightarrow Y$ is said to be

(i) continuous [resp: nearly-continuous; r α -continuous; v-continuous; α -continuous; semi-continuous; β -continuous; pre-continuous] if inverse image of each open set is open[resp: regular-open; r α -open; v-open; α -open; semi-open; β -open; preopen].

(ii) nearly-irresolute [resp: r α -irresolute; v-irresolute; α -irresolute; irresolute; β -irresolute; pre-irresolute] if inverse image of each regular-open[resp: r α -open; v-open; α -open; semi-open; β -open; preopen] set is regular-open[resp: r α -open; β -open; preopen] set is regular-open[resp: r α -open; β -open; preopen].

(iii) almost continuous[resp: almost nearly-continuous; almost r α -continuous; almost *v*-continuous; almost α -continuous; almost semi-continuous; almost β -continuous; almost pre-continuous] if for each x in X and each open set (V, *f*(x)), \exists an open [resp: regular-open; r α -open; α -open; semi-open; β -open; preopen] set (U, x) such that $f(U) \subset (cl(V))^{\circ}$.

(iv) weakly continuous[resp: weakly nearly-continuous; weakly r α -continuous; weakly v-continuous; weakly semi-continuous; weakly β -continuous; weakly pre-continuous] if for each x in X and each open set (V, f(x)), \exists an open [resp: regular-open; r α -open; v-open; α -open; semi-open; β -open; preopen] set (U, x) such that $f(U) \subset cl(V)$.

(v) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous; slightly β -continuous; slightly γ -continuous; slightly α -continuous; slightly r-continuous; slightly ν -continuous] at x in X if for each clopen subset V in Y containing f(x), $\exists U \in \tau(X)$ [$\exists U \in SO(X)$; $\exists U \in PO(X)$; $\exists U \in \beta O(X)$; $\exists U \in \gamma O(X)$; $\exists U \in \alpha O(X)$; $\exists U \in RO(X)$; $\exists U \in \nu O(X)$] containing x such that $f(U) \subseteq V$.

(vi) slightly continuous[resp: slightly semi-continuous; slightly pre-continuous; slightly β -continuous; slightly α -continuous; slightly r-continuous; slightly ν -continuous] if it is slightly-continuous [resp:slightly semi-continuous; slightly pre-continuous; slightly β -continuous; slightly γ -continuous; slightly γ -continuous; slightly γ -continuous; slightly α -continuous; slightly γ -continuous; slig

(vii) almost strongly θ -semi-continuous[resp: strongly θ -semi-continuous] if for each x in X and for each $V \in \sigma(Y, f(x)), \exists U \in SO(X, x)$ such that $f(scl(U)) \subset scl(V)[resp: f(scl(U)) \subset V]$.

Note 1: From the above Definitions we have the following interrelations among the closed sets.

g-closed gs-closed $\leftarrow \leftarrow \leftarrow$ \downarrow \downarrow $rg\alpha$ -closed \rightarrow rg-closed \rightarrow vg-closed sg-closed $\leftarrow \beta$ g-closed rαg-closed \rightarrow ↑ ↑ ↑ ↑ $\uparrow \ \rightarrow$ ↑ ↑ \rightarrow r α -closed \rightarrow \rightarrow v-closed $\rightarrow \rightarrow$ ↓ \rightarrow \rightarrow π -closed closed \rightarrow α -closed \rightarrow semi closed $\rightarrow \beta$ -closed Regular closed \rightarrow \rightarrow \downarrow \downarrow \downarrow π g-closed pre-closed $\rightarrow \omega$ -closed \neq g α -closed \downarrow \downarrow gp-closed \leftarrow pg-closed r ω -closed

Definition 2.3: X is said to be a

(i) compact [resp: nearly-compact; r α -compact; α -compact; semi-compact; β -compact; pre-compact; mildly-compact] space if every open[resp: regular-open; r α -open; α -open; semi-open; β -open; preopen; clopen] cover has a finite subcover.

(ii) countably-compact[resp: countably-nearly-compact; countably-r α -compact; countably- ν -compact; countably- α -compact; countably-semi-compact; countably- β -compact; countably-pre-compact; mildly-countably compact] space if every countable open[resp: regular-open; r α -open; ν -open; α -open; semi-open; β -open; preopen; clopen] cover has a finite subcover.

(iii) closed-compact [resp: closed-nearly-compact; closed-r α -compact; closed-v-compact; closed- α -compact; closed-semi-compact; closed- β -compact; closed-pre-compact] space if every closed [resp: regular-closed; r α -closed; v-closed; α -closed; semi-closed; β -closed; preclosed] cover has a finite subcover.

(iv) Lindeloff[resp: nearly-Lindeloff; r α -Lindeloff; α -Lindeloff; semi-Lindeloff; β -Lindeloff; pre-Lindeloff; mildly-Lindeloff] space if every open[resp: regular-open; r α -open; α -open; semi-open; β -open; preopen; clopen] cover has a countable subcover.

