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ABSTRACT 
In this paper a new class of generalized closed sets in topological spaces, namely generalized b-strongly b*-closed 
(briefly, gbsb*-closed) set is introduced. We give some basic properties and various characterizations of gbsb*-closed 
sets. Also we introduce gbsb*-neighbourhood in a topological spaces and investigate some basic properties. 
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1. INTRODUCTION 
 
In 1970, Levine [8] introduced the class of generalized closed sets. The notion of generalized closed sets has been 
extended and studied exclusively in recent years by many topologists. In 1996, Andrjivic [16] gave a new type of 
generalized closed sets in topological spaces called b-closed sets. Later in 2012 A.Poongothai and P.Parimelazhagan 
[21] introduced sb*-closed sets and investigated some of their properties.  
 
In this paper, a new class of generalized closed set called generalized b-strongly b*-closed set is introduced. The notion 
of generalized b-strongly b*-closed set and its different characterizations are given in this paper.  
 
2. PRELIMINARIES 

 
Throughout this paper (X, 𝜏) represents a topological space on which no separation axiom is assumed unless otherwise 
mentioned. (X, 𝜏) will be replaced by X if there is no changes of confusion. For a subset A of a topological space X, 
cl(A) and int(A) denote the closure of A and the interior of A respectively. We recall the following definitions and 
results. 
 
Definition 2.1:. Let (X, 𝜏) be a topological space. A subset A of X is said to be 

1. semi-open [9] if A⊆ cl(int(A)) and semi-closed  if int(cl(A))⊆A. 
2. 𝛼-open [13] if A⊆ int(cl(int(A))) and 𝛼-closed if cl(int(cl(A)))⊆A. 
3. pre-open [14] if A⊆ int(cl(A)) and pre-closed if cl(int(A))⊆A. 
4. b-open [16] if A⊆int(cl(A))∪cl(int(A)) and b-closed if int(cl(A))∩cl(int(A)) ⊆A. 
5. regular open [1] if int(cl(A))=A and regular closed if cl(int(A))=A. 
6. 𝜋-open [4] if A is the union of regular open sets and 𝜋-closed if A is the intersection of regular closed sets. 

 
Definition 2.2: Let (X, 𝜏) be a topological space and A⊆X. The b-closure (resp.pre-closure, semi-closure, 𝛼-closure) 
of A, denoted by bcl(A) (resp.pcl(A), scl(A), 𝛼cl(A)) and is defined by the intersection of all b-closed (resp. pre-closed, 
semi-closed, 𝛼-closed) sets containing A. 
 
Definition 2.3: Let (X, 𝜏) be a topological space and A⊆X. The b-interior of A, denoted by bint(A) and is defined by 
the union of all b-open sets contained in A. 
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Definition 2.4: Let (X, 𝜏) be a topological space. A subset Aof X is said to be 

1. generalized closed [8](briefly g-closed) if cl(A)⊆U whenever A⊆U and U is open in (X, 𝜏). 
2. generalizedb-closed [2] (briefly gb-closed) if bcl(A)⊆U whenever A⊆U and U is open in (X, 𝜏). 
3. regular generalized closed [7] (briefly rg-closed) if cl(A) ⊆U whenever A⊆U and U is regular open in (X,𝜏). 
4. regular generalized b-closed [17](briefly rgb-closed) if bcl(A)⊆U whenever A⊆U and U is regular open in 

(X, 𝜏). 
5. generalized 𝛼b-closed [15](briefly g𝛼b-closed) if bcl(A)⊆U whenever A⊆U and U is 𝛼-open in (X, 𝜏) 
6. generalized pre-regular closed [20] (briefly gpr-closed) if pcl(A) ⊆U whenever A⊆U and U is rg-open in 

