A COMMON FIXED POINT THEOREM FOR SIX MAPPINGS

¹V. H. Badshah, ²Rekha Jain* and ³Saurabh Jain

¹School of Studies in Mathematics, Vikram University, Ujjain 456010, India

²Medi-Caps Institute of Technology and Management, Indore, (M.P.), India

³Indore Institute of Science and Technology, Indore, (M.P.), India

E-mail: *rjain5129@yahoo.com, sj5129@yahoo.com

(Received on: 04-08-11; Accepted on: 17-08-11)

ABSTRACT

 $m{U}$ sing notion of compatibility, weak compatibility and commutatively we have generalized fixed point theorem for six mappings satisfying rational inequality.

1. INTRODUCTION AND PRELIMINARIES

The concept of common fixed point theorem for commuting mapping was given by Jungck [4]. The notion of weak commutativity was introduced by Sessa [6]. Imdad and Khan [5] has proved a common fixed point theorem for six mappings which was extension of Fisher [1] and Jeong-Rhoades [3].

Definition: 1.1 [6]: A pair of self-mapping (A, B) on a metric space (X, d) is said to be weakly commuting if $d(ABx, BAx) \le d(Bx, Ax)$ for all x in X. Obviously, commuting mappings are weakly commuting but the converse is not necessarily true.

Definition 1.2[4]: A pair of self mappings (A, B) of a metric space (X, d) is said to be compatible if

 $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Bx_n = t \in X$. Obviously, weakly commuting mappings are compatible but the converse is not necessarily true.

The following theorem is given by Fisher [1]

Theorem 1.1: Let S and T be tow self mappings of a complete metric space (X, d) such that for all x, y in X either

(a)
$$d(Sx,Ty) \le \frac{b[d(x,Ty)]^2 + c[d(y,Sx)]^2}{d(x,Ty) + d(y,Sx)}$$

If
$$d(x,Ty)+d(y,Sx)\neq 0, 0\leq b, c, b+c<1$$
 or

(b)
$$d(Sx,Ty) = 0$$
if $d(x,Ty) + d(y,Sx) = 0$

If one of S or T is continuous than S and T have a unique common fixed point.

Motivated by Fisher [2] and imdad and khan [5], in the present paper, an extension of theorem 1.1 is generalized for power n by improving the contraction condition and choosing suitable weak commutativity conditions.

2 MAIN RESULT

We prove the following

Theorem 2.1: Let A, B; S, T, I and J be self mappings of a complete metric space (X, d) satisfying AB(X) \subseteq J(X), ST(X) \subseteq I(X) and for each $x, y \in X$ either

$$d(ABx, STy) \le \alpha_{1} \left[\frac{\left[d(ABx, Jy) \right]^{n} + \left[d(STy, Ix) \right]^{n}}{\left[d(ABx, Jy) \right]^{n-1} + \left[d(STy, Ix) \right]^{n-1}} \right]$$

$$+\alpha_{2} \left[d(ABx, Ix) + d(STy, Jy) \right] + \alpha_{3} d(Ix, Jy)$$
(2.1)

$$ifd (ABx, Jy)^{n-1} + d (STy, Ix)^{n-1} \neq 0, \alpha_i \geq 0 \quad (i = 1, 2, 3) \text{ with at least one } \alpha_i \text{ non zero and}$$

$$2\alpha_1 + 2\alpha_2 + \alpha_3 < 1 \text{ or } d (ABx, STy) = 0 \\ if \left[d (ABx, Jy) \right]^{n-1} + \left[d (STy, Ix) \right]^{n-1} = 0$$

$$(2.2)$$

If either

(i) {AB, I} are compatible, I or AB is continuous and (ST, J) are weakly compatible, or

(ii) {ST, J} are compatible, J or ST is continuous and (AB, I) are weakly compatible then AB, ST, I and J have a unique common fixed point. Furthermore if the pairs (A, B), (A, I), (B, I), (S, T), (S, J), (T, J) are commuting mappings then A, B, S, T, I and J have a unique common fixed point."

Proof: Let x_0 be an arbitrary point in X. Since AB(X) \subseteq J(X) we can find a point x_1 in X such that AB $x_0 = Jx_1$. Also since ST(X) subset of I(X) we can choose a point x_2 with ST $x_1 = I$ x_2 . Using this argument repeatedly one can construct a sequence $\{z_n\}$ such that $z_{2n} = ABx_{2n} = J$ x_{2n+1} , $z_{2n+1} = STx_{2n+1} = I$ x_{2n+2} for n = 0, 1, 2, ...

