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ABSTRACT 
Logistic regression is extensively used as a ideal model for the analysis of binary data with the areas of applications 
including physical, medical and social sciences. In this paper simulation studies are used to estimate the effect of 
varying sample size, is increases. To assess the accuracy of the estimated parameters and variance components of the 
logistic and multinomial logistic regression model. As well as the maximum likelihood procedure for the estimation of 
its parameters are introduced in detail. The essential assumptions are underlying conventional results on the properties 
of maximum likelihood estimate of the stochastic which determines the behaviour of the observable facts investigated, 
is known to lie within a specified parameter family of probability distribution. The outcome of the simulation studies 
are performs we, in performance of the consistency and normality of the Maximum Likelihood Estimation for various 
sample sizes. 
 
Keywords: Logistic Regression, Maximum Likelihood Estimation, Multinomial Logistic Regression Model, Consistency 
and Normality. 
 
 
1. INTRODUCTION 

 
Regression analysis is one of the most useful and the most frequently used statistical methods (David Collett, 2002). 
regression analysis is a form of predictive modeling technique which investigates the relationship between a dependent 
and one or more predictor variables. Among the different regression models, logistic regression plays a particular role. 
However, the basic concept of the linear regression model is quantifying the effect of several explanatory variables on 
one dependent continuous variable. For situations where the dependent variable is qualitative, however, other methods 
have been developed. One of the method is logistic regression model, which specifically covers the case of binary or 
dichotomous response (Givens, G.H. and Hoeting. J.A, 2005). 
 
The statistical analysis of dichotomous outcome variable is frequently interpreted with the use of logistic regression 
methods. The multiple logistic regression model is a commonly applied procedure for describing the relationship 
between a dichotomous outcome variable such as presence or absence of disease, and a number of independent 
variables known as potential risk factors.  
 
Logistic regression analysis is a statistical modeling method for analyzing categorical outcome variable. This statistical 
model describes the relationship between a categorical response variable and a set of explanatory variables. The 
response variable in logistic regression model is usually dichotomous, but more than two response options can be 
modelled using multinomial or polytomous logistic regression model. 
 
2. LITERATURE REVIEW 
 
Regression analysis is one of the most useful and the most frequently used statistical methods (Efron and Tibsirani, 
1993).  The aim of the regression methods is to describe the relationship between a response variable and one or more 
explanatory variables. Among the different regression models, logistic regression plays a particular role. The basic 
concept, however, is universal. The linear regression model is, under certain conditions, in many circumstances a 
valuable tool for quantifying the effects of several explanatory variables on one dependent continuous variable. For 
situations where the dependent variable is qualitative, however, other methods have been developed. These methods are 
the least squares and the discriminent function analysis.  
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The discriminent approach to estimation of the coefficients is of historical importance as popularized by (Cox, D. R., 
and Snell, E. J, 1989). (J.Wilde, 2008) compared the two methods when the model is dichotomous and concluded that 
the discriminate function was sensitive to the assumption of normality. In particular, the estimation of the coefficient 
for the non normal distributed variables are biased away from zero, when the coefficient function will over estimate the 
magnitude of the dichotomous independent variable the discriminant function will overestimate the magnitude of the 
coefficient. 
 
One of these is the logistic regression model, which specifically covers the case of a binary (dichotomous) response.  
Cramer (2003) discussed an overview of the development of the logistic regression model.  He identifies three sources 
that had a profound impact on the model: applied mathematics, experimental statistics, and economic theory.  Agresti 
(2002) also provided details of the development on logistic regression in different areas.  He states, “Sir David R. Cox 
introduced many statisticians to logistic regression through his 1958 article and 1970 book, The Analysis of Binary 
Data.” However, logistic regression is widely used as a popular model for the analysis of binary data with the areas of 
applications including physical, biomedical, and behavioral sciences. For example, Cornfield (1962) presented the 
preliminary results from the Framingham Study. The purpose of the study was to find the roles of risk factors of 
cholesterol levels (low versus high values) and blood pressure (low versus high values) in the development of coronary 
heart disease (yes or no) in the population of the town.  
 