S. Balasubramanian*/Slightly vg-continuous functions/IJMA- 2(8), August-2011, Page: 1-9 (v) Extremally disconnected [briefly e.d] if the closure of each open set is open.

Definition 2.4: X is said to be a

(i) $T_0[\text{resp: }r-T_0; r\alpha-T_0; \nu-T_0; \alpha-T_0; \text{semi-}T_0; \beta-T_0; \text{pre-}T_0; \text{Ultra }T_0]$ space if for each $x \neq y \in X \exists U \in \tau(X)[\text{resp: }rO(X); r\alpha O(X); \sigma O(X); SO(X); \beta O(X); PO(X); CO(X)]$ containing either x or y.

(ii) $T_1[\text{resp: } r-T_1; r\alpha - T_1; \nu - T_1; \alpha - T_1; \text{semi-} T_1; \beta - T_1; \text{pre-} T_1; \text{Ultra } T_1]$ space if for each $x \neq y \in X \exists U, V \in \tau(X)$ [resp: rO(X); $r\alpha O(X); \nu O(X); \alpha O(X); SO(X); \beta O(X); PO(X)$: CO(X)] such that $x \in U - V$ and $y \in V - U$.

(iii) $T_2[\text{resp: }r-T_2; r\alpha-T_2; \nu-T_2; \alpha-T_2; \text{semi-}T_2; \beta-T_2; \text{pre-}T_2; \text{Ultra }T_2]$ space if for each $x \neq y \in X \exists U, V \in \tau(X)$ [resp: $rO(X); r\alpha O(X); \nu O(X); \alpha O(X); SO(X); \beta O(X); PO(X); CO(X)]$ such that $x \in U; y \in V$ and $U \cap V = \phi$.

(iv) $C_0[\text{resp: } r-C_0; r\alpha-C_0; \nu-C_0; \alpha-C_0; \text{semi-}C_0; \beta-C_0; \text{pre-}C_0; \text{Ultra } C_0]$ space if for each $x \neq y \in X \exists U \in \tau(X)$ [resp: rO(X); $r\alpha O(X); \nu O(X); \alpha O(X); SO(X); \beta O(X); PO(X); CO(X)]$ whose closure contains either x or y

(v) $C_1[\text{resp: }r-C_1; r\alpha-C_1; \nu-C_1; \alpha-C_1; \text{semi-}C_1; \beta-C_1; \text{pre-}C_1; \text{Ultra } C_1]$ space if for each $x \neq y \in X \exists U, V \in \tau (X)$ [resp: $rO(X); r\alpha O(X); \nu O(X); SO(X); \beta O(X); PO(X); CO(X)]$ whose closure contains x and y.

(vi) C₂[resp: r-C₂; rα-C₂; ν-C₂; α-C₂; semi-C₂; β-C₂; pre-C₂; Ultra C₂] space if for each $x \neq y \in X \exists$ disjoint U, V $\in \tau$ (X)[resp: rO(X); rαO(X); νO(X); αO(X); SO(X); βO(X); PO(X); CO(X)] whose closure contains x and y.

(vii) $D_0[resp: r-D_0; r\alpha - D_0; v-D_0; \alpha - D_0; semi - D_0; \beta - D_0; pre - D_0; Ultra D_0]$ space if for each $x \neq y \in X \exists U \in D(X)$ [resp: rD(X); r α D(X); vD(X); α D(X); SD(X); β D(X); PD(X); COD(X)] containing either x or y.

(viii) $D_1[\text{resp: } r-D_1; r\alpha-D_1; v-D_1; \alpha-D_1; \text{semi-}D_1; \beta-D_1; \text{pre-}D_1; \text{Ultra } D_1]$ space if for each $x \neq y \in X \exists U, V \in D(X)$ [resp: $rD(X); r\alpha D(X); vD(X); \Omega D(X); SD(X); \beta D(X); PD(X); COD(X)$] such that $x \in U-V$ and $y \in V-U$.

(ix)D₂[resp: r-D₂; r α -D₂; v-D₂; α -D₂; semi-D₂; β -D₂; pre-D₂; Ultra D₂] space if for each $x \neq y \in X \exists U, V \in D(X)$ [resp: rD(X); r α D(X); vD(X); α D(X); SD(X); β D(X); PD(X); CD(X)] such that $x \in U$; $y \in V$ and $U \cap V = \phi$.