For brevity let us put

 $u_{2n} = d (ABx_{2n}, STx_{2n+1})$ and $u_{2n+1} = d (STx_{2n+1}, ABx_{2n+2})$ for $n = 0, 1, 2, \ldots$ Now we distinguish two cases:

(i) Suppose that $u_{2n} + u_{2n+1} \neq 0$ for n = 0, 1, 2, ...

Then using the inequality (2.1.1), we have

$$\begin{aligned} \mathbf{u}_{2n+1} &= d\left(Z_{2n+1}, \ Z_{2n+2}\right) = d\left(STx_{2n+1}, ABx_{2n+2}\right) \\ &\leq \alpha_1 \left[\frac{\left[d\left(ABx_{2n+1}, Jx_{2n+1}\right)\right]^n + \left[d\left(STx_{2n+1}, Ix_{2n+1}\right)\right]^n}{\left[d\left(ABx_{2n+2}, Jx_{2n+1}\right)\right]^{n-1} + \left[d\left(STx_{2n+1}, Ix_{2n+2}\right)\right]^{n-1}} \right] \\ &+ \alpha_2 \left[d\left(ABx_{2n+1}, Ix_{2n+2}\right) + d\left(STx_{2n+1}, Jy_{2n+2}\right)\right] + \alpha_3 d\left(Ix_{2n+2}, Jy_{2n+1}\right) \\ d\left(Z_{2n+1}, Z_{2n+2}\right) &\leq \frac{\alpha_1 + \alpha_2 + \alpha_3}{1 - \alpha_1 - \alpha_2} d\left(Z_{2n}, Z_{2n+1}\right) \end{aligned}$$

or

Similarly we can show that

$$d(z_{2n}, z_{2n+1}) \le \frac{\alpha_1 + \alpha_2 + \alpha_3}{1 - \alpha_1 - \alpha_2} d(z_{2n-1}, z_{2n})$$

thus for every
$$n$$
 we have $d\left(z_n, z_{n+1}\right) \le kd\left(z_{n-1}, z_n\right)$ (2.3)

which shows that $\{z_n\}$ is a cauchy sequence in the complete metric space (X, d) and so has a limit point z in X. hence the sequence $ABx_{2n} = Jx_{2n+1}$ and $STx_{2n+1} = Ix_{2n+2}$ which are subsequences also converge to the point z.

let us now assume that I is continuous so that the sequence $\{I^2x_{2n}\}$ and $\{IABx_{2n}\}$ converges to Iz. Also in view of compatibility of $\{I,AB\}$, $\{ABIx_{2n}\}$ converges to Iz.

$$d(ABIx_{2n}, STx_{2n+1}) \leq \alpha_{1} \left[\frac{\left[d(ABIx_{2n}, Jx_{2n+1}) \right]^{n} + \left[d(STx_{2n+1}, I^{2}x_{2n}) \right]^{n}}{\left[d(ABIx_{2n}, Jx_{2n+1}) \right]^{n-1} + \left[d(STx_{2n+1}, I^{2}x_{2n}) \right]^{n-1}} \right] + \alpha_{2} \left[d(ABz, Iz) + d(STx_{2n+1}, Jx_{2n+1}) + \alpha_{3} \left[d(Iz, Jx_{n+1}) \right] \right]$$

Which on letting $n \to \infty$ reduces to $(1 - \alpha_1 - \alpha_3) d(Iz, z) \le 0$

yielding thereby Iz = z

Now.

$$d(ABz, STx_{2n+1}) \le \alpha_{1} \left[\frac{\left[d(ABz, Jx_{2n+1}) \right]^{n} + \left[d(STx_{2n+1}, Iz) \right]^{n}}{\left[d(ABz, Jx_{2n+1}) \right]^{n-1} + \left[d(STx_{2n+1}, Iz) \right]^{n-1}} \right] + \alpha_{2} \left[d(ABz, Iz) + d(STx_{2n+1}, Jx_{2n+1}) \right] + \alpha_{3} \left[d(Iz, Jx_{n+1}) \right]$$

On letting and using Iz = z we get

$$d(ABz,z) \le (\alpha_1 + \alpha_2) d(ABz,z)$$

This implies AB z = z

Since $AB(x) \subset J(x)$ then there always exists a point z' such that Jz' = z so that STz = ST(Jz')

