
International Journal of Mathematical Archive-8(5), 2017, 23-26 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 8(5), May – 2017                                                                                                                23 

 
ON AN UNDIRECTED GRAPH STRUCTURE OF A COMMUTATIVE RING 

 
PRIYANKA PRATIM BARUAH* 

 
Department of Mathematics, 

Girijananda Chowdhury Institute of Management and Technology, Guwahati – 781017, India. 
 

(Received On: 30-04-17; Revised & Accepted On: 12-05-17) 
 

 
ABSTRACT 

Let R be a commutative ring with unity and Z(R) be the set of all zero-divisors of R. For 𝑥 ∈ 𝑍(𝑅), the annihilator of 𝑥 
is the set  𝑎𝑛𝑛𝑅(𝑥) = {𝑦 ∈ 𝑅|𝑦𝑥 = 0}. The new annihilator graph of R, denoted by ANNG(R), is the undirected  graph 
whose set of  vertices  is  Z(R)* = Z(R) − {0}, and two distinct vertices  𝑥 and  𝑦 are adjacent if and only if 𝑎𝑛𝑛𝑅(𝑥𝑦) ≠
𝑎𝑛𝑛𝑅(𝑥) ∩ 𝑎𝑛𝑛𝑅(𝑦). In this paper, we investigate the relationship among the new annihilator graph ANNG(R), the 
annihilator graph AG(R) and the zero-divisor graph Γ(R). 
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1. INTRODUCTION 
 
Let R be a commutative ring with unity and Z(R) be the set of all zero-divisors of R. For every X ⊆ R, we denote            
X − 0} by X*. The concept of a zero-divisor graph of a commutative ring R was first introduced by I. Beck in [5], where 
all the elements of the ring R were taken as the vertices of the graph. D. F. Anderson and P. S. Livingston [1] modified 
the concept and defined the zero-divisor graph Γ(R), as the undirected graph whose vertex set is Z(R)* and two distinct 
vertices  𝑥   and  𝑦   are adjacent if  and only if 𝑥𝑦 = 0. For𝑥 ∈ 𝑍(𝑅), the annihilator of 𝑥  is the set 𝑎𝑛𝑛𝑅(𝑥) =
{𝑦 ∈ 𝑅|𝑦𝑥 = 0}. A. Badawi [4] defined the annihilator graph AG(R), as the undirected graph whose vertex set is Z(R)* 
and two distinct vertices  𝑥 and 𝑦 are adjacent if and only if  𝑎𝑛𝑛𝑅(𝑥𝑦) ≠ 𝑎𝑛𝑛𝑅(𝑥) ∪ 𝑎𝑛𝑛𝑅(𝑦). A new annihilator 
graph of R, denoted by ANNG(R), is defined by P. P. Baruah and K. Patra [10], as the undirected  graph whose set of  
vertices  is  Z(R)*, and two distinct vertices  𝑥 and  𝑦 are adjacent if and only if  𝑎𝑛𝑛𝑅(𝑥𝑦) ≠ 𝑎𝑛𝑛𝑅(𝑥) ∩ 𝑎𝑛𝑛𝑅(𝑦).  In 
this paper, we investigate the relationship among the graphs ANNG(R), AG(R) and Γ(R). In [1], it was shown that Γ(R) is 
connected with 𝑑𝑖𝑎𝑚(Γ(R)) ≤ 3 If Γ(R) contains a cycle it was shown that 𝑔𝑟(Γ(R))≤4 in [9] and a simple proof is given 
in [3]. Thus 𝑑𝑖𝑎𝑚(Γ(R)) ∈ {0, 1, 2, 3} and  𝑔𝑟(Γ(R)) ∈ {3, 4, ∞}. In [4], it was shown that 𝑑𝑖𝑎𝑚(AG(R)) ∈{0, 1, 2}  
and  𝑔𝑟(AG(R)) ∈ {3, 4, ∞}. In [10], it was shown that  𝑑𝑖𝑎𝑚(ANNG(R)) ∈ {0, 1, 2} and 𝑔𝑟(ANNG(R)) ∈ {3, 4, ∞}. 
 