(x) $R_0[\text{resp: }r-R_0; r\alpha-R_0; \nu-R_0; \alpha-R_0; \text{semi-}R_0; \beta-R_0; \text{pre-}R_0; \text{Ultra } R_0]$ space if for each x in $X \exists U \in \tau(X)[\text{resp: }RO(X); r\alpha O(X); \nu O(X); \alpha O(X); SO(X); \beta O(X); PO(X); CO(X)]cl{x} \subseteq U[\text{resp: }rcl{x} \subseteq U; \nu cl{x} \subseteq U; \alpha cl{x} \subseteq U; scl{x} \subseteq U; scl{x} \subseteq U]$ whenever $x \in U \in \tau(X)[\text{resp: }x \in U \in RO(X); x \in U \in \nu O(X); x \in U \in \alpha O(X); x \in U \in SO(X)]$

(xi) $R_1[\text{resp: r-}R_1; r\alpha - R_1; v - R_1; \alpha - R_1; \text{semi-}R_1; \beta - R_1; \text{pre-}R_1; \text{Ultra } R_1]$ space if for $x, y \in X$ such that $cl\{x\} \neq cl\{y\}[\text{resp:}$ such that $rcl\{x\} \neq rcl\{y\};$ such that $r\alpha cl\{x\} \neq r\alpha cl\{y\};$ such that $r\alpha cl\{x\} \equiv U;$ resp: RO(X) such that $r\alpha cl\{x\} \equiv U;$ resp: RO(X) such that $r\alpha cl\{x\} \equiv U;$ resp: $r\alpha cl\{y\} \equiv V;$ resp: $r\alpha cl\{y\} \equiv V;$

Lemma 2.1:

(i) Let A and B be subsets of a space X, if $A \in vGO(X)$ and $B \in RO(X)$, then $A \cap B \in vGO(B)$.

(ii)Let $A \subset B \subset X$, if $A \in \nu GO(B)$ and $B \in RO(X)$, then $A \in \nu GO(X)$.

3. Slightly vg-continuous functions:

Definition 3.0: A function $f: X \rightarrow Y$ is said to be

(i) slightly g-continuous[resp: slightly sg-continuous; slightly pg-continuous; slightly β g-continuous; slightly α g-continuous; slightly rg-continuous] at x in X if for each clopen subset V in Y containing f(x), $\exists U \in GO(X)$ [$\exists U \in SGO(X)$; $\exists U \in PGO(X)$; $\exists U \in \beta GO(X)$; $\exists U \in \gamma GO(X)$; $\exists U \in \alpha GO(X)$; $\exists U \in RGO(X)$] containing x such that $f(U) \subseteq V$.

(ii) slightly g-continuous[resp: slightly sg-continuous; slightly pg-continuous; slightly β g-continuous; slightly α g-continuous; slightly rg-continuous] if it is slightly g-continuous[resp:slightly sg-continuous; slightly β g-continuous; slightly β g-continuous; slightly β g-continuous; slightly α g-continuous; slight

S. Balasubramanian*/ Slightly vg-continuous functions/ IJMA- 2(8), August-2011, Page: 1-9

Definition 3.1: A function $f: X \to Y$ is said to be (i) slightly *vg*-continuous function at x in X if for each clopen subset V in Y containing f(x), $\exists U \in vGO(X)$ containing x such that $f(U) \subset V$.

(ii) slightly vg-continuous function if it is slightly vg-continuous at each x in X.

Note 2: Here after we call slightly vg-continuous function as sl.v g.c function shortly.

Example 3.1: X = Y = {a, b, c}; $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Let $f: X \to Y$ be identity function, then *f* is sl.vg.c.

Example 3.2: $X = Y = \{a, b, c\}$; $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Let $f: X \rightarrow Y$ be identity function, then *f* is not sl.vg.c.

Theorem 3.1: The following are equivalent:

(i) f: X→ Y is sl.vg.c.
(ii) f⁻¹(V) is vg-open for every clopen set V in Y.
(iii) f⁻¹(V) is vg-closed for every clopen set V in Y.
(iv) f(vgcl(A)) ⊆ vgcl(f(A)).

Corollary 3.1: The following are equivalent. (i) $f:X \rightarrow Y$ is sl.*vg*.c. (ii) For each x in X and each clopen subset $V \in (Y, f(x)) \exists U \in vGO(X, x)$ such that $f(U) \subseteq V$.

Theorem 3.2: Let $\Sigma = \{U_i : i \in I\}$ be any cover of X by regular open sets in X. A function *f* is sl.*vg*.c. iff $f_{/U_i}$: is sl.*vg*.c., for each $i \in I$.

Proof: Let $i \in I$ be an arbitrarily fixed index and $U_i \in RO(X)$. Let $x \in U_i$ and $V \in CO(Y, f_{Ui}(x))$ Since *f* is sl.*vg*.c, $\exists U \in v GO(X, x)$ such that $f(U) \subset V$. Since $U_i \in RO(X)$, by Lemma 2.1 $x \in U \cap U_i \in v GO(U_i)$ and $(f_{IUi})U \cap U_i = f(U \cap U_i) \subset f(U) \subset V$. Hence f_{IUi} is sl.*vg*.c.

Conversely Let x in X and V \in CO(Y, f(x)), $\exists i \in I$ such that $x \in U_i$. Since $f_{/Ui}$ is sl.v g.c, $\exists U \in v$ GO(U_i , x) such that $f_{/Ui}(U) \subset V$. By Lemma 2.1, $U \in v$ GO(X) and $f(U) \subset V$. Hence f is sl.vg.c.