According to (D.W.Hosmer and S.Lemeshow, 1989), the fact concerning the interpretability of the coefficients is the 
fundamental reason why logistic regression has proven such a powerful analytic tool for epidemiologic research. At 
least, this argumentation holds whenever the explanatory variable x are quantitative. (Hosmer, D. and Lemeshow, 
2000) Investigate the asymptotic properties of various discrete and qualitative response models and provided conditions 
under which the MLE has its usual asymptotic properties, that is, the p -vector β  of coefficients of linear 

combinations ( x ,β ) has to be estimated from a finite sample of n  observations. The method of analysis of 
generalized linear models can be used since logistic models are sub-category (P.McCullagh and J.A.Nelder, 1989). 
 
The asymptotic normality of the maximum likelihood in logistic regression models are also found in (B. Munsiwamy 
and Shibru Temesgen Wakweya, 2011). (Anthony. N, 2014) presents regularity conditions for a multinomial response 
model when the logit link is used. (L.Nordberg, 1980) presents regularity conditions that assure asymptotic normality 
for the logit link in binomial response models and further verifies that his conditions are equivalent to those of 
(L.McFadden,1974). (C.Gourienx and A.Monfort,1981) discuss the asymptotic distribution of the MLE for 
constructing confidence intervals and conducting tests of hypotheses. (C.Gourienx, 1981) prove that the MLE is 
asymptotically normal in this setting as long as certain regularity conditions are satisfied.  
 
3. MULTINOMIAL LOGISTIC REGRESSION 
  
Polytomous Logistic Regression is the extension for the (binary) logistic regression when the categorical dependent 
outcome has more than two levels. One possible way to handle such situations is to split the categorical response 
variable in several ways and apply binary logistic regression to each dichotomous variable. However, this will result in 
several different analysis for only one categorical response. A more structured approach is to formulate one model for 
the categorical response by means of so called generalized logits. Suppose that Y has k categories and the probability 
for category i is given by  

P(Y=i) = pi, i=1, 2,…..,k 
 
Then the k generalized logits are defined by  

1 2 1

log ( ) ln ln
1 ( ..... )

i i

k k

P Pit Y i
P P P P−

   
= = =   − + +   

                                                                                 (3.1) 

 
This means that the generalized logits relate the probabilities pi for the categories I = 1, 2,….k-1 to the reference 
category k. For m categories the general polytomous logistic regression model becomes 

0 1 1 2 2log ( ) ..... , 1,2,..... 1i i i im mit Y i X X X i kγ γ γ γ= = + + + + = −                                                (3.2) 
 
Note that the polytomous logistic model is given by k-1 equations if Y has k categories and that we have one logistic 
coefficient ijγ  for each category or covariate combination. 

If a sample belongs to a special class Yi with probability pi it has odds 
1

i

i

p
p

 
 − 

 

The vector ix  consist out of the data for sample i , odds have the range (0,∞ ) 
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We also make some additional assumptions. 
 
The response Yi is Bernoulli distribution such that  

( 1| )i iP y x p= =  
 
The dichotomous logistic regression principle is described by a linear predictor  

0ln .....
1

Ti
i

i

p x
p

γ γ
 

= + − 
                                                                                                                            (3.3) 

 
The linear predictor is described by assume 0

T
i ixη γ γ= +  under conventional notation  

0[1... ]i ix
γ

η
γ
 

=  
 

 

 
Using the definitions and assumptions stated above. We can define the equation for the dichotomous logistic regression  

( 0 | ) ( 1| ) 1....i iP y x P y x= + = =                                                                                                            (3.4) 
 
We can show, for the logistic regression equation of ( 0 | )iP y x=  

              ( 1| )ln
1 ( 0 | )

Ti

i

P y x X
P y x

γ
 =

= − = 
 

1 ( 0 | )ln
( 0 | )

Ti

i

P y x X
P y x

γ
 − =

⇒ = = 
 

1ln 1
( 0 | )

T

i

X
P y x

γ
 

⇒ − = = 
 

1 1
( 0 | )

TX

i

e
P y x

γ⇒ − =
=

 

1 1
( 0 | )

TX

i

e
P y x

γ⇒ = +
=

 

1( 0 | )
1

Ti X
P y x

e γ
⇒ = =

+
 

 
Now ( 1| ) 1 ( 0 | )i iP y x P y x= = − =  

     11
1

TXe γ
= −

+
 

     
1

T

T

X

X

e
e

γ

γ
=

+
 

 

