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ABSTRACT  
In this paper, common fixed point theorem of integral type of compatible mappings of type(𝛽) 𝑎𝑛𝑑  𝑡𝑦𝑝𝑒 (𝛼 ) 
satisfying integral mapping of Two Fuzzy metric space. Establish some new fixed point theorems in complete metric 
spaces. 
 
 
1. INTRODUCTION  
 
Fixed point theory became one of the most interesting area of research in the last forty years for instance research about 
control theory, differential equations, integral equations, economics, and etc. The fixed point theorem, generally known 
as the Banach contraction mapping principle, appeared by Banach in 1922. Later, the Banach contraction principle has 
been widely generalized and extended a common fixed point theorem by removing the assumption of continuity, 
relaxing compatibility to compatible maps of type (α) or (β). weak compatibility and replacing the completeness of the 
space with a set of alternative conditions for functions satisfying an implicit relation in FM-space.   
 
In our chapter the following implicit relation: Let I =  [0, 1],∗ be a continuous t-norm and F be the set of all real 
continuous functions F ∶  I6  →  R satisfying the following conditions 

1. F is no increasing in the fifth and sixth variables, 
2. if, for some constant k ∈  (0, 1) we have 

a. F �u(kt), v(t), v(t), u(t), 1, u �t
2
 �  ∗  v �t

2
 ��  ≥  1, or 

b. F �u(kt), v(t), u(t), v(t), u �t
2
 �  ∗  v �t

2
 � , 1 �  ≥  1 

for any fixed t >  0 and any nondecreasing functions u, v ∶  (0,∞)  →  I with 0 ≤  u(t), v(t) ≤ 1 then there 
exists h ∈  (0, 1) with u(ht)  ≥  v(t)  ∗  u(t), 

 
3. if, for some constant k ∈  (0, 1) we have  

F(u(kt), u(t), 1, 1, u(t), u(t))  ≥  1 
for any fixed t > 0 and any nondecreasing function u ∶  (0,∞)  →  I then u(kt) ≥ u(t). 
Beside this the concepts of Fuzzy 2-metric spaces are as follows, 

 
2. PRELIMINARIES 
 
𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟏: A triplet (X, M,⋆) is said to be a Fuzzy 2- metric space if X is an arbitrary set, ⋆ is a continuous t − 
norm and M is a fuzzy set on X2  ×  (0,∞) satisfying the following condition for all x, y, z, s, t > 0, 

2.1 (FM − 1) M ( x, y, θ , t ) > 0 
2.2 (FM − 2) M ( x, y , θ, t )  = 1 if and only if x =  y =  θ. 
2.3(FM − 3) M ( x, y, θ, t) = M ( y, θ, x, t ) = M(θ, x, y, t) 
2.4 (FM − 4) M ( x, y, θ, t ) ⋆ M ( y, z,θ, s) ⋆ M(z, x, θ, q)  ≤ M (x, y, z, t +  s + q) 
2.5(FM − 5) M ( x, y, θ,•) ∶  (0,∞) → (0,1] is continuous. 

Then M is called a Fuzzy 2- metric on X. The function M(x, y, θ, t) denote the degree of nearness between x, y and  θ 
with respect to t. 
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Example 2.2: Let (X, d) be a metric space. Define  a ∗  b =  min {a, b}  and 

M(x, y, θ, t)  =  
t

t + d(x, y, θ)
  

 
For all   x, y ∈  X and all t >  0. Then (X, M,⋆) is a Fuzzy 2- metric space. 
 
It is called the Fuzzy 2- metric space induced by d. 
 
We note that, M(x, y, θ, t)  can be realized as the measure of nearness between x  and  y   with respect to t.  It is known 
that M(x, y,∙) is non decreasing for all x, y ∈ X.  Let   M(x, y,⋆) be a Fuzzy 2- metric space for  t >  0,  the   open   ball  

B(x, r, θ, t)  =   {y ∈ X:  M(x, y, θ, t)  > 1 − r}.   
  
Now, the collection  {B(x, r, θ, t): x ∈ X, 0 <  r < 1, t > 0}  is a neighborhood system for a topology τ  on X induced by 
the Fuzzy 2- metric M. This topology is Housdroff and   first countable. 
 