Theorem 3.3:

(i) If f: X→ Y is vg-irresolute and g: Y→ Z is sl.vg.c.[slightly-continuous], then g • f is sl.vg.c.
(ii) If f: X→ Y is vg-irresolute and g: Y→ Z is vg.-continuous, then g• f is sl.vg.c.
(iii) If f: X→ Y is vg-continuous and g: Y→ Z is slightly-continuous, then g• f is sl.vg.c.
(iv) If f: X→ Y is rg-continuous and g: Y→ Z is sl.vg.c. [slightly-continuous], then g• f is sl.vg.c.

Theorem 3.4: If $f: X \to Y$ is *vg*-irresolute, *vg*-open and $vGO(X) = \tau$ and $g: Y \to Z$ be any function, then $g \bullet f: X \to Z$ is sl.*vg*.c iff $g: Y \to Z$ is sl.*vg*.c.

Proof: If part: Theorem 3.3(i) Only if part: Let A be clopen subset of Z. Then $(g \bullet f)^{-1}(A)$ is a vg-open subset of X and hence open in X [by assumption]. Since f is vg-open $f(g \bullet f)^{-1}(A)$ is vg-open $Y \Rightarrow g^{-1}(A)$ is vg-open in Y. Thus g: $Y \to Z$ is sl.vg.c.

Corollary 3.2: If $f: X \to Y$ is vg-irresolute, vg-open and bijective, $g: Y \to Z$ is a function. Then $g: Y \to Z$ is sl.vg.c. iff $g \bullet f$ is sl.vg.c.

Theorem 3.5: If $g: X \to X \times Y$, defined by g(x) = (x, f(x)) for all x in X be the graph function of $f: X \to Y$. Then $g: X \to X \times Y$ is sl.v g.c. iff f is sl.v g.c.

Proof: Let $V \in CO(Y)$, then $X \times V$ is clopen in $X \times Y$. Since $g: X \to Y$ is $sl.vg.c., f^{-1}(V) = f^{-1}(X \times V) \in v$ GO(X). Thus *f* is sl.vg.c.

Conversely, let x in X and F be a clopen subset of X× Y containing g(x). Then F \cap ({x}× Y) is clopen in {x}× Y containing g(x). Also {x}× Y is homeomorphic to Y. Hence {y ∈ Y:(x, y) ∈ F} is clopen subset of Y. Since *f* is sl.*vg*.c., \cup { $f^{-1}(y)$:(x, y) ∈ F} is *vg*-open in X. Further x∈ \cup { $f^{-1}(y)$:(x, y) ∈ F} $\subseteq g^{-1}(F)$. Hence $g^{-1}(F)$ is *vg*-open. Thus $g:X \to Y$ is sl.*vg*.c.

S. Balasubramanian*/Slightly vg-continuous functions/IJMA-2(8), August-2011, Page: 1-9

Theorem 3.6:

(i) If $f: X \to \Pi Y_{\lambda}$ is sl.v g.c, then $P_{\lambda} \bullet f: X \to Y_{\lambda}$ is sl.v g.c for each $\lambda \in \Gamma$, where P_{λ} is the projection of ΠY_{λ} onto Y_{λ} . (ii) $f: \Pi X_{\lambda} \to \Pi Y_{\lambda}$ is sl.v g.c, iff $f_{\lambda}: X_{\lambda} \to Y_{\lambda}$ is sl.v g.c for each $\lambda \in \Gamma$.

Remark:

(i) Composition of two sl.v g.c functions is not in general sl.vg.c.

(ii) Algebraic sum and product of sl.v g.c functions is not in general sl.vg.c.

(iii) The pointwise limit of a sequence of sl.v g.c functions is not in general sl.vg.c.

Example 3.3: Let X = Y = [0, 1]. Let $f_n: X \to Y$ is defined as follows $f_n(x) = x_n$ for n = 1, 2, 3, ..., then $f:X \to Y$ defined by f(x) = 0 if $0 \le x < 1$ and f(x) = 1 if x = 1. Therefore each f_n is sl.vg.c but f is not sl.vg.c. For (1/2, 1] is clopen in Y, but $f^{-1}((1/2, 1]) = \{1\}$ is not vg-open in X.

However we can prove the following:

Theorem 3.7: The uniform limit of a sequence of sl.vg.c functions is sl.vg.c.

Note: Pasting Lemma is not true for sl.vg.c functions. However we have the following weaker versions.

Theorem 3.8: Let X and Y be topological spaces such that $X = A \cup B$ and let $f_{A}: A \to Y$ and $g_{B}: B \to Y$ are sl.r.c maps such that f(x) = g(x) for all $x \in A \cap B$. Suppose A and B are r-open sets in X and RO(X) is closed under finite unions, then the combination $\alpha: X \to Y$ is sl.vg.c continuous.