(X,𝜏). 
7. generalized p-closed [11](briefly gp-closed) if pcl(A)⊆U whenever A⊆U and U is open in (X, 𝜏). 
8. 𝛼-generalized closed [10] (briefly 𝛼g-closed) if 𝛼cl(A)⊆U whenever A⊆U and U is an open in (X, 𝜏). 
9. 𝜋-generalized b-closed [6](briefly 𝜋gb-closed) if bcl(A)⊆U whenever A⊆U and U is 𝜋-open in (X, 𝜏). 
10. weakly closed [19](briefly w-closed) if cl(A) ⊆ U whenever A ⊆U and U is a semi-open in (X, 𝜏). 
11. weakly generalized closed [18] (briefly wg-closed) if cl(int(A))⊆U whenever A⊆U and U is an open  in 

(X,𝜏). 
12. semi weakly generalized closed [5](briefly swg-closed) if scl(A)⊆U whenever A⊆U and U is an wg-open  

in (X, 𝜏). 
13. w𝛼-closed [3] if 𝛼cl(A)⊆U whenever A⊆U and U is a w-open in (X, 𝜏). 
14. strongly b*-closed [21](briefly sb*-closed) if cl(int(A)))⊆U whenever A⊆U and U is b-open in (X, 𝜏). 

 
The complements of the above mentioned closed sets are their respective open sets. 
 
Theorem 2.5 [21]: For a topological space (X, 𝜏), 

(i) Every open set is sb*-open. 
(ii) Every 𝛼-open set is sb*-open. 
(iii) Every sb*-open set is b-open. 

 
Theorem 2.6 [22]: For any subset A of a topological space (X, 𝜏), 

(i) sint(A)=A∩cl(int(A)) 
(ii) pin(A)=A∩int(cl(A)) 
(iii) scl(A)=A∪int(cl(A)) 
(iv) pcl(A)=A∪cl(int(A)). 

 
Remark 2.7 [12]: Jankovic and Reilly pointed out that every singleton {x} of a space X is either nowhere dense or pre-
open. This provides another decomposition X=X1∪X2, where X1={x∈X/ {x} is nowhere dense} and X2={x∈X/ {x} is 
pre-open}. 
 
Definition 2.8 [12]: The intersection of all gb-open sets containing A is called the gb-kernel of A and it is denoted by 
gb-ker(A). 
 
Lemma 2.9 [12]: For any subset A of X, X2∩cl(A)⊆ gb-ker(A). 
 
Remark 2.10: For any subset A of a topological space (X, 𝜏), 

(i) X\bcl(A)=bint(X\A) 
(ii) X\bint(A)=bcl(X\A). 

 
3. Generalized b-strongly b*-closed set 
 
Definition 3.1: A subset A of a topological space (X, 𝜏) is called a generalized b-strongly b*-closed set (briefly,gbsb*-
closed) if bcl(A)⊆U whenever A⊆U and U is sb*-open in (X, 𝜏). The collection of all gbsb*-closed sets of X is 
denoted by gbsb*-C(X, 𝜏). 
 
Theorem 3.2: 

(i) Every closed set is gbsb*-closed. 
(ii) Every semi-closed set is gbsb*-closed. 
(iii) Every 𝛼-closed set is gbsb*-closed. 
(iv) Every pre-closed set is gbsb*-closed. 
(v) Every b-closed set is gbsb*-closed. 
(vi) Every regular closed set is gbsb*-closed. 
(vii) Every 𝜋-closed set is gbsb*-closed. 
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Proof:   

(i) Let A be a closed set. Let A⊆U, U is sb*-open in X. Since A is closed, then cl(A)=A⊆U. But                
bcl(A)⊆ cl(A). Thus we have bcl(A)⊆U whenever A⊆U and U is sb*-open and therefore, A is a gbsb*-
closed set. 

(ii) (ii), (iii), (iv), (v), (vi) and (vii) are similar to (i). 
 
The reverse implications need not be true which is shown in the following examples. 
 