Definition 2.3: A sequence {xn}  in a Fuzzy 2- metric space (X, M,⋆)  is said to be a converges to x iff for each  ε > 0   
and  each   t > 0,   n0 ∈ N  such   that  M(xn, x, θ, t)  > 1 − ε  for all  n ≥ n0.  
 
Definition 2.4:  A sequence {xn}  in a Fuzzy 2- metric space (X, M,⋆)  is said to be a  G- Cauchy sequence converges   
to  x  iff   for  each  ε > 0  and   each   t > 0,   n0 ∈ N  such   that  M(xm, xn, θ, t) > 1 − ε  for all  m, n ≥ n0.  
 
A Fuzzy 2- metric space (X, M,⋆) is said to be complete if every G- Cauchy sequence in it converges to a point in it. 
 
3. MAIN THEOREM 
 
Common Fixed Point Theorem for Compatible Maps of Type (𝛃)  and Type (𝛂) Using integral type mapping 
 
Integral type contraction principle is one of the most popular contraction principle in fixed point theory. The first 
known result in this direction was given by Branciari [13] in general setting of lebgesgue integrable function and 
proved following fixed point theorems in metric spaces.   
 
Theorem 3.1: Let (X, M,⋆) be a complete Fuzzy 2- metric space and let A, B, S, T, P and Q be mappings from X into 
itself such that the following conditions are satisfied: 

3.1 (a)  P(X) ⊂ ST(X) and  Q(X) ⊂ AB(X), 
3.1 (b)  (P, AB)  is compatible of type (β)  and (Q, ST)  is weak compatible, 
3.1 (c) there exists k ∈ (0,1) such that for every x, y ∈ X and  t > 0 

∫ ξ(v)
F�M

2(Px,Qy,θ,kt),M2(Px,ABx,θ,t),
M2(Qy,STy,θ,t) ,,M2(ABx,Qy,θ,t)

�

0  dv ≥ 1  
Where ξ ∶  [0, +∞] →   [0, +∞] is a lebgesgue integrable mapping which is summable on each compact subset of 
[0, +∞] non negative and such that ∀  ε > 0, ∫ ξ(v)ε

0  dv > 0. Then A, B, S, T, P and Q have a unique common fixed 
point in X. 
 
Proof: Let x0 ∈ X, then from 3.1 (a) we have x1, x2 ∈ X such that  

Px0 = STx1  and   Qx1 = ABx2 
 
Inductively, we construct sequences {xn} and {yn}  in X such that for n ∈ N 

Px2n−2 =  STx2n−1 = y2n−1  and  Qx2n−1 =  ABx2n = y2n 
 
Put  x =   x2n  and  y = x2n+1 in 3.1.(c)then we have 
 

∫ ξ(v)
F�

M2(Px2n,Qx2n+1,θ,kt),M2(Px2n,ABx2n,θ,t)
,M2(Qx2n+1,STx2n+1,θ,t) ,,M2(ABx2n,Q2n+1,θ,t)

�

0  dv > 1 
 

∫ ξ(v)
F�
M2(y2n+1,y2n+2,θ,kt),M2(y2n+1,y2n,θ,t),
M2(y2n+2,y2n+1,θ,t),M2(y2n,y2n+2,θ,t)

�

0  dv > 1 
 

∫ ξ(v)

F�

M2(y2n+1,y2n+2,θ,kt),
M2(y2n+2,y2n+1,θ,t),M2(y2n+1,y2n+1,θ,t),

⋆M2�y2n+1,y2n+2,θ,t2 �
�

0  dv > 1  
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From condition 3.2 (a) we have 