Theorem 3.9: Pasting Lemma Let X and Y be spaces such that $X = A \cup B$ and let $f_{A}: A \to Y$ and $g_{B}: B \to Y$ are sl.vg.c maps such that f(x) = g(x) for all $x \in A \cap B$. Suppose A, B are r-open sets in X and vGO(X) is closed under finite unions, then the combination $\alpha: X \to Y$ is sl.vg.c.

Proof: Let $F \in CO(Y)$, then $\alpha^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)$, where $f^{-1}(F) \in \nu GO(A)$ and $g^{-1}(F) \in \nu GO(B) \Rightarrow f^{-1}(F)$; $g^{-1}(F) \in \nu GO(X) \Rightarrow f^{-1}(F) \cup g^{-1}(F) \in \nu GO(X)$ [by assumption]. Therefore $\alpha^{-1}(F) \in \nu GO(X)$. Hence $\alpha: X \to Y$ is sl.vg.c.

4. Comparisons:

Theorem 4.1:

(i) If f is sl.rg.c, then f is sl.vg.c. (ii) If f is sl.sg.c, then f is sl.vg.c. (iii) If f is sl.g.c, then f is sl.vg.c. (iv) If f is sl.s.c, then f is sl.vg.c. (v) If f is sl.v.c, then f is sl.vg.c. (vi) If f is sl.r, then f is sl.vg.c. (vii) If f is sl.c, then f is sl.vg.c. (viii) If f is sl. ω .c, then f is sl.vg.c. (ix) If f is sl.rg α .c, then f is sl.rg.c. (x) If f is sl.r ω .c, then f is sl.vg.c. (xi) If f is sl.r ω .c, then f is sl.vg.c. (xi) If f is sl.r ω .c, then f is sl.vg.c. (xii) If f is sl.r ω .c, then f is sl.vg.c. (xiii) If f is sl. α .c, then f is sl.vg.c. (xiii) If f is sl. α .c, then f is sl.vg.c. (xiii) If f is sl. α .c, then f is sl.vg.c. (xiv) If f is sl.g α .c, then f is sl.vg.c.

Note 3: By note 1 and from the above Theorem we have the following implication diagram.

Theorem 4.2:

(i) If $R\alpha O(X) = RO(X)$ then *f* is sl.r α .c. iff *f* is sl.r.c. (ii) If $R\alpha O(X) = \nu GO(X)$ then *f* is sl.r α .c. iff *f* is sl.v*g*.c. (iii) If $\nu GO(X) = RO(X)$ then *f* is sl.r α .c. iff *f* is sl.v*g*.c. (iv) If $\nu GO(X) = \alpha O(X)$ then *f* is sl. α .c. iff *f* is sl.v*g*.c. (v) If $\nu GO(X) = SO(X)$ then *f* is sl.s.c. iff *f* is sl.v*g*.c. (vi) If $\nu GO(X) = \beta O(X)$ then *f* is sl. β .c. iff *f* is sl.v*g*.c.

Theorem 4.3: If *f* is sl.*vg*.c., from a discrete space X into a e.d space Y, then *f* is w.s.c.

Corollary 4.1: If f is sl.vg.c., from a discrete space X into a e.d space Y, then: (i) f is w.s.c. (ii) f is w. β .c. (iii) f is w.p.c.

Theorem 4.4: If *f* is sl.*vg*.c., and X is e.d, then *f* is sl.c.

Proof: Let x in X and $V \in CO(Y, f(x))$. Since f is sl.vg.c, $\exists U \in v GO(X, x)$ such that $f(U) \subset V \Rightarrow U \in SR(X, x)$ such that $f(U) \subset V$. Since X is e.d. $U \in CO(X)$. Hence f is sl.c.

Corollary 4.2: If *f* is sl.*vg*.c.,*v*GO(X) = *v*O(X) and X is *v*-T_{1/2} and e.d, then: (i) *f* is sl.c. (ii) *f* is sl. α .c. (iii)*f* is sl.s.c. (iv) *f* is sl. β .c. (v) *f* is sl.p.c.

Theorem 4.5: If f is sl.vg.c., from a discrete space X into a e.d space Y, then f st. θ .s.c.

Proof: Let x in X and $V \in \sigma$ (Y, f(x)), then $scl(V) \subset (cl V)^{\circ} \in RO(Y)$. Since Y is e.d, $scl(V) \in CO(Y)$. Since f is sl.vg.c, f is $sl.s.c, [by Thm 4.1[iv]] \exists U \in SO(X, x)$ such that $f(scl(U)) \subset scl(V)$, so f is a.s.t. $\theta.s.c$.

Theorem 4.6: If f is sl.vg.c from a discrete space X into a T_3 space Y, then f st. θ .s.c.

Proof: Let x in X and $V \in \sigma(Y, f(x))$. Since Y is Ultra regular, $\exists W \in CO(Y)$ such that $f(x) \in W \subset V$. Since f is sl.vg.c, by Thm 4.1(iv) $\exists U \in SO(X, x)$ such that $f(scl(U)) \subset W$ and $f(scl(U)) \subset V$. Thus f is st. θ .s.c.