Now we state some definitions and notations used throughout this paper. Let G be an undirected graph. We say that G 
is connected if there exists a path between any two distinct vertices. The distance between two vertices 𝑥 and 𝑦 of G, 
denoted by  𝑑(𝑥,𝑦), is the length of a shortest path connecting  them (𝑑(𝑥, 𝑥) = 0 and if such a path does not exist, then 
𝑑(𝑥,𝑦) = ∞). The diameter of G is  𝑑𝑖𝑎𝑚(G) = 𝑠𝑢𝑝{𝑑(𝑥,𝑦) | 𝑥 and  𝑦  are vertices of G}. The girth of G, denoted by 
𝑔𝑟(G), is the length of a shortest cycle in G (if G contains no cycle, then 𝑔𝑟(G) = ∞). We denote by Cn   the graph 
consisting of a cycle with 𝑛 vertices. A graph G is complete if any two distinct vertices are adjacent. The complete 
graph with n vertices will be denoted by Kn (we allow 𝑛 to be an infinite cardinal). A complete bipartite graph is a 
graph G which may be partitioned into two disjoint nonempty vertex sets A and B such that two distinct vertices are 
adjacent if and only if they are in distinct vertex sets. If one of the vertex set is singleton, we call G is a star graph. We 
denote the complete bipartite graph by K m ,n, where  |A| = 𝑚 and  |B| = 𝑛  (we allow 𝑚 and 𝑛  to be an infinite cardinal); 
hence a star graph is a  K 1 ,n . 
 
Throughout this paper, R is a commutative ring with unity, Z(R) is the set of all zero-divisors of R, N(R) is the set of all 
nilpotent elements of R, U(R) is the group of units of R. For any two graphs G and H, if G is identical to H, then we 
write G = H; otherwise, we write G ≠ H. The distance between two distinct vertices 𝑥 and 𝑦 of the zero-divisor graph 
Γ(R) will be denoted by 𝑑Γ(R) (𝑥,𝑦). Any undefined terminology is as standard as in [6] or [7]. 
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2. MAIN RESULTS 
 
This section provides the study of some basic properties of ANNG(R). If | Z(R)*| = 1 for a commutative ring R, then R is 
isomorphic to either  ℤ4  or ℤ2[X] /〈X2〉. In this case ANNG(R) = AG(R) = Γ(R). Hence throughout this paper, we 
consider commutative rings with | Z(R)*| ≥ 2.   
 
Theorem 2.1: Let R be a commutative ring. Suppose that  𝑥  𝑦  is an edge of ANNG(R) that is not an edge of Γ(R) for 
some distinct 𝑥,𝑦 ∈ Z(R)*. If 𝑑 )(RΓ (𝑥,𝑦) = 3, then ANNG(R) contains a cycle of length 3 and  𝑔𝑟(ANNG(R)) = 3.  
 
Proof: Suppose that  𝑥 − 𝑦  is an edge of ANNG(R) that is not an edge of Γ(R) for some distinct  𝑥,𝑦 ∈ Z(R)*. Suppose 
that  𝑑 )(RΓ (𝑥,𝑦) = 3. So assume  𝑥 − 𝑎 − 𝑏 − 𝑦  is a shortest path connecting  𝑥  and  𝑦  in Γ(R), where  𝑎, 𝑏 ∈ Z(R)* 
and 𝑎 ≠ 𝑏.  This implies  𝑥𝑎 = 0, 𝑎𝑏 = 0, 𝑏𝑦 = 0, 𝑥𝑏 ≠ 0 and  𝑎𝑦 ≠ 0. This implies 𝑦 ∈ 𝑎𝑛𝑛𝑅(𝑥𝑏). Since 𝑦 ∉ 𝑎𝑛𝑛𝑅(𝑥), 
we have  𝑎𝑛𝑛𝑅(𝑥𝑏) ≠ 𝑎𝑛𝑛𝑅(𝑥). Thus  𝑥  𝑏  is an edge of ANNG(R) by [Lemma 2.1(1), 10].We have 𝑥  𝑎    𝑏  is 
a path in ANNG(R) by [Lemma 2.1 (2), 10]. Thus 𝑥   𝑎   𝑏   𝑥  is a cycle of length 3 in ANNG(R), and hence   
𝑔𝑟(ANNG(R)) = 3.  
 
Theorem 2.2: Let R be a commutative ring and suppose that ANNG(R) ≠ Γ(R). Then 𝑔𝑟(ANNG(R)) = 3. 
 