Now                   ( 1| )ln
( 0 | )

i

i

P y x
P y x

 =
 = 

 

1ln 1
1

T

T

T

X

X

X

e
e

e

γ

γ

γ

 
 

+ ⇒
 
 + 

 

ln . 1
1

T
T

T

X
X

X

e e
e

γ
γ

γ

 
⇒ +  + 

 

ln( )
TXe γ⇒ TX γ=  
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1

( 1| )ln .....
( 0 | )

T
Ti i
iT

i i

P y x X
P y x

γ
 =

= = 
                                                                                                                    (3.5) 

 

Similarly 
2

( 2 | )ln .....
( 0 | )

T
Ti i
iT

i i

P y x X
P y x

γ
 =

= = 
                                                                                                                (3.6) 

 
In this case we have taken the group yi=0 as reference category  
 
Using the definition  

( 0 | ) ( 1| ) ( 2 | ) 1T T T
i i i i i iP y x P y x P y x= + = + = =  

Now      1
( 1| ) ....
( 0 | )

T
i

T
Xi i

T
i i

P y x e
P y x

γ=
=

=
                                                                                                                            (3.7) 

and        2
( 2 | ) .....
( 0 | )

T
i

T
Xi i

T
i i

P y x e
P y x

γ=
=

=
                                                                                                                            (3.8) 

 
We can also show that  

( 2 | )n log ( 2 | ) log ( 1| )
( 1| )

T
T Ti i

i i i iT
i i

p y xl p y x p y x
p y x

 =    = = − =     = 
 

   ( 2 | ) ( 0 | ) ( 1| ) ( 0 | )ln ln
( 0 | ) ( 0 / )

T T T T
i i i i i i i i

T T
i i i i

p y x p y x p y x p y x
p y x p y x

   = = = =
= −   = =   

 

   ( 2 | ) ( 0 | ) ( 1| ) ( 0 | )ln ln ln ln
( 0 | ) ( 0 | ) ( 0 | ) ( 0 | )

T T T T
i i i i i i i i

T T T T
i i i i i i i i

p y x p y x p y x p y x
p y x p y x p y x p y x

       = = = =
= + − −       = = = =       

                   

   ( 2 | ) ( 1| )ln ln
( 0 | ) ( 0 | )

T T
i i i i

T T
i i i i

p y x p y x
p y x p y x

   = =
= −   = =   

 

   2 1ln ln
T T
i iX Xe eγ γ   = −   

 

   2 1
T T
i iX Xγ γ= −  

   [ ]2 1
T
iX γ γ= −  

Thus  [ ]2 1( 2 | )
( 1| )

T
i

T
Xi i

T
i i

p y x e
p y x

γ γ−=
=

=
                                                                                                                               (3.9) 

 
Now defined all preliminary equations we can, now derive the logit functions of each individual outcome category  

        [ ]2 1
( 2 | ) 1 ( 1| ) ( 0 | )
( 1| ) ( 1| )

T
i

T T T
Xi i i i i i

T T
i i i i

p y x p y x p y x e
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= =

= =
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Then we get 
1 1 2 1

1

1
T T T T
i i i i

T
i

X X X X

X

e e
e

γ γ γ γ

γ

+ −+ +
=  

      
1 2

1

1
T T
i i

T
i

X X

X

e e
e

γ γ

γ

+ +
=  

            
1

1 2
( 1| ) .....

1

T
i

T T
i i

X
T

i i X X
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e e

γ

γ γ
∴ = =

+ +
                                                                                                   (3.10) 

For ( 0 | )T
i ip y x=  

 

Now             1
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i
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=

=
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1
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e e e
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+ +
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1 2
1 1
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1
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Finally for ( 2 | )T
i ip y x=  

( 0 | ) 1 ( 1| ) ( 0 | )T T T
i i i i i ip y x p y x p y x= = − = − =  

                            
1

1 2 1 2

11
1 1

T
i
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X
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e
e e e e

γ
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1 2 1

1 2

1 1
1

T T T
i i i

T T
i i

X X X

X X

e e e
e e

γ γ γ

γ γ

+ + − −
=

+ +
 

 
2

1 2
( 2 | )

1

T
i

T T
i i

X
T

i i X X

ep y x
e e

γ

γ γ
= =

+ +
                                                                                                          (3.11) 

Hence we have found the logit functions for all outcomes categories when using the group yi=0 as reference category. 
As noted earlier on we have constructed a multinomial logistic regression model with reference category. 
 