Example 4.1: In Example 3.1 above f is sl.v g.c; sl.sg.c; sl.gs.c; sl.r α .c; sl. ν .c; sl.s.c. and sl. β .c; but not sl.g.c; sl.rg.c; sl.gr.c; sl.gr.c; sl.gp.c; sl.gp.c; sl.gp.c; sl.g α .c; sl. α g.c; sl.r α c; sl.r α c; sl. α c; and sl.c;

Example 4.2: In Example 3.2 above *f* is sl.r α .c; and sl.gpr.c; but not sl.*v* g.c; sl.sg.c; sl.gs.c; sl.sc; sl.s.c; sl. β .c; sl.g.c; sl

Remark 4.1: sl.ro.c; sl.gpr.c; and s.c. are independent of sl.vg.c..

5. Covering and Separation properties of slightly vg continuous functions:

Theorem 5.1: If $f: X \rightarrow Y$ is sl.vg.c.[resp: sl.rg.c] surjection and X is vg-compact, then Y is compact.

Proof: Let $\{G_i:i \in I\}$ be any clopen cover for Y. Then each G_i is clopen in Y and hence each G_i is open in Y. Since $f: X \to Y$ is sl.vg.c., $f^{-1}(G_i)$ is vg-open in X. Thus $\{f^{-1}(G_i)\}$ forms a vg-open cover for X and hence have a finite subcover, since X is vg-compact. Since f is surjection, $Y = f(X) = \bigcup_{i=1}^{n} G_i$. Therefore Y is compact.

Corollary 5.1: If $f: X \rightarrow Y$ is sl.v.c.[resp: sl.r.c] surjection and X is vg-compact, then Y is compact.

Theorem 5.2: If $f: X \to Y$ is sl.vg.c., surjection and X is vg-compact[vg-lindeloff] then Y is mildly compact[mildly lindeloff].

Proof: Let $\{U_i:i \in I\}$ be clopen cover for Y. For each x in X, $\exists \alpha_x \in I$ such that $f(x) \in U_{\alpha x}$ and $\exists V_x \in v GO(X, x)$ such that $f(V_x) \subset U_{\alpha x}$. Since the family $\{V_i:i \in I\}$ is a cover of X by vg-open sets of X, \exists a finite subset I_0 of I such that $X \subset \bigcup \{V_x:x \in I_0\}$. Therefore $Y \subset \bigcup \{f(V_x):x \in I_0\} \subset \bigcup \{U_{\alpha x}:x \in I_0\}$. Hence Y is mildly compact.

Corollary 5.2:

(i) If $f: X \rightarrow Y$ is sl.rg.c[resp: sl.v.c.; sl.r.c] surjection and X is vg-compact[vg-lindeloff] then Y is mildly compact[mildly lindeloff].

(ii) If $f:X \rightarrow Y$ is sl.vg.c.[resp: sl.rg.c; sl.v.c.; sl.r.c] surjection and X is locally vg-compact{resp:vg-Lindeloff; locally vg-lindeloff}, then Y is locally compact{resp: Lindeloff; locally lindeloff}.

S. Balasubramanian*/ Slightly vg-continuous functions/ IJMA- 2(8), August-2011, Page: 1-9

(iii) If $f: X \rightarrow Y$ is sl.vg.c., surjection and X is semi-compact[semi-lindeloff] then Y is mildly compact[mildly lindeloff].

(iv) If $f: X \to Y$ is sl.vg.c., surjection and X is β -compact[β -lindeloff] then Y is mildly compact[mildly lindeloff].

(v) If $f: X \rightarrow Y$ is sl.vg.c.[sl.r.c.], surjection and X is locally vg-compact{resp: vg-lindeloff; locally vg-lindeloff} then Y is locally mildly compact{resp: locally mildly lindeloff}.

Theorem 5.3: If $f:X \rightarrow Y$ is sl.vg.c., surjection and X is s-closed then Y is mildly compact[mildly lindeloff].

Proof: Let $\{V_i : V_i \in CO(Y); i \in I\}$ be a cover of Y, then $\{f^{-1}(V_i) : i \in I\}$ is vg-open cover of X[by Thm 3.1] and so there is finite subset I₀ of I, such that $\{f^{-1}(V_i): i \in I_0\}$ covers X. Therefore $\{V_i : i \in I_0\}$ covers Y since f is surjection.

Hence Y is mildly compact.

Corollary 5.3: If $f:X \rightarrow Y$ is sl.rg.c[resp: sl.v.c.; sl.r.c.] surjection and X is s-closed then Y is mildly compact[mildly lindeloff].

Theorem 5.3: If $f: X \to Y$ is sl.vg.c., [resp: sl.rg.c.; sl.v.c.; sl.r.c.] surjection and X is vg-connected, then Y is connected. **Proof:** If Y is disconnected, then $Y = A \cup B$ where A and B are disjoint clopen sets in Y. Since f is sl.vg.c. surjection, $X = f^{-1}(Y) = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A) f^{-1}(B)$ are disjoint vg-open sets in X, which is a contradiction for X is vg-connected. Hence Y is connected.