Proof: Since ANNG(R) ≠ Γ(R), there are some distinct  𝑥,𝑦 ∈ Z(R)* such that  𝑥   𝑦  is an edge of ANNG(R) that is 
not an edge of  Γ(R).  Since Γ(R) is connected, we have   |Z(R)*| ≥ 3. Again, since 𝑑𝑖𝑎𝑚(Γ(R)) ∈ {0, 1, 2, 3}, we have   
𝑑 Γ(R) (𝑥,𝑦) ∈ {2, 3}.   
 
Case-1: Let 𝑑 Γ(R) (𝑥,𝑦) = 2. So assume  𝑥  𝑎    𝑦  is a shortest path connecting 𝑥 and 𝑦 in Γ(R). Then  𝑥  𝑎    𝑦  
is a path of length 2 from 𝑥 to 𝑦 in ANNG(R) by [Lemma 2.1(2), 10].  Since  𝑥  𝑦  is an edge of ANNG(R), we have 
ANNG(R) contains a cycle of length 3. Hence   𝑔𝑟(ANNG(R)) = 3.    
 
Case-2:  Let  𝑑 Γ(R) (𝑥,𝑦) = 3.  Then  𝑔𝑟(ANNG(R)) = 3 by Theorem 2.1. 
 
Thus combining both the cases, we have 𝑔𝑟(ANNG(R)) = 3. 
 
Theorem 2.3: Let R be a non-reduced commutative ring with |N(R)*| ≥ 2 and suppose that ANNNG(R) is the (induced) 
subgraph of ANNG(R) with vertices N(R)*. Then ANNNG (R) is complete. 
 
Proof: Suppose that 𝑥 and 𝑦 are two distinct elements of N(R)* such that 𝑥𝑦 ≠ 0. Assume that 𝑥 − 𝑦  is not an edge of 
ANNNG (R). Then  𝑎𝑛𝑛𝑅(𝑥𝑦) = 𝑎𝑛𝑛𝑅(𝑥)∩𝑎𝑛𝑛𝑅(𝑦) by [Lemma 2.1(1), 10]. Hence we have  
𝑎𝑛𝑛𝑅(𝑥) = 𝑎𝑛𝑛𝑅(𝑥𝑦) = 𝑎𝑛𝑛𝑅(𝑦).  
 
Let 𝑛  be the least positive integer such that  𝑦𝑛  = 0. Suppose that  𝑥𝑦𝑚 ≠  0 for each  𝑚 , 1 ≤ 𝑚  < 𝑛 . Then                
𝑦𝑛−1 ∈ 𝑎𝑛𝑛𝑅(𝑥𝑦) − 𝑎𝑛𝑛𝑅(𝑥), which is a contradiction. So assume that  𝑚, 1 ≤ 𝑚 < 𝑛  is the least positive integer such 
that  𝑥𝑦𝑚 = 0. Since     𝑥𝑦 ≠ 0, we have 1 < m < n.  Hence  𝑦𝑚−1 ∈ 𝑎𝑛𝑛𝑅(𝑥𝑦) − 𝑎𝑛𝑛𝑅(𝑥), which is a contradiction. 
Thus  𝑥  𝑦  is an edge of ANNNG(R). 
 
Example 2.1: Consider the non-reduced commutative ring R= ℤ2 × ℤ8..Then N(R) = {(0, 0), (0, 2), (0, 4), (0, 6)}. 
Then  ANNNG(R) = 𝐾3 and hence ANNNG(R)  is complete. 
 
Theorem 2.4: Let R be a non-reduced commutative ring, and suppose that N(R)2 ≠ {0}. Then ANNG(R) ≠ Γ(R) and  
𝑔𝑟(ANNG(R)) = 3. 
 
Proof: Since N(R)2  ≠ {0}, we have  ANNG(R) ≠ Γ(R) by [Theorem 3.13, 4] and Theorem 2.3. Hence  𝑔𝑟(ANNG(R)) = 3 
by Theorem 2.2. 
 
Theorem 2.5: Let R be a non-reduced commutative ring such that Z(R) is not an ideal of R. Then ANNG(R) ≠ Γ(R) and  
𝑔𝑟(ANNG(R)) = 3. 
 
Proof: Since Z(R) is not an ideal of R, we have  𝑑𝑖𝑎𝑚(Γ(R)) = 3 by [Corollary 2.5, 8]. Thus  ANNG(R) ≠ Γ(R) by 
[Theorem 2.1, 10]. Hence  𝑔𝑟(ANNG(R)) = 3 by Theorem 2.2.. 
 