The additional advantage of this type of modeling is that the model is not over parameterized. But intuitively it 
indicates that if we know the regression coefficient vectors 1 2 1, ,....., gγ γ γ − .  

 
We have it is already parameterized due to the other regression coefficient vector. 
 
For convenient notation and reasons that becomes clear later, we define the log it functions for each category outcome 
variable as 

0

0

1

( | )
T
i

T
i

X
T

is i i g
X

t

ep y s x
e

γ γ

γ γ
µ

+

+

=

= = =

∑
                                                                                                           (3.12) 
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4. FITTING THIS MODEL 
 
There is no analytical way to fit the model to the observed data, as we do not have a closed expression. To solve this 
problem we are going to make use of the likelihood function of the model. Recall that the probabilities of the category 
outcome are Bernoulli distributed. If random variables are independently distributed. 
 
We can state that  

1 2

1 2

1

( ) ( , ,....., | )
( / ), ( | ),..... ( | )

( )

n

n
n

i
i

L P y y y
P y P y P y

f yθ

θ θ
θ θ θ

=

=

=

=∏

 

Hence we are trying to maximize the conditional probability of the observed data given the parameters. We are trying 
to find the parameters which best explains the outcomes given the model structure. 
 
In case of Bernoulli variables and our logistic regression principle is  

1 1

( ) is

gn
y

is
i s

L β µ
= =

=∏∏                                                                                                                                         (4.1) 

 
To maximize this expression we are going to make use of the log-likelihood function which has its maxima at exactly 
the same parameters values. 

   
1 1

( ) ln( ( )) ln is
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y
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i s

l Lβ β µ
= =

 
= =  

 
∏∏  

( )
1 1

ln is

gn
y
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i s

µ
= =

=∑∑  

( )
1 1

ln
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is is
i s

y µ
= =

=∑∑  

1 1

1
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T
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T
i t

Xgn

is g
Xi s

t
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e

γ

γ= =

=

 
 
 =
 
  

∑∑
∑

 

( )
1 1 1

ln ln
T T
i s i t

g gn
X X
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i s t

y e eβ γ

= = =

  
= −  

  
∑∑ ∑  

1 1 1
ln

T
i t

g gn
XT

is i s
i s t

y X e γγ
= = =

  
= −  

  
∑∑ ∑  

To find the gradient of this log-likelihood function with respect to the beta coefficients we can show the procedure 
without loss of generality for one partial derivative. 

1 1 1
( ) ln

T
i t

g gn
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is i s
i s tkh kh

l y X e γγ γ
γ γ = = =

   ∂ ∂
= = −   ∂ ∂     

∑∑ ∑  
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( )
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T
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∑ ∑  
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( )
1

n
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=
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( )
1

( )
n

ih ih ik
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∂
∴ = −
∂ ∑                                                                                                                               (4.2) 

The Matrix form is  

11 1

22 2*
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0 0 , , ,
0 0

gn n

y
X

y
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µ γ

γµ
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Using these definitions we can define the gradient vector as  

( ) ( )Tl X Yγ µ
β
∂

= −
∂

                                                                                                                                 (4.3) 

 
Second derivative with respective ks 
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Now                                    ( )
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We know the second order partial derivatives for all cases and we can construct the Hessian conveniently by matrix 
operations. The Hessian is defined as 

( ) ( )
2

* *T

ks kh

l
X ZX

γ
γ γ
∂

= −
∂ ∂

                                                                                                                            (4.5) 

:where the ng ng matrix Z is given by×  
11 12 1

21 22 2

1 2

.....
.....