Corollary 5.4: The inverse image of a disconnected space under a sl.vg.c., [resp: sl.rg.c.; sl.v.c.; sl.r.c.] surjection is vg-disconnected.

Theorem 5.4: If $f: X \rightarrow Y$ is sl.vg.c.[resp: sl.rg.c.; sl.v.c.], injection and Y is UT_i, then X is vg_i i = 0, 1, 2.

Proof: Let $x_1 \neq x_2 \in X$. Then $f(x_1) \neq f(x_2) \in Y$ since *f* is injective. For Y is $UT_2 \exists V_j \in CO(Y)$ such that $f(x_j) \in V_j$ and $\cap V_j = \phi$ for j = 1, 2. By Theorem 3.1, $x_j \in f^{-1}(V_j) \in \nu GO(X)$ for j = 1, 2 and $\cap f^{-1}(V_j) = \phi$ for j = 1, 2. Thus X is vg_2 .

Theorem 5.5: If $f:X \rightarrow Y$ is sl.vg.c.[resp: sl.rg.c.; sl.v.c.], injection; closed and Y is UT_i, then X is vgg_i i = 3, 4.

Proof:(i) Let x in X and F be disjoint closed subset of X not containing x, then f(x) and f(F) be disjoint closed subset of Y not containing f(x), since f is closed and injection. Since Y is ultraregular, f(x) and f(F) are separated by disjoint clopen sets U and V respectively. Hence $x \in f^{-1}(U)$; $F \subseteq f^{-1}(V)$, $f^{-1}(U)$; $f^{-1}(V) \in v$ GO(X) and $f^{-1}(U) \cap f^{-1}(V) = \phi$. Thus X is vgg_3 .

(ii) Let F_j and $f(F_j)$ are disjoint closed subsets of X and Y respectively for j = 1, 2, since f is closed and injection. For Y is ultranormal, $f(F_j)$ are separated by disjoint clopen sets V_j respectively for j = 1, 2. Hence $F_j \subseteq f^{-1}(V_j)$ and $f^{-1}(V_j) \in vGO(X)$ and $\bigcap f^{-1}(V_j) = \phi$ for j = 1, 2. Thus X is vgg_4 .

Theorem 5.6: If $f: X \rightarrow Y$ is sl.vg.c.[resp: sl.rg.c.; sl.v.c.], injection and (i) Y is UC_i[resp: UD_i] then X is $v gC_i$ [resp: vgD_i] i = 0, 1, 2. (ii) Y is UR_i, then X is $vg-R_i$ i = 0, 1.

Theorem 5.7: If $f:X \to Y$ is sl.vg.c.[resp: sl.v.c.; sl.rg.c; sl.r.c] and Y is UT₂, then the graph G(*f*) of *f* is vg-closed in the product space X× Y.

Proof: Let $(x_1, x_2) \notin G(f)$ implies $y \neq f(x)$ implies \exists disjoint V; $W \in CO(Y)$ such that $f(x) \in V$ and $y \in W$. Since *f* is sl.*vg*.c., $\exists U \in vGO(X)$ such that $x \in U$ and $f(U) \subset W$ and $(x, y) \in U \times V \subset X \times Y \cdot G(f)$. Hence G(f) is *vg*-closed in X×Y.

Theorem 5.8: If $f: X \to Y$ is sl.vg.c.[resp: sl.v.c.; sl.rg.c; sl.r.c] and Y is UT₂, then A = { $(x_1, x_2)| f(x_1) = f(x_2)$ } is vg-closed in the product space X× X.

Proof: If $(x_1, x_2) \in X \times X$ -A, then $f(x_1) \neq f(x_2)$ implies \exists disjoint $V_j \in CO(Y)$ such that $f(x_j) \in V_j$, and since f is sl.vg.c., $f^{-1}(V_j) \in v GO(X, x_j)$ for j = 1, 2. Thus $(x_1, x_2) \in f^{-1}(V_1) \times f^{-1}(V_2) \in v GO(X \times X)$ and $f^{-1}(V_1) \times f^{-1}(V_2) \subset X \times X$ -A. Hence A is vg-closed.

Theorem 5.9: If $f: X \to Y$ is sl.r.c.[resp: sl.c.]; $g: X \to Y$ is sl.vg.c[resp: sl.rg.c; sl.v.c]; and Y is UT₂, then E = {x in X: f(x) = g(x)} is vg-closed in X.

S. Balasubramanian*/Slightly vg-continuous functions/IJMA-2(8), August-2011, Page: 1-9 CONCLUSION

In this paper we defined slightly-*vg*-continuous functions, studied its properties and their interrelations with other types of slightly-continuous functions.

References

[1] Abd El-Monsef. M. E., S.N.Eldeeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut. Chiv. A.12, no.1(1983) 77-90.