Now we observe the following Example 2.2 and then we have the Theorem 2.6. 
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Example 2.2: 

(1) Consider the non-reduced commutative ring R = ℤ9. Then ANNG(R) = 𝐾1,1 and hence  𝑔𝑟(ANNG(R)) = ∞.   
(2) Consider the non-reduced commutative ring R = ℤ2[X] /〈 X  3 〉. Then  ANNG(R) = 𝐾3 and hence  

𝑔𝑟(ANNG(R)) = 3.  
 
Theorem 2.6: Let R be a non-reduced commutative ring with |Z(R)*| ≥ 2. Then 𝑔𝑟(ANNG(R)) ∈{3, ∞ }. 
 
Proof: We have 𝑔𝑟(ANNG(R)) ∈{3, 4, ∞ } by [Corollary 2.4.1, 10]. We have to show that 𝑔𝑟(ANNG(R)) ≠ 4. If 
possible suppose that  𝑔𝑟(ANNG(R)) = 4. Then we have ANNG(R) = AG(R) and 𝑔𝑟(AG(R)) = 4 by [Corollary 2.3.2, 10]. 
Since 𝑔𝑟(AG(R)) = 4, we have AG(R) ≠ Γ(R) by [Theorem 3.16, 4]. Thus ANNG(R) ≠ Γ(R) and hence  𝑔𝑟(ANNG(R)) = 3 
by Theorem 2.2, a contradiction. Hence 𝑔𝑟(ANNG(R)) ∈{3, ∞ }. 
 
Remark 2.1: For a non-reduced commutative ring R, if ANNG(R) contains a cycle then 𝑔𝑟(ANNG(R)) = 3 by Theorem 
2.6. 
 
Theorem 2.7: Let R be a commutative ring such that ANNG(R) ≠ Γ(R). Then the following statements are equivalent: 

(1) Γ(R) is a star graph; 
(2) Γ(R) = 𝐾1,2; 
(3) ANNG(R) = 𝐾3. 

 
Proof: 
(1) ⇒ (2): Suppose that Γ(R) is a star graph. Then  𝑔𝑟(Γ(R)) = ∞ . Since ANNG(R) ≠ Γ(R), we have R is non-reduced 
by [Theorem 3.7, 10] and |Z(R)*| ≥ 3. Since Γ(R) is a star graph, there are two nonempty sets U and V such that        
Z(R)* = U ∪ V  with |U| = 1, U ∩ V = ∅, UV  = {0} and  𝑣1𝑣2 ≠ 0  for every  𝑣1, 𝑣2 ∈V. We assume U = {𝑢} for some  
𝑢∈Z(R)*. Since ANNG(R) ≠ Γ(R), there are some  𝑣,𝑤 ∈V such that   𝑣  𝑤  is an edge of ANNG(R) that is not an 
edge of Γ(R). Since  𝑎𝑛𝑛𝑅(𝑣)  = {0,𝑢}  for each 𝑣 ∈ V and  𝑎𝑛𝑛𝑅(𝑣𝑤)  ≠  𝑎𝑛𝑛𝑅(𝑣) ∩  𝑎𝑛𝑛𝑅(𝑤) , we have          
𝑎𝑛𝑛𝑅(𝑣𝑤) ≠ {0,𝑢}. Thus 𝑎𝑛𝑛𝑅(𝑣𝑤) = {0} ∪ V and  𝑣𝑤 =  𝑢.  Since U = {𝑣𝑤}  and UV = {0}, we have   𝑣(𝑣𝑤) = 
𝑣2𝑤 = 0  and  𝑤(𝑣𝑤) =  𝑤2𝑣  = 0. We need to show that V = {𝑣,𝑤}.  Suppose that there is a  𝑧 ∈V  such that  𝑧 ∉
{𝑣,𝑤}. Then  𝑢𝑧 =  𝑣𝑤𝑧   = 0. Assume that   (𝑣𝑧 +  𝑣𝑤)  =  𝑣 .Then  𝑤(𝑣𝑧 +  𝑣𝑤))  =  𝑤𝑣 . But                        
𝑤(𝑣𝑧 +  𝑣𝑤)  =  𝑤𝑣𝑧 +  𝑤2𝑣 = 0 + 0 = 0. Thus we  have  𝑤𝑣  = 0, a contradiction. Thus   (𝑣𝑧 +  𝑣𝑤)  ≠  𝑣.  Since   
𝑣, 𝑧  ∈ V, we have  𝑣𝑧  ≠ 0 and thus  (𝑣𝑧 +  𝑣𝑤)  ≠  𝑣𝑤 . Thus  𝑣, (𝑣𝑧 +  𝑣𝑤), 𝑣𝑤   are distinct elements of            
Z(R)*. Since  𝑣2𝑤 = 0 and  𝑤 ∈V, we have either  𝑣2 = 0  or  𝑣2 = 𝑣𝑤 or  𝑣2 = 𝑤. Suppose that  𝑣2 = 𝑤.  Since  
𝑣𝑤 =  𝑢 ≠  0, we have  𝑣𝑤 =  𝑣(𝑣2)  = 𝑣3 = 𝑢 ≠  0. Since  𝑣2𝑤  = 0, we have  𝑣4 = 𝑣2𝑤  = 0. Thus we have          
𝑣2, 𝑣3, 𝑣2 + 𝑣3 are distinct elements of Z(R)*, and hence  𝑣2  𝑣3 (𝑣2 + 𝑣3)   𝑣2  is a cycle of length 3 in Γ(R), a 
contradiction. Thus we assume either  𝑣2 = 0 or  2v = 𝑢.  In both the cases, we have  𝑣2𝑧 = 0. Since  𝑣, (𝑣𝑧 +  𝑣𝑤),
𝑣𝑤  are distinct elements of Z(R)* and 𝑣2𝑤 = 𝑤2𝑣 = 𝑣2𝑧 = 0, we have  𝑣  (𝑣𝑧 +  𝑣𝑤)   𝑣𝑤   𝑣   is a cycle of 
length 3 in Γ(R), a contradiction. Thus we have V = {𝑣,𝑤} and hence |V| = 2. Therefore  Γ(R) = 𝐾1,2. 
 