∫ ξ(v) M2(y2n+1,y2n+2,θ,kt)
0  dv ≥ ∫ ξ(v)M2�y2n,y2n+1,θ,t2�⋆M

2�y2n+2,y2n+1,θ,t2� 
0  dv  

 
We have 

∫ ξ(v) M2(y2n+1,y2n+2,θ,kt)
0  dv ≥ ∫ ξ(v)M2�y2n,y2n+1,θ,t2�

0  dv  
 
Since ξ(v)  is a lebesgue integrable function so we have  

M(y2n+1, y2n+2, θ, kt) ≥ M �y2n, y2n+1, θ,
t
2
� 

 
Similarly we have 

M(y2n+2, y2n+3, θ, kt) ≥ M �y2n+1, y2n+2, θ,
t
2
� 

 
Thus we have 

M(yn+1, yn+2, θ, kt) ≥ M �yn, yn+1, θ,
t
2
� 

M(yn+1, yn+2, θ, t) ≥ M �yn, yn+1, θ,
t

2k
� 

M(yn, yn+1, θ, t) ≥ M �y0, y1,θ,
t

2nk
� → 1  as  n →  ∞, 

and hence M(yn, yn+1, θ, t) → 1  as n →  ∞ for all  t > 0. 
 
For each ϵ > 0  and  t > 0,  we can choose n0 ∈ N such that  

M(yn, yn+1, θ, t)  > 1 − ϵ  for all  n > n0. 
 
For any m, n ∈ N  we suppose that  m ≥ n. Then we have 

M(yn, ym, θ, t)  ≥  M �yn, yn+1, θ, t
m−n

�  ⋆  M �yn+1, yn+2, θ, t
m−n

�  ⋆ ….  ⋆  M �ym−1, ym, θ, t
m−n

�    
M(yn, ym, θ, t) ≥  (1 − ϵ ) ⋆  (1 − ϵ ) ⋆ … … ⋆  (1 − ϵ )(m − n)times 
M(yn, ym, θ, t) ≥  (1 − ϵ ) 

And hence {yn}  is a Cauchy sequence in X. 
 
Since (X, M,⋆)  is complete, {yn} converges to some point z ∈ X. Also its subsequences converges to the same point 
z ∈ X. That is  

{Px2n+2} → z  and  {STx2n+1} → z                              3.2 (i) 
 
{ Qx2n+1} → z  and  {ABx2n} → z                                                          3.2 (ii) 

 
As (P, AB)  is compatible pair of type (β),  we have 

M(PPx2n, (AB)(AB)x2n, θ, t) = 1, for all t > 0 
 
Or     M(PPx2n, ABz, θ, t) = 1  
 
Therefore,    PPx2n → ABz.  
 
Put  x = (AB)x2n   and   y = x2n+1   in 5.2.1(c) we have 

∫ ξ(v)
 F�

M2(P(AB)x2n,Qy,θ,kt),
M2(P(AB)x2n,AB(AB)x2n,θ,t),M2(Qx2n+1,STx2n+1,θ,t),

M2(AB(AB)x2n,Qx2n+1,θ,t)
�

0  dv > 1  
 
Taking n → ∞ and 3.1(a) we get 

 ∫ ξ(v) M2�(AB)z,z,θ,kt�
0  dv ≥ ∫ ξ(v) M2�(AB)z,z,θ,t�

0  dv   
 
Since ξ(v)  is a lebesgue integrable function which implies 

M�(AB)z, z, θ, kt� ≥ M�(AB)z, z, θ, t� 
 
We have 

 ABz = z .                                            3.2(iii)  
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Put  x = z  and  y =   x2n+1  in 3.1(c) we have 

∫ ξ(v)
 F�

M2(Pz,Q x2n+1,θ,kt),∗M2(Pz,ABz,θ,t)
M2(Q x2n+1,ST x2n+1,θ,t),,

M2(ABz,Q x2n+1,θ,t)
�

0  dv > 1 
 
Taking  n → ∞  3.1 (a) and using equation 3.1 (i) we have 
 
That is                ∫ ξ(v) M2(Pz,z,θ,kt)

0  dv ≥  ∫ ξ(v) M2(Pz,z,θ,t)
0  dv  

 
Since ξ(v)  is a lebesgue integrable function so we have  

M(Pz, z, θ, kt) ≥   M(Pz, z, θ, t) 
 
we get                  Pz = z   
 
So we have          ABz = Pz = z.  
 