[2] Abd El-Monsef. M. E., R. A. Mahmoud and E. R. Lashin, β -closure and β -interior, J. Fac. Educ. Soc A, Ain Shams Univ.10(1986)235-245.

[3] Andreivic. D., β -open sets, Math. Vestnick. 38(1986)24-32.

[4] Arse Nagli Uresin, Aynur kerkin, T.Noiri, slightly δ -precontinuous funtions, Commen, Fac. Sci. Univ. Ark. Series 41.56(2) (2007)1-9.

[5] Arya. S. P., and M. P. Bhamini, Some weaker forms of semi-continuous functions, Ganita 33(1-2) (1982)124-134.

[6] Baker. C. W., Slightly precontinuous functions, Acta Math Hung, 94(1-6) (2002) 45-52.

[7] Balasubramanian. S., C. Sandhya and P. A. S. Vyjayanthi, On v-T_i, v-R_i and v-C_i axioms, Scientia Magna, 4(4) (2008) 86-103.

[8] Balasubramanian. S., C. Sandhya and P. A. S. Vyjayanthi, On v-compact spaces, Scientia Magna, 5(1) (2009).

[9] Balasubramanian. S., vg-closed sets, Bull. Kerala Math. Association, 5(2) (2009) 89-92.

[10] Balasubramanian. S., C. Sandhya and P. A. S. Vyjayanthi, On v D-sets and separation axioms, Internat. J. Math. Anal, 4(19) (2010)909-919.

[11] Balasubramanian. S., vg-continuity, Proc. I. S.N.T.A.M., Bharatha Matha College, Ernakulam, Kerala (2011).

[12] Balasubramanian. S., and P. A. S. Vyjayanthi, v-closed mappings, J. Adv. Res. Pure Math., 3(1) (2011)135-143.

[13] Balasubramanian. S., vg-interior and vg-closure operators, Acta Ciencia Indica (In Press) (2011).

[14] Balasubramanian. S., and P.A.S.Vyjayanthi, Slightly *v*-continuous functions, J. Adv. Res. Pure Math., (In Press) (2011).

[15] Beceron. Y., S. Yukseh and E. Hatir, on almost strongly θ -semi continuous functions, Bull. Cal. Math. Soc., 87, 329.

[16] Davis. A., Indexed system of neighborhoods for general topological spaces, Amer. Math. Monthly 68(1961)886-893.

[17] Di. Maio. G., A separation axiom weaker than R₀, Indian J. Pure and Appl. Math.16 (1983)373-375.

[18] Di. Maio. G., and T. Noiri, on s-closed spaces, Indian J. Pure and Appl. Math(11)226.

[19] Dunham. W., T_{1/2} Spaces, Kyungpook Math. J.17 (1977) 161-169.

[20] Erdal Ekici and Miguel Caldas, Slightly γ-continuous functions, Bol. Sac. Paran. Mat (38) V.22.2, (2004) 63-74.

[21] Maheswari. S. N., and R. Prasad, on R₀ spaces, Portugal Math., 34 (1975) 213-217.

[22] Maheswari. S. N., and R. Prasad, some new separation axioms, Ann. Soc. Sci, Bruxelle, 89(1975)395-

[23] Maheswari. S. N., and R. Prasad, on s-normal spaces, Bull. Math. Soc. Sci. R. S. Roumania, 22(70) (1978)27-

[24] Maheswari. S. N., and S. S. Thakur, on α -iresolute mappings, Tamkang J. Math.11, (1980)201-214.

S. Balasubramanian/Slightly vg-continuous functions/IJMA-2(8), August-2011, Page: 1-9* [25] Mahmoud. R. A., and M. E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pak. Acad.Sci,27(3) (1990)285-296.

[26] Mashhour. A. S., M. E.Abd El-Monsef and S. N. El-Deep, on precontinuous and weak precontinuous functions, Proc. Math. Phy. Soc. Egypt, 3, (1982) 47-53.

[27] Mashhour. A. S., M.E. Abd El-Monsef and S. N. El-Deep, α -continuous and α -open mappings, Acta Math Hung. 41(3-4) (1983) 231-218.

[28] Njastad. O., On some class of nearly open sets, Pacific J. Math 15(1965) 961-970.

[29] Noiri. T., & G. I. Chae, A Note on slightly semi continuous functions Bull. Cal. Math. Soc 92(2) (2000) 87-92.

[30] Noiri. T., Slightly β -continuous functions, Internat. J. Math. & Math. Sci. 28(8) (2001) 469-478.

[31] Nour. T. M., Slightly semi continuous functions Bull. Cal. Math. Soc 87, (1995) 187-190.

[32] Singhal & Singhal, Almost continuous mappings, Yokohama J.Math.16, (1968) 63-73.

[33] Vadivel. A., and K. Vairamanickam, $rg\alpha$ -closed- and $rg\alpha$ -open Sets in Topological spaces, Internat. J. Math. Analysis, 3(37) (2009) 1803-1819.