(2) ⇒ (3): Since ANNG(R) ≠ Γ(R)  and  Γ(R) = 𝐾1,2, we conclude that  ANNG(R) = 𝐾3. 
 
(3) ⇒ (1): Since ANNG(R) = 𝐾3, we have |Z(R)*| = 3. Since Γ(R) is connected and ANNG(R) ≠ Γ(R), we have exactly 
one edge of ANNG(R) is not an edge of Γ(R). Thus Γ(R) is a star graph. 
 
Example 2.3: Consider the non-reduced commutative ring R =  ℤ2 [X] /〈 X 3〉. Then   X + 〈 X  3 〉   X + X 2  + 〈 X  3 〉   
is an   edge of  ANNG(R) that is not an edge of  Γ(R).  Now   X + 〈 X  3 〉    X 2 + 〈 X  3 〉    X + X 2  + 〈 X  3 〉  is the only 
path in ANNG(R) of length 2 from  X + 〈 X  3 〉  to   X + X 2 + 〈 X  3 〉  and it is also a path in Γ(R). Here   ANNG(R) = 𝐾3, 
Γ(R) = 𝐾1,2, 𝑔𝑟(Γ(R)) = ∞  and  𝑔𝑟(ANNG(R)) = 3. 
 
Theorem 2.8: Let R be a non-reduced commutative ring with |Z(R)*| ≥ 2. Then the following statements are 
equivalent: 

(1) ANNG(R) is a star graph; 
(2) 𝑔𝑟(ANNG(R)) = ∞; 
(3) ANNG(R) =  Γ(R) and  𝑔𝑟(Γ(R)) = ∞; 
(4) ANNG(R)  = AG(R)  and  𝑔𝑟(AG(R))  = ∞; 
(5) 𝑔𝑟(AG(R))  = ∞; 
(6) N(R) is a prime ideal of  R and either  Z(R) = N(R) = �0, –  𝑤,𝑤� �–𝑤 ≠ 𝑤� for some nonzero 𝑤 ∈R or     

Z(R) ≠ N(R)  and  N(R) = {0,𝑤} for some nonzero 𝑤 ∈R (and hence 𝑤Z(R) = {0}); 
(7) Either ANNG(R) = 𝐾1,1 or  ANNG(R) = 𝐾1,∞; 
(8) Either AG(R) = 𝐾1,1  or  AG(R) = 𝐾1,∞; 
(9) Either Γ(R) = 𝐾1,1 or  Γ(R) = 𝐾1,∞. 
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Proof: 
(1) ⇒ (2): Since  ANNG(R) is a star graph, we have  𝑔𝑟(ANNG(R)) = ∞. 
 