Example 3.3: Let X={a, b, c} and 𝜏={𝜙, {a}, X}.  

(i) Then the set {b} is gbsb*-closed but not a closed set. 
(ii) The set {a, c}is a gbsb*-closed set but not a b-closed set 

 
Example 3.4: Let X={a, b, c, d} with𝜏={𝜙, {a, b}, {a, b, c}, X}.  

(i) The set {a, c, d}is gbsb*-closed set but not a semi-closed set. 
(ii) The set {a}is gbsb*-closed set but not a 𝛼-closed set. 
(iii) The set {b, c} is gbsb*-closed set but not a pre-closed set.  

 
Example 3.5: Let X = {a, b, c, d} with𝜏= {𝜙, {a},{b},{a, b},{a, b, c}, X}. The set {d} is gbsb*-closed set but not a 
regular-closed set.  
 
Example 3.6. Let X= {a, b, c, d} with 𝜏={𝜙, {a},{c},{a, c},{c, d},{a, c, d},{a, b, c}, X}. The sets {a, b} and {b, c, d} 
are gbsb*-closed but not a 𝜋-closed set. 
 
Theorem 3.7: 

(i) Every gbsb*-closed set is gb-closed. 
(ii) Every gbsb*-closed set is rgb-closed set. 
(iii) Every gbsb*-closed set is g𝛼b-closed set. 
(iv) Every gbsb*-closed set is 𝜋gb-closed set. 

 
Proof:  

(i) Let A be a gbsb*-closed set. Let A⊆U, U is open. Since open set is sb*-open, then U is sb*-open. Since A is 
gbsb*-closed, bcl(A)⊆U. Thus, we have bcl(A)⊆U  whenever A⊆U and U is open and therefore, A is gb-
closed set. 

(ii) (ii), (iii) and (iv) are similar to (i). 
 
The reverse implications need not be true which is shown in the following examples. 
 
Example 3.8: Let X = {a, b, c, d} with𝜏= {𝜙, {a},{b},{a, b},{a, b, c}, X}.  

(i) The set {a, b, d} is gb-closed but not a gbsb*-closed set. 
(ii) The sets {a, b, d} is g𝛼b-closed but not a gbsb*-closed set.  

 
Example 3.9: Let X = {a, b, c, d} with 𝜏= {𝜙, {a, b}, {a, b, c}, X}. The set {a, b} is rgb-closed but not a gbsb*-closed 
set.  
 
Example 3.10: Let X = {a, b, c, d} with 𝜏 = {𝜙, {a},{c},{a, c},{c, d},{a, c, d},{a, b, c}, X}. The set {a,c}is𝜋gb-clos 
ed set but not a gbsb*-closed set.  
 
Remark 3.11: The following examples shows that gbsb*-closed sets are independent from 𝛼g-closed set, g-closed set, 
rg-closed set, gpr-closed set, wg-closed set, swg-closed set and gp-closed set. 
 
Example 3.12: Let X= {a, b, c, d} with 𝜏= {𝜙, {a}, {b},{a, b},{b,c},{b, c, d},{a, b, c}, X}. 

(i) The sets {a, b},{a, b, d} are rg-closed sets but not a gbsb*-closed in (X, 𝜏) and the set {c} is gbsb*-closed but 
not rg-closed. 

(ii) The sets {a, b, d}, {b, d} are 𝛼g-closed sets but not gbsb*-closed. 
(iii) The set {a, b, d} is wg-closed but not  gbsb*-closed. 

 
Example 3.13: Let X = {a, b, c, d} with 𝜏= {𝜙, {a}, {b},{a, b},{a, b, c}, X}. 

(i) The sets {a, b},{a, b, d} are gpr-closed sets but not gbsb*-closed in (X, 𝜏) and the sets {a},{b} are gbsb*-
closed but not a gpr-closed. 