Now

$$d(z, STz) = d(ABz, STz)$$

$$\leq \alpha_1 \left[\frac{\left[d(ABz, Jz') \right]^n + \left[d(STz', Iz) \right]^n}{\alpha(ABz, Jz')^{n-1} + d(STz', Iz)^{n-1}} \right] + \alpha_2 \left[d(ABz, Iz) + d(STz', Jz') \right] + \alpha_3 d(Iz, Jz')$$

$$\leq (\alpha_1 + \alpha_2) \left[d(STz', z) \right]$$

Hence, STz' = z = Jz' which shows that z' is a common point of AB, I, ST and J. Now using the weak compatibility of (ST, J), we have STz = ST(Jz') = J(STz') = Jz which shows that z is also a coincidence point of the pair (ST, J). Now

$$d(z,STz) = d(ABz,STz)$$

$$\leq \alpha_1 \left[\frac{\left[d(ABz,Jz) \right]^n + \left[d(STz,Iz) \right]^n}{\alpha(ABz,Jz)^{n-1} + d(STz,Iz)^{n-1}} \right] + \alpha_2 \left[d(ABz,Iz) + d(STz,Jz) \right] + \alpha_3 d(Iz,Jz)$$

$$\leq (\alpha_1 + \alpha_3) d(z,STz)$$

Hence z = STz = Jz which shows that z is a common fined point of AB, I, ST and J.

Now suppose that AB is continuous so that the sequences $\left\{AB^2x_{2n}\right\}$ and $\left\{ABIx_{2n}\right\}$ converge to ABz, since $\left(AB,I\right)$ are compatible it follows that $\left\{IABx_{2n}\right\}$ also converge to ABz, thus

$$d\left(AB^{2}x_{2n}, STx_{2n+1}\right) \leq \alpha_{1} \left[\frac{\left[d\left(AB^{2}x_{2n}, Jx_{2n+1}\right)\right]^{n} + \left[d\left(STx_{2n+1}, IABx_{2n}\right)\right]^{n}}{\left[d\left(AB^{2}x_{2n}, Jx_{2n+1}\right)\right]^{n-1} + \left[d\left(STx_{2n+1}, IABx_{2n}\right)\right]^{n-1}}\right] + \alpha_{2} \left[d\left(AB^{2}x_{2n}, IABx_{2n}\right) + d\left(STx_{2n+1}, Jx_{2n+1}\right)\right] + \alpha_{3} d\left(IABx_{2n}, Jx_{2n+1}\right)$$

which on letting $n \to \infty$ reduces to

$$d(ABz, z) \le (\alpha_1 + \alpha_3) d(ABz, z)$$

which implies ABz = z as earlier, there exists z' is X such that

$$ABz = z = Jz'_{then}$$

$$d(AB^{2}x_{2n}, STz') \leq \alpha_{1} \left[\frac{\left[d(AB^{2}x_{2n}, Jz') \right]^{n} + \left[d(STz', IABx_{2n}) \right]^{n}}{\left[d(AB^{2}x_{2n}, Jz') \right]^{n-1} + \left[d(STz', IABx_{2n}) \right]^{n-1}} \right] + \alpha_{2} \left[d(AB^{2}x_{2n}, IABx_{2n}) + d(STz', Jz') \right] + \alpha_{3} d(IABx_{2n}, Jz')$$

This on letting $n \to \infty$ reduces to

$$d(z,STz') \le (\alpha_1 + \alpha_2) d(z,STz')$$

This gives $STz' = z = J^z$ thus z' is a coincidence point of (ST, J). since, the pair (ST, J) is weakly compatible hence STz = ST(Jz') = J(STz') = Jz which shows that STz = Jz further,

$$d(ABx_{2n}, STz) \leq \alpha_{1} \left[\frac{\left[d(ABx_{2n}, Jz) \right]^{n} + \left[d(STz, Ix_{2n}) \right]^{n}}{\left[d(ABx_{2n}, Jz) \right]^{n-1} + \left[d(STz, Ix_{2n}) \right]^{n-1}} \right] + \alpha_{2} \left[d(ABx_{2n}, Ix_{2n}) + d(STz, Jz) \right] + \alpha_{3} d(Ix_{2n}, Jz)$$

which on letting $n \to \infty$ reduces to

$$d(z,STz) \le (\alpha_1 + \alpha_3) d(z,STz)$$
$$d(STz,z) = 0$$

it follows that STz = z = Jz

The point z therefore is in the range of ST and since $ST(X) \subset I(X)$ there exist a point z in X such that Iz'' = z thus

$$d(ABz",z) = d(ABz",STz) \le \alpha_1 \frac{\left[d(ABz",Jz)\right]^n + \left[d(STz,Iz")\right]^n}{\left[d(ABz",Jz)\right]^{n-1} + \left[d(STz,Iz")\right]^{n-1}} + \alpha_2 \left[d(ABz",Iz") + d(STz,Jz)\right] + \alpha_3 d(Iz",Jz)$$