(2) ⇒ (3): Since 𝑔𝑟(ANNG(R)) = ∞, we have  ANNG(R) = Γ(R)  by  Theorem  2.2  and  hence   𝑔𝑟(Γ(R)) = ∞. 
 
(2) ⇒ (4): Since gr(ANNG(R)) = ∞, we have  ANNG(R) = AG(R)  by  [Corollary  2.3.2, 10]  and  hence   𝑔𝑟(AG(R)) = ∞. 
 
(3) ⇒ (4): Since ANNG(R) = Γ(R) and  𝑔𝑟( Γ(R)) = ∞, we have  ANNG(R) = AG(R) by [Theorem 3.6, 4] and hence  
𝑔𝑟(AG(R)) = ∞.  
 
(4) ⇒ (5): It is obvious. 
 
(5) ⇔ (6): It follows from [Theorem 3.18, 4] 
 
(6) ⇒ (7): First suppose that N(R) is a prime ideal of R and Z(R) = N(R) = {0, –  𝑤,𝑤} (–  𝑤 ≠  𝑤) for some nonzero 𝑤 
∈R. Since ANNG(R) is connected, we have ANNG(R) = 𝐾1,1. Next assume that N(R) is a prime ideal of R with  Z(R) ≠ 
N(R) and N(R) = {0,𝑤} for some nonzero  𝑤 ∈  R. We need to show Z(R) is an infinite set. Let  𝑢 ∈  Z(R) – N(R) and 
assume 𝑟 >  𝑠 ≥  1. To show Z(R) is infinite we have to prove 𝑢𝑠 ≠ 𝑢𝑟 . Suppose that 𝑢𝑠 = 𝑢𝑟 . This implies       
𝑢𝑠(1 − 𝑢𝑟−𝑠) = 0. Since  N(R) = {0,𝑤}  is prime ideal, we have  (1 − 𝑢𝑟−𝑠) = 𝑤. Now 1 –  𝑤 ∈U(R). This implies  
𝑢𝑟−𝑠 ∈ U(R), which is a contradiction. Thus  𝑢𝑠 ≠ 𝑢𝑟 and hence Z(R) is an infinite set. Again since N(R) = {0,𝑤} is 
prime and 𝑤Z(R) = {0}, we conclude that ANNG(R) = 𝐾1,∞. Thus we have either ANNG(R) = 𝐾1,1 or ANNG(R) = 𝐾1,∞. 
 
(6) ⇔ (8): It follows from [Theorem 3.18, 4] 
 
(7) ⇒ (8): We have AG(R) is connected by [Theorem 2.1, 4]. Also every edge of AG(R) is an edge of ANNG(R) by 
[Lemma 2.1(5), 10]. Thus we have either AG(R) = 𝐾1,1or AG(R) = 𝐾1,∞.      
 
(8) ⇔ (9): It follows from  [Theorem 3.18, 4]  
 
(9) ⇒ (1): In both the cases of (9) we have Γ(R) is a star graph and Γ(R) ≠ 𝐾1,2. Thus  ANNG(R) = Γ(R) by Theorem 2.7  
and hence ANNG(R) is a star graph. 
 
Example 2.4:  

(1) Let R = ℤ9. Then  Z(R) = N(R) = {0, – 3, 3} and ANNG(R) = AG(R) = Γ(R) =  𝐾1,1.  
(2) Let  R = ℤ2[X, Y] /〈 X  2 , XY 〉 and suppose that  𝑢 = X + 〈 X  2 + XY 〉 and  𝑣 =  Y +   〈 X  2 + XY 〉 belongs to R. 

Then Z(R) = (𝑢, 𝑣)R, N(R) = {0,𝑢}  and Z(R) ≠ N(R). Thus we have ANNG(R) = AG(R) = Γ(R) =𝐾1,∞.    
 
3. CONCLUSION 
 
Let R be a commutative ring with unity. In this paper, we have discussed some basic properties of ANNG(R). We have 
also examined some properties of when R is non-reduced commutative ring R. 
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