(ii) The set {a, b, d} is a g-closed set but not gbsb*-closed in (X,𝜏) and the sets {a},{b},{c} are gbsb*-closed but 
not g-closed. 
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(iii) The set {a, b, d} is as wg-closed set but not gbsb*-closed in (X, 𝜏) and the sets {a},{b},{c} are gbsb*-closed 

but not swg-closed. 
(iv) The set {a, b, d} isgp-closed but not gbsb*-closed in (X,𝜏) and the sets {a}, {b}, {c} are gbsb*-closed but not 

gp-closed. 
(v) The sets {a, b, d}, {b, d} are gbsb*-closed sets but not 𝛼g-closed. 
(vi) The set {a, b, d} is wg-closed but not gbsb*-closed. 

 
Theorem 3.14: Let A be a subset of a space (X,𝜏). Then 

(i) If A is both open and g-closed then A is gbsb*-closed. 
(ii) If A is both regular-open and rg-closed then A is gbsb*-closed. 
(iii) If A is both w-open and w𝛼-closed then A is gbsb*-closed. 
(iv) If A is both open and gp-closed then A is gbsb*-closed. 
(v) If A is both regular-open and gpr-closed then A is gbsb*-closed. 
(vi) If A is both open and 𝛼g-closed then A is gbsb*-closed. 

 
Proof: Straight forward. 
 
Remark 3.15: From the above results, we have the following implication diagrams. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above discussion we can see that the gbsb*-closed set is properly lies between b-closed and gb-closed sets. 
 
4. CHARACTERIZATION 
 
Theorem 4.1: If a set A is gbsb*-closed in (X,𝜏), then bcl(A)\A contains no non empty sb*-closed sets in (X, 𝜏). 
 
Proof: Let F be a sb*-closed subset of X such that F⊆ bcl(A)\A. Then F⊆ bcl(A)∩(X\A).That implies, F⊆ bcl(A) and 
F⊆ (X\A). Then A⊆X\F and X\F is sb*-open in (X, 𝜏). Since A is gbsb*-closed in X, bcl(A)⊆X\F, F⊆X\bcl(A). 
Thus F⊆ bcl(A)∩(X\bcl(A))= 𝜙. Hence bcl(A)\A does not contain any non-empty sb*-closed sets. 
 
Theorem 4.2: If a subset A is gbsb*-closed set in (X, 𝜏) and A⊆B⊆ bcl(A), then B is also a gbsb*-closed set. 
Proof: Let A be a gbsb*-closed set and B be any subset of X such that A⊆B⊆ bcl(A). Let U be sb*-open in (X, 𝜏) 
such that B⊆U. Then A⊆U. Also since A is gbsb*-closed, bcl(A)⊆U. Since B⊆ bcl(A), bcl(B)⊆ bcl(bcl(A)) = 
bcl(A) ⊆U. This implies, bcl(B) ⊆U. Thus B is a gbsb*-closed set. 

gbsb*-closed 𝛼g-closed rg-closed 

g-closed 

wg-closed gp-closed 

swg-closed gpr-closed 

g𝛼b-closed 

Closed 

𝜋-closed 

𝛼-closed 

gbsb*-closed 

b-closed 

Pre-closed 

rgb-closed 

𝜋gb-closed 

 

gb-closed 

Semi-closed 

Regular closed 
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Definition 4.3: Let X be a topological spaces and Y be a subspace of X. Then the subset A of Y is sb*-open in Y if 
A=G∩Y, where G is sb*-open in X. 
 
Theorem 4.4: Let A⊆Y⊆X and suppose that A is gbsb*-closed in X then A is gbsb*-closed relative to Y. 
 
Proof: Given that A ⊆ Y ⊆ X and A is a gbsb*-closed set in X. To prove that A is gbsb*-closed set relative to Y. Let 
us assume that A ⊆ Y∩U, where U is sb*-open in X. Since A is gbsb*-closed set in X, then bcl(A)⊆U. That implies 
Y∩bcl(A)⊆Y∩U, where Y∩bcl(A) is the b-closure of A in Y and Y∩U is sb*-open in Y. Therefore bcl(A)⊆Y∩U in Y. 
Hence, A is gbsb*-closed set relative to Y. 
 