Letting $n \to \infty$

$$d(ABz"z) \le (\alpha_1 + \alpha_2)d(ABz",z)$$

which shows that ABz'' = z

Also since (AB, I) are compatible and hence using weakly commuting we obtain

$$d(ABz, Iz) = d(AB(Iz"), I(ABz"))$$

$$\leq d(Iz", ABz") = d(z, z) = 0$$

Therefore ABz = Iz = z

Thus we have proved that z is common fixed point of AB, ST, I and J.

If the mappings ST or J is continuous instead of AB or I then proof of z is a common fixed point of AB, ST, I and J is similar.

Let v be another fixed point of I, J, AB and ST

then

$$d(z,v) = d(ABz,STv)$$

$$\leq \alpha_1 \left[\frac{\left[d(ABz,Jv) \right]^n + \left[d(STv,Iz) \right]^n}{\left[d(ABz,Jv) \right]^{n-1} + \left[d(STv,Iz) \right]^{n-1}} \right]$$

$$+\alpha_2 \left[d(ABz,Iz) + d(STv,Jv) \right]$$

$$+\alpha_3 d(Iz,Jv)$$

$$d(z,v) \le (\alpha_1 + \alpha_3) d(z,v)$$
 yielding thereby $z = v$

Finally we need to show that z is also a common fixed point of A, B, S, T, I and J. For this let z be the unique common fixed point of both the pairs (AB, I) and (ST, J). Then

$$Az = A(ABz) = A(BAz) = AB(Az)$$
, $Az = A(lz) = I(Az)$

$$Bz = B(ABz) = B(A(Bz)) = BA(Bz) = AB(Bz)$$
. $Bz = B(lz) = I(Bz)$

which shows that Az and Bz is a common fixed point of (AB, I) yielding thereby Az = z = Bz = Iz = ABz in the view of uniqueness of the common fixed point of the pair (AB, I).

Similarly using the commutatively of (S,T),(SJ) and (T,J) it can be shown that Sz=z=Tz=Jz=STz.

Now we need to show that Az = Sz(Bz = Tz) also remains a common fixed point of both the pairs (AB, I) and (ST, J). For this

$$d(Az, Sz) = d(A(BAz), S(TSz))$$

$$= d(AB(Az), ST(Sz))$$

$$\leq \alpha_1 \left[\frac{\left[d(AB(Az), J(Sz)) \right]^n + \left[d(ST(Sz), I(Az)) \right]^n}{\left[d(AB(Az), J(Sz)) \right]^{n-1} + \left[d(ST(Sz), I(Az)) \right]^{n-1}} \right]$$

$$+\alpha_{2}\left[d\left(AB(Az),I(Az)\right)+d\left(ST(Sz),J(Sz)\right)\right]+\alpha_{3}d\left(I(Az),J(Sz)\right)$$

implies that d(Az, Sz) = 0 (as d(AB(Az), J(Sz) + d(ST(Sz), I(Az)) = 0) yielding thereby Az = Sz.

Similarly it can be shown that Bz = Tz. Thus z is the unique common fixed of A, B, S, T, l and J.

(ii) Suppose that d(ABx, Jy) + d(STy, lx) = 0 implies d(ABx, STy) = 0. Then we argue as follows.

The rest of the proof is identical to the case (1), hence it is omitted. This completes the proof.