.....

g

g

g g gg

Z Z Z
Z Z Z

Z

Z Z Z

 
 
 =  
  
 

   

 

 

Now, we are going to show that ( )2

ks kh

l γ
γ γ
∂
∂ ∂

is negative semi-definite for any 1pγ +∈  we have,  

( )''T T Tw l w w X Z X wγ =  
 

                     ( ) ( )2

1
(1 )

n
T
i i i

i
X w diag µ µ

=

= − −∑                                                                                              (4.6) 

 
As ( )(1 )i idiag µ µ−  is always positive, we can see that ( )' ' 0Tw l wγ ≤ 1pw +∀ ∈  and all 1pγ +∈ .  

 

Since ( )' 'l γ  is negative semi-definite, the log-likelihood, l  is a concave function of of the parameter γ ; several 
optimization techniques are available for finding the maximizing parameters (see,for example,Mak,1993; Givens and 
Hoeting,2005).  
 

We use the Newton-Raption, we use ( )tγ , the current estimate of γ , to calculate ( )tµ  and ( )tZ . The new estimate 
of γ  is  

( ) 1( 1) ( ) ( ) ( ) ( ) ( )( ).t t T t T tX Z X X yγ γ µ
−+ = + −                                                                                             (4.7) 

This process is required until the estimates stop changing, that is, until ( 1)tγ + is sufficiently close to ( )tγ , then we say 
that the Newton-Raption method converges.  
 
To better understand what ensures convergence, we must carefully analyze the errors at successive steps.  
 
5. THE SIMULATION RESULTS FOR CONSISTENCY AND NORMALITY OF THE BINARY LOGISTIC 
REGRESSION  
 
The binary logistic regression model: Consistency of the Maximum Likelihood estimators: 
 
Now the standard Monte Carlo simulation, the fixed sample performance of consistency of the maximum likelihood 
estimatiors of the logistic regression model. In our simulation study, we consider four explanatory variables 

1 2 3, ,x x x and 4x , which are fixed and the binary response variable y, which is treated as a random variable in the 

logistic model. For fixed values of the intercept parameter 0γ  and four other parameters are 1 2 3, ,γ γ γ and 4γ  our 
aim is to compare the performance of the values of parameters and their standard errors when sample size increases. 
 
For fixed values of 0 1 2 30.8, 1.2, 1.1, 0.35γ γ γ γ= = = = and 4 0.5γ =  the logistic regression becomes  

( )
1 2 3 4

1 2 3 4

0.8 1.2 1.1 0.35 0.5

0.8 1.2 1.1 0.35 0.51

x x x x

x x x x
ex

e
µ

+ + + +

+ + + +=
+

                                                                                                    (5.1) 

 
In this simulation, we consider sample sizes of n=100, 200, 300 and 400 and generate 2000 independent sets of random 
samples for each different sample size. 



K. Nagendra Kumar*1, B. Muniswamy2 /  
Asymptotic properties of the logistic and multinomial Logistic regression models and its applications…. / IJMA- 8(5), May-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                     104  

  
For each set of random sample with a particular sample size, we estimate 0γ 1 2 3, ,γ γ γ and 4γ  and their standard 

errors based on the logistic regression model. The final estimates and standard errors of 0γ 1 2 3, ,γ γ γ and 4γ  are the 

average of 2000 estimates of 0γ 1 2 3, ,γ γ γ  and 4γ for that particular sample size. The following table gives the 
results of the simulation study for different sample size. 
 
Table-1: Estimated parameter values and their standard errors using the logistic regression model for different sample 
sizes of 100, 200, 300, 400. 
 

Parameters  n=100 n=200 n=300 n=400 
Estimate SE Estimate SE Estimate SE Estimate SE 

0γ̂  1.3209 0.0120 0.7670 0.0141 0.6230 0.0075 0.6180 0.0061 

1̂γ  1.3874 0.0529 1.0735 0.0357 1.0279 0.0079 1.0188 0.0064 

2γ̂  1.0495 0.0238 1.4631 0.0241 0.9193 0.0076 0.9242 0.0066 

3γ̂  0.3869 0.0133 0.3728 0.0213 0.3570 0.0076 0.3514 0.0063 

4γ̂  0.0986 0.0170 0.0321 0.0152 0.0610 0.0075 0.0410 0.0061 

 
Monte Carlo Simulation of finite sample behavior for normality of the parameter 1̂γ  (Simulation size = 3000) 
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Monte Carlo Simulation of finite sample behavior for normality of the parameter 2γ̂  (Simulation size =3000) 
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Monte Carlo Simulation of finite sample behavior for normality of the parameter 3γ̂  (Simulation size =3000) 