Theorem 4.5: Let A be any gbsb*-closed set in (X, 𝜏). Then A is b-closed in (X, 𝜏) iff bcl(A)\A is sb*-closed. 
 
Proof: Necessity: Since A is b-closed, bcl(A)=A. Then bcl(A)\A= 𝜙, which is asb*-closed set in (X,𝜏). Sufficiency: 
Since A is gbsb*-closed, by  Theorem 4.1, bcl(A)\A does not contains any non-empty sb*-closed set. Therefore, 
bcl(A)\A= 𝜙. Hence bcl(A)=A. Thus A is b-closed set in (X, 𝜏). 
 
Theorem 4.6: For every element x in a space X, X–{x} is gbsb*-closed or sb*-open. 
 
Proof:  
Case-(i): Suppose X–{x} is not sb*-open. Then X is the only sb*-open set containing X–{x}. This implies bcl(X–
{x})⊆X. Hence X–{x} isgbsb*-closed. 
 
Case-(ii): Suppose X–{x} is not gbsb*-closed. Then there exists a sb*-open set U containing X–{x} such that bcl(X–
{x}) does not contained in U. Now bcl(X–{x}) is either X–{x} or X. If bcl(X–{x})=X–{x}, then X–{x} is b-closed. 
Since every b-closed set is gbsb*-closed, X–{x} is gbsb*-closed, which is a contradiction. Therefore bcl(X–{x})=X. To 
prove that X–{x} is sb*-open. suppose not. Then by case (i), X–{x} is gbsb*-closed. There is a contradiction to our 
assumption. Hence X–{x} is sb*-open. 
 
Theorem 4.7: If A is both sb*-open and gbsb*-closed set in X, then A is b-closed set. 
 
Proof: Since A is sb*-open and gbsb*-closed in X, bcl(A)⊆A. But always A⊆bcl(A). Therefore, A=bcl(A). Hence A is 
a b-closed set. 
 
Definition 4.8: The intersection of all sb*-open sets containing A is called the sb*-kernel of A and it is denoted by sb*-
ker(A). 
 
Theorem 4.9: A subset A of X is gbsb*-closed iffbcl(A)⊆sb*-ker(A). 
 
Proof:  
Necessity: Let A be a gbsb*-closed subset of X and x∈bcl(A). Suppose x∉sb*-ker(A). Then there exists a sb*-open set 
U containing A such that x∉U. Since A is gbsb*-closed set, then bcl(A)⊆U. This implies that, x∉bcl(A), which is a 
contradiction to x∈bcl(A). Therefore bcl(A)⊆sb*-ker(A). 
 
Sufficiency: Suppose bcl(A)⊆sb*-ker(A). If U is any sb*-open set containing A, then sb*-ker(A)⊆U. That implies, 
bcl(A)⊆U. Hence A is gbsb*-closed in X. 
 
Remark 4.10: For any subset A of X, gb-ker(A)⊆sb*-ker(A). 
 
Theorem 4.11: For any subset A of X, X2∩bcl(A)⊆sb*-ker(A). 
 
Proof: Since bcl(A)⊆cl(A), then X2∩bcl(A)⊆X2∩cl(A). Then by Lemma 2.9 and Remark 4.10, X2∩bcl(A)⊆sb*-
ker(A). 
 
Theorem 4.12: A subset A of X is gbsb*-closed if and only if X1∩bcl(A)⊆A. 
 