Corollary 2.2: Theorem 2.1 remains true if contraction conditions (2.1.1) and (2.1.2) are replaced by any of the following conditions:

(i) Either
$$d(ABz, STy) \le \alpha_1 \left[\frac{\left[d(ABx, Jy) \right]^n + \left[d(STy, Ix) \right]^n}{\left[d(ABx, Jy) \right]^{n-1} + \left[d(STy, Ix) \right]^{n-1}} \right] + \alpha_2 \left[d(ABx, Ix) + d(STy, Jy) \right]$$

if $d(ABx, Jy) + d(STy, Ix) \ne 0$, $\alpha_1, \alpha_2 > 0$, $2\alpha_1 + 2\alpha_2 < 1$ or (A)

$$d(ABx, STy) = 0$$
 if $d(ABx, Jy) + d(STy, lx) = 0$

(ii) Either
$$d(ABx, STy) \le \alpha_1 \left[\frac{\left[d(ABx, Jy) \right]^n + \left[d(STy, Ix) \right]^n}{\left[d(ABx, Jy) \right]^{n-1} + \left[d(STy, Ix) \right]^{n-1}} \right] + \alpha_3(Ix, Jy)$$
if $d(ABx, Jy) + d(STy, Ix) \ne 0$, $\alpha_1, \alpha_3 > 0, 2\alpha_1 + \alpha_3 < 1$ or (B)

$$d(ABx, STy) = 0$$
 if $d(ABx, Jy) + d(STy, lx) = 0$

(iii) Either
$$d(ABx, STy) \le \alpha_1 \left[\frac{\left[d(ABx, Jy) \right]^n + \left[d(STy, Ix) \right]^n}{\left[d(ABx, Jy) \right]^{n-1} + \left[d(STy, Ix) \right]^{n-1}} \right]$$

if $d(ABx, Jy) + d(STy, Ix) \ne 0$, $\alpha_1 > 0$, $\alpha_1 < \frac{1}{2}$ or $\alpha_1 > 0$ (C)

$$d(ABx, STy) = 0 \text{ if } d(ABx, Jy) + d(STy, Ix) = 0$$

(iv)
$$d(ABx, STy) \le \alpha_1 \left[d(ABx, Jy) + d(STy, Jy) \right]$$

$$+\alpha_{2} \left[d\left(ABx, lx\right) + d\left(STy, Jy\right) \right] + \alpha_{3} d\left(lx, Jy\right) if 2\alpha_{1} + 2\alpha_{2} + \alpha_{3} < 1$$
 (D)

(v)
$$d(ABx, STy) \le \alpha_1 \left[d(ABx, Jy) + d(STy, lx)\right] if \alpha_1 < \frac{1}{2}$$
 (E)

(vi)
$$d(ABx, STy) \le \alpha_2 \left[d(ABx, lx) + d(STy, Jy) \right] if \alpha_2 < \frac{1}{2}$$
 (F)

(vii)
$$d(ABx, STy) \le \alpha_3 d(lx, Jy)$$
 if $\alpha_3 < 1$ (G)

Proof: Corollaries corresponding to the contraction conditions (A), (B) and (C) can be deduced directly from Theorem 2.1 by choosing $\alpha_3 = 0$, $\alpha_2 = 0$ and $\alpha_2 = \alpha_3 = 0$, respectively. The corollary corresponding the contraction condition (D) also follows from Theorem 2.1 by noting that

$$\frac{\left[d\left(ABx,Jy\right)\right]^{n}+\left[d\left(STy,lx\right)\right]^{n}}{\left[d\left(ABx,Jy\right)\right]^{n-1}+\left[d\left(STy,lx\right)\right]^{n-1}} \leq \frac{\left[d\left(ABx,Jy\right)+d\left(STy,lx\right)\right]^{n}}{\left[d\left(ABx,Jy\right)+d\left(STy,lx\right)\right]^{n-1}} \leq \left[d\left(ABx,Jy\right)+d\left(STy,lx\right)\right]$$

Finally one may note that the contraction conditions (E), (F) and (G) are special cases of the contraction condition (D).

REFERENCES

- [1] Fisher, B., Mapping satisfying rational inequality, Nanta. Math. 12 (1979) 195 -199.
- [2] Fisher, B., Common fixed point and constant mapping satisfying, a rational inequality, Math. Sem. Notes, 6 (1978) 29 -35.
- [3] Jeong, G. S. and. Rhoades, B. E., Some remark for improving fixed point theorem for more than two maps, Ind. J. Pure Appl. Math., 28 (1997) 1177 1196.
- [4] Jungck, G., Compatible mappings and Common fixed points, Internat. J. Math. and Math. Sci., 9 (1986) 771 779.
- [5] Imdad. M and Khan. Q. H., A common fixed point theorem for six mapping satisfying a rational inequality, Ind. Jou. of math. 44 (2002) 47-57.
- [6] Sessa, S., A weak commutativity condition of mappings in fixed point considerations, Pub. Inst. Math. (Beogard), 32 (1982) 149-153.