 

             

 

           

 
 

Monte Carlo Simulation of finite sample behavior for normality of the parameter 4γ̂  (Simulation size =3000) 
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6. THE MULTINOMIAL LOGISTIC REGRESSION MODEL: CONSISTENCY OF THE ML ESTIMATORS 
 
Here, we have to demonstrate the consistency of the maximum likelihood estimators for the multinomial logistic 
regression modal via standard Monte Carlo simulation. Now, we  consider the outcome variable Y is random and has 
three categories, this is, Y takes values coded as 1,2 and 3. Here we assume that there are four explanatory variables 

1 2 3 4, ,w w w and w  in the model, where each of them is a vector and take two possible values coded as 0 or 1. If 
we treat the last category of the outcome variable as the baseline, then the multinomial logistic regression model can be 
written as 

( )
( )

1 2 3 4
01 11 1 12 2 13 3 14 4

1 2 3 4

1| , , ,
ln

3 | , , ,
P Y w w w w

w w w w
P Y w w w w

γ γ γ γ γ
 =

= + + + + = 
                             (6.1) 

( )
( )

1 2 3 4
02 21 1 22 2 12 3 24 4

1 2 3 4

2 | , , ,
ln

3 | , , ,
P Y w w w w

w w w w
P Y w w w w

γ γ γ γ γ
 =

= + + + + = 
                           (6.2) 

 
Under these models, the response probabilities are  

( )
01 11 1 12 2 13 3 14 4

01 11 1 12 2 13 3 14 4 02 21 1 22 2 12 3 24 41 2 3 41| , , ,
1

w w w w

w w w w w w w w
eP Y w w w w

e e

γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ

+ + + +

+ + + + + + + += =
+ +

          (6.3) 

( )
02 21 1 22 2 12 3 24 4

01 11 1 12 2 13 3 14 4 02 21 1 22 2 12 3 24 41 2 3 42 | , , ,
1

w w w w

w w w w w w w w
eP Y w w w w

e e

γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ

+ + + +

+ + + + + + + += =
+ +

         (6.4) 

( )
01 11 1 12 2 13 3 14 4 02 21 1 22 2 12 3 24 41 2 3 4

13 | , , ,
1 w w w w w w w wP Y w w w w

e eγ γ γ γ γ γ γ γ γ γ+ + + + + + + += =
+ +

         (6.5) 
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From the above models, we estimate the unknown parameters 01 11 12 13 14, , , , ,γ γ γ γ γ  02 21 22 12, , ,γ γ γ γ and 24γ  . 

The purpose is to show that if the numbers of observations 1 2 3 4( , , , , )i i i i iy w w w w , 1,2,...,i n= increases, then 
the estimates of the parameters converge to their true values. Now, we simulate the values of the outcome and 
explanatory variables.  

 
As the explanatory variables are fixed, the variable 1 2 3, ,w w w and 4w  are created based on the binomial distribution 

for arbitrary number of sample size. Once the variable 1 2 3, ,w w w and 4w  are in hand, we have a tendency to  
calculate probabilities for the outcome variable based on the above equations (6.3),(6.4) and (6.5). These probabilities 
are used to simulate the data for Y from the multinomial distribution as Y exceeds more than two categories (actually, 
in this case it would be trinomial since Y has only three categories). For standard Monte Carlo simulation, we consider 
sample sizes of n = 200, 500 and 1000. 
 
For the arbitrary fixed values of 01 11 12 130.3, 0.7, 1.5, 0.4,γ γ γ γ= = = = − 14 1.3,γ = 20 1.1,γ =  

21 22 23 241.6, 0.8, 0.5 0.2andγ γ γ γ= = = − = , we generate 3000 independent sets of random samples for each different 

sample sizes. Then we estimate 01 11 12 13 14, , , , ,γ γ γ γ γ  02 21 22 12, , ,γ γ γ γ  and 24γ  based on the average of 3000 

estimates of 01 11 12 13 14, , , , ,γ γ γ γ γ  02 21 22 12, , ,γ γ γ γ and 24γ , which are estimated from the simultaneously fitted 
multinomial logistic regression model and their standard error for each estimated parameter. The results of simulation 
study are provided in the following table. 
 