Proof:  
Necessity: Suppose that A is gbsb*-closed and x∈X1∩bcl(A). Then x∈X1 and x∈bcl(A). Since x∈X1, then 
int(cl({x}))=∅. That implies, cl(int(cl({x})))=∅. Therefore {x} is 𝛼-closed. By Theorem 2.5, {x} is sb*-closed. If x 
does not belongs to A, then U=X–{x} is a sb*-open set containing A and so bcl(A)⊆U. Since x∈bcl(A), x∈U. This is a 
contradiction to x not in U. Hence X1∩bcl(A)⊆A. 
 
Sufficiency: Let X1∩bcl(A)⊆A. Then X1∩bcl(A)⊆sb*-ker(A). Now, bcl(A)= X∩bcl(A)=(X1∪X2) ∩bcl(A) = 
(X1∩bcl(A)) ∪ (X2∩bcl(A)) ⊆sb*-ker(A). Then by Theorem 4.9, A is gbsb*-closed. 
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Remark 4.13: Union of any two gbsb*-closed sets in (X, 𝜏) need not be agbsb*-closed set which is shown in the 
following example. 
 
Example 4.14: Let X= {a, b, c, d} with 𝜏={𝜙, {a}, {b}, {a, b}, {a, b, c}, X}. The sets {a} and {b} are gbsb*-closed 
sets but their union {a, b} is not a gbsb*-closed set in X. 
 
Theorem 4.15: Arbitrary intersection of gbsb*-closed sets is gbsb*-closed. 
 
Proof: Let {Ai} be the collection of gbsb*-closed sets of X. Let A=∩Ai. Since A⊆Ai, for each i, then bcl(A)⊆bcl(Ai). 
That implies, X1∩bcl(A)⊆X1∩bcl(Ai). Since each Ai is gbsb*-closed, then by Theorem 4.12, X1∩bcl(Ai)⊆Ai, for each i. 
Now, X1∩bcl(A)=X1∩bcl(∩Ai)⊆∩(X1∩bcl(Ai))⊆∩Ai=A. Again by Theorem 4.12, A is gbsb*-closed. 
 
Theorem 4.16: Let A be a gbsb*-closed in X. Then  

(i) sint(A) is gbsb*-closed. 
(ii) If A is regular open, then pint(A) and scl(A) are also gbsb*-closed. 
(iii) If A is regular closed, then pcl(A) is also gbsb*-closed. 

 
Proof: Let A be a gbsb*-closed set of X. 

(i) Since cl(int(A)) is closed, then by Theorem 3.2, cl(int(A)) is gbsb*-closed. By Theorem 4.15 and Lemma 2.6, 
sint(A) is gbsb*-closed. 

(ii) Suppose A is regular open. Then int(cl(A))=A. By Lemma 2.6, scl(A)=A. Since A is gbsb*-closed, then scl(A) 
is gbsb*-closed. Similarly pint(A) is gbsb*-closed. 

(iii) If A is regular closed, then cl(int(A))=A. By Lemma 2.6, pcl(A)=A and hence gbsb*-closed.  
 
5. Generalized b-strongly b*-open 
 
Definition 5.1: A subset A of (X, τ) is said be generalized b-strongly b*-open (briefly gbsb*-open) set if its 
complement   X\A is gbsb*-closed in X. The family of all gbsb*-open sets in X is denoted by gbsb*-O(X). 
 
Theorem 5.2: Let (X, τ) be a topological space and A⊆X.  Then A is a gbsb*-open if and only if F⊆bint(A), whenever 
F⊆A and F is sb*-closed. 
 
Proof:  
Necessity: Let A be a gbsb*-open set in (X, τ). Let F⊆A and F is sb*-closed. Then X\A is gbsb*-closed and it is 
contained in the sb*-open set X\F. Therefore bcl(X\A)⊆X \ F. This implies that X \ bint(A) ⊆ X \ F. Hence F ⊆bint(A).  
 
Sufficiency: If F is sb*-closed set such that F⊆bint(A) whenever F⊆A. It follows that X\A⊆X\ F and X\bint(A)⊆X \ F. 
Therefore bcl(X\ A) ⊆ X\ F. Hence X \ A is gbsb*-closed and hence A is gbsb*-open. 
 
Theorem 5.3: If a set A is gbsb*-open and B⊆X such that bint(A)⊆B⊆ A, then B is gbsb*-open. 
 
Proof: If bint(A)⊆B⊆A then, X\A⊆ X\B ⊆ X \ bint(A). That is, X\A ⊆ X \ B ⊆ bcl(X \ A). Since X \ A is gbsb*-
closed, then by Theorem 4.2, X \ B is gbsb*-closed and hence B is gbsb*-open. 
 
Theorem 5.4: If a subset A is gbsb*-open in X and G is sb*-open in X with bint(A)∪(X\G)⊆ G then X= G. 
 
Proof: Suppose that G is sb*-open and bint(A)∪(X\G)⊆ G. This implies, X\G⊆(X\bint(A))∩A=bcl(X\A)\(X\A). Since 
X\A is gbsb*-closed and X\G is sb*-closed, then by Theorem 4.1, X\G=𝜙. Hence X=G. 
 
Remark 5.5: Every union of gbsb*-open sets is gbsb*-open but the intersection of gbsb*-open sets need not be a 
gbsb*-open in X which is shown in the following example. 
 
Example 5.6: Let X = {a, b, c, d} with topology 𝜏 = {𝜙, {a,b},{a,b,c}, X}. In this topological space (X, 𝜏), gbsb*-
O(X) = {𝜙, {a}, {b}, {a, b}, {a,c},{a, d}, {b, c}, {b, d}, {a, b,c}, {a, b, d},{a,c,d}, {b, c d}, X}. The sets {a, c, d} and          
{b, c, d} are gbsb*-open but their intersection {c, d} is not gbsb*-open in X. 
 
Theorem 5.7: If B is gbsb*-open and bint(B) ⊆A, then A∩B is gbsb*-open. 
 
Proof: Suppose B is gbsb*-open and bint(B)⊆A. Then bint(A∩B) ⊆A∩B⊆B. By Theorem 5.3, A∩B is gbsb*-open. 
 
Theorem 5.8: If a topological space (X, 𝜏), let 𝜏𝑔𝑏𝑠𝑏∗={U∈gbsb*-O(X, 𝜏)/ U∩A∈gbsb*-O(X, 𝜏) for all A∈gbsb*-
O(X, 𝜏)}. Then 𝜏𝑔𝑏𝑠𝑏∗ is a topology on X. 
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Proof: Clearly 𝜙, X∈ 𝜏𝑔𝑏𝑠𝑏∗. Let 𝑈𝛽 ∈ 𝜏𝑔𝑏𝑠𝑏∗. and U=∪ 𝑈𝛽. Since each 𝑈𝛽 ∈ 𝜏𝑔𝑏𝑠𝑏∗, then by Remark 5.5, U∈gbsb*-
O(X, 𝜏). Let A∈gbsb*-O(X, 𝜏). Then 𝑈𝛽 ∩A∈gbsb*-O(X, 𝜏) for each β. Hence U∩A=(∪ 𝑈𝛽) ∩A=∪ (𝑈𝛽 ∩A) ∈gbsb*-
O(X, 𝜏). Therefore U∈ 𝜏𝑔𝑏𝑠𝑏∗. Let U1,U2∈ 𝜏𝑔𝑏𝑠𝑏∗. Then U1,U2∈gbsb*-O(X, 𝜏) and from definition of                       
𝜏𝑔𝑏𝑠𝑏∗, U1∩U2∈gbsb*-O(X, 𝜏). If A∈gbsb*-O(X, 𝜏),and from definition of 𝜏𝑔𝑏𝑠𝑏∗, U1∩U2∩A ∈gbsb*-O(X, 𝜏). Hence        
U1∩U2∈ 𝜏𝑔𝑏𝑠𝑏∗. This shows that 𝜏𝑔𝑏𝑠𝑏∗ is closed under finite intersection. Hence 𝜏𝑔𝑏𝑠𝑏∗ is a topology on X. 
 