Table-2: Estimated parameter values and their standard errors using the multinomial logistic regression model for 
different sample sizes of 800,1000 and 1200. 
 

Estimated Parameter n=800 n=1000 n=1200 

Estimate SE Estimate SE Estimate SE 

01γ̂  0.8962 0.0090 0.9692 0.0073 0.8135 0.0070 

11γ̂  -0.0558 0.0084 -0.0485 0.0070 0.0912 0.0061 

12γ̂  0.1019 0.0061 0.0940 0.0054 0.0311 0.0051 

13γ̂  0.0415 0.0062 -0.1733 0.0054 -0.0422 0.0049 

14γ̂  0.0705 0.0061 0.0081 0.0053 -0.0053 0.0049 

20γ̂  1.5327 0.0088 1.6113 0.0071 1.4723 0.0068 

21γ̂  -0.0326 0.0081 -0.0831 0.0068 0.0080 0.0059 

22γ̂  0.0146 0.0060 0.0399 0.0054 -0.0451 0.0049 

23γ̂  -0.0492 0.0061 -0.0904 0.0052 0.0123 0.0048 

24γ̂  0.1027 0.0060 0.0294 0.0052 0.0240 0.0048 

 
Monte Carlo Simulation of finite sample behavior for normality of the parameter 11γ̂  (Simulation size =3000)     
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Monte Carlo Simulation of finite sample behavior for normality of the parameter 12γ̂  (Simulation size =3000)           
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Monte Carlo Simulation of finite sample behavior for normality of the parameter 13γ̂  (Simulation size =3000) 

              
 

                

                   
Monte Carlo Simulation of finite sample behavior for normality of the parameter 14γ̂  (Simulation size =3000)       
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Monte Carlo Simulation of finite sample behavior for normality of the parameter 21γ̂  (Simulation size =3000)   

               

      

        

 

 
 
 

Monte Carlo Simulation of finite sample behavior for normality of the parameter 22γ̂  (Simulation size =3000)   
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    Monte Carlo Simulation of finite sample behavior for normality of the parameter 23γ̂  (Simulation size =3000)    

  
 
 

 
 

 
 

Monte Carlo Simulation of finite sample behavior for normality of the parameter 24γ̂  (Simulation size =3000)    
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7. NORMALITY OF THE ML ESTIMATORS 
 
Under some assumptions that permits among several analytical properties, the utilization of the delta method, the 
central limit theorem holds. We have a tendency to conducted a simulation study via the software system package R. 
We have to show, however the properties of an estimator are affected by changing conditions such as its sample size 
and therefore the value of the underlying parameters. Using it in practice, we have a tendency to illustrate the 
sensitivity of the QQ-plots, we show that; 

( ) ( )
10,mle

mle

N N
I

γ γ
γ

 
− →   

 
  

Where  
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2

2
0 0 1 0 2 0 3 0 4

2

2
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∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

 
 
For different sample sizes n=800,n=1000 and n=1200 we calculate the equation 11 and repeat it 3000 times. The results 
are presented in the Figures 1,2,3,4 and 5 through the Quantile –Quantile normal plots for γ̂ . 
 
A Quantile-Quantile normal graph, plots the quantiles of the data set against the theoretical quantiles of the standard 
normal distribution. If the data set seems to be a sample from a normal population, then the points can fall roughly 
along the line. The computation results indicates that the distribution of parameters approximates normal distribution as 
sample size n is increases.  
 
8. CONCLUSION 
 
In this study shows that the asymptotic properties of the maximum likelihood estimates of the logistic and multinomial 
logistic regression can be obtained by some transformation of the regularity conditions of the linear regression model. 
The results for both binary and multinomial logistic regression indicate that the simulation study performs well in  
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showing the consistency of the maximum likelihood estimators for parameters of the models. We also believe that the 
computation results illustrate the distribution of parameters approximates normal distribution as sample size increases. 
However, it takes relatively huge set of data for such results in the case of multinomial logistic regression models. 
Consequently it is important to verify the model assumptions before applying these results in a real life situation. 
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