6. gbsb*-neighbourhood 
 
Definition 6.1: Let X be a topological space and let x∈X. A subset N of X is said to be a gbsb*-neighbourhood 
(shortly, gbsb*-nbhd) of x if there exsits a gbsb*-open set U such that x∈U⊆N. 
 
Definition 6.2: A subset N of a space X, is called a gbsb*-nbhd of A⊆X if there exists an gbsb*-open set U such that 
A⊆U⊆N. 
 
Theorem 6.3: Every nbhd N of x∈X is a gbsb*-nbhd of x. 
 
Proof: Let N be an bhd of point x∈ X. Then there exists an open set U such that x∈U⊆N. Since every open set is 
gbsb*-open, U is a gbsb*-open set such that x∈U⊆N. This implies, N is a gbsb*-nbhd of x. 
 
Remark 6.4: The converse of the above theorem need not be true which is shown in the following example. 
 
Example 6.5: Let X = {a, b, c, d} with topology 𝜏 = {𝜙, {a},{b}, {a,b},{b,c},{a,b,c},{b,c,d}, X}. In this topological 
space (X, 𝜏), gbsb*-O(X) = {𝜙, {a}, {b}, {a, b}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c d}, X}. The set {b, d} 
is the gbsb*-nbhd of d, since {b,d} is gbsb*-open set such that d ∈ {b,d}⊆ {b, d}. However, the set {b, d} is not a nbhd 
of the point d. 
 
Remark 6.6: Every gbsb*-open set is a gbsb*-nbhd of each of its points. 
 
Theorem 6.7: If F is a gbsb*-closed subset of X and x∈X\F, then there exists a gbsb*-nbhd N of x such that N∩F=𝜙. 
 
Proof: Let F be gbsb*-closed subset of X and x∈ X\F. Then X\F is gbsb*-open set of X. By Remark 6.6, X\F contains 
a gbsb*-nbhd of each of its points. Hence there exists a gbsb*-nbhd N of x such that N⊆ X\F. Hence N∩F=𝜙. 
 
Definition 6.8: The collection of all gbsb*-neighborhoods of x∈X is called the gbsb*-neighborhood system of x and is 
denoted by gbsb*-N(x). 
 
Theorem 6.9: Let (X, 𝜏) be a topological space and x ∈ X. Then 
 (i) gbsb*-N(x)≠ 𝜙 and x∈each member of gbsb*-N(x) 
 (ii) If N ∈ gbsb*-N(x) and N ⊆ M, then M ∈ gbsb*-N(x). 
 (iii) Each member N ∈gbsb*-N(x) is a superset of a member G∈gbsb*-N(x) where G is a gbsb*-open set. 
 
Proof:  

(i) Since X is gbsb*-open set containing x, it is a gbsb*-nbhd of every x∈X. Thus for each x∈X, there exists 
atleast one gbsb*-nbhd, namely X. Therefore, gbsb*-N(x)≠ 𝜙. Let N∈gbsb*-N(x). Then N is a gbsb*-nbhd of 
x. Hence there exists a gbsb*-open set G such that x∈G ⊆N, so x ∈ N. Therefore x∈every member N of 
gbsb*-N(x). 

(ii) If N ∈gbsb*-N(x), then there is a gbsb*-open set G such that x∈G⊆N. Since N⊆M, M is gbsb*-nbhd of x. 
Hence M∈gbsb*-N(x). 

(iii) Let N∈gbsb*-N(x). Then there is a gbsb*-open set G, such that x ∈ G⊆N. Since G is gbsb*-open and x∈G, G 
is gbsb*-nbhd of x. Therefore G∈gbsb*-N(x) and also G ⊆ N. 
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