Putting x = Bz  and  y =  x2n+1  in   3.1(d), we get 

∫ ξ(v)
 F�

M2(PBz,Qx2n+1,θ,kt),M2(PBz,ABBz,θ,t)
M2(Qx2n+1,STx2n+1,θ,t),,M2(ABBz,Qx2n+1,θ,t)

�

0  dv > 1  
 
Taking  n → ∞, 3.1(a) and using 3.1.(i) we get 

∫ ξ(v) M2(Bz,z,,θkt)
0  dv ≥  ∫ ξ(v) M2(Bz,z,θ,t)

0  dv  
 
Since  ξ(v)  is a lebesgue integrable function which follows 

M(Bz, z, θ, kt) ≥ M(Bz, z, θ, t) 
 
We have               Bz = z  
 
And also we have ABz = z  implies  Az = z  
 
Therefore              Az = Bz = Pz = z.                                          5.2.1 (iv) 
 
As  P(X) ⊂ ST(X)  there exists u ∈ X such that  

z = Pz = STu 
 
Putting x = x2n and  y = u in 3.1(c) we get 

∫ ξ(v)
 F�M

2(Px2n,Qu,θ,kt),M2(Px2n,ABx2n,θ,t)
M2(Qu,STu,θ,t),,M2(ABx2n,Qu,θ,t)

�

0  dv > 1  
 
Taking n → ∞  and using 3.1. (i) and 3.1(ii)  we get 
 

∫ ξ(v)
 F� M2(z,Qu,θ,kt),,M2(z,z,θ,t)

M2(Qu,STu,θ,t),M2(z,Qu,θ,t)
�

0  dv > 1  
 

∫ ξ(v) M2(z,Qu,θ,kt)
0  dv ≥  ∫ ξ(v) M2(z,Qu,θ,t)

0  dv  
 
Since ξ(v)  is a lebesgue integrable function which implies  

M(z, Qu, θ, kt) ≥   M(z, Qu, θ, t) 
 
we have               Qu = z  
 
Hence                   STu = z = Qu. 
 
Hence (Q, ST)  is weak compatible, therefore, we have  

QSTu = STQu 
 
Thus                     Qz = STz. 
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Putting x = x2n and  y = z in 3.1(c) we get 

∫ ξ(v)
 F�M

2(Px2n,Qz,θ,kt),M2(ABx2n,STz,θ,t),M2(Px2n,ABx2n,θ,t)
M2(Qz,STz,θ,t),M2(Px2n,STz,θ,t),M2(ABx2n,Qz,θ,t) 

�

0  dv > 1 
 
Taking n → ∞  and using 3.1(ii) we get 

∫ ξ(v)
 F� M2(z,Qz,θ,kt),,M2(z,z,θ,t)

M2(Qz,STz,θ,t),,M2(z,Qz,θ,t)
�

0  dv > 1  
 

∫ ξ(v) M2(z,Qz,θ,kt)
0  dv ≥  ∫ ξ(v) M2(z,Qz,θ,t)

0  dv    
 
Since ξ(v)  is a lebesgue integrable function and hence  

M(z, Qz, θ, kt) ≥ M(z, Qz, θ, t) 
 
we get                  Qz = z.  
 
Putting x = x2n  and y = Tz  in 3.1(c) we get 

∫ ξ(v)
 F�M

2(Px2n,QTz,θ ,kt),M2(Px2n,ABx2n,θ,t)
M2(QTz,STTz,θ,t),M2(ABx2n,QTz,θ,t) 

�

0  dv > 1  
 
As  QT = TQ and  ST = TS we have 

QTz = TQz = Tz 
 
And                      ST(Tz)  = T(STz) = TQz = Tz.  
 
Taking  n → ∞  we get 

∫ ξ(v)
 F�M

2(z,Tz ,θ,kt),,M2(z,z,θ,t)
M2(Tz,Tz,θ,t),M2(z,Tz,θ,t)

�

0  dv > 1 
 

∫ ξ(v) M2(z,Tz,θ ,kt)
0  dv ≥  ∫ ξ(v) M2(z,Tz ,θ,t)

0  dv  
 
Since ξ(v)  is a lebesgue integrable function therefore 

M(z, Tz , θ, kt) ≥  M(z, Tz, θ , t) 
 
We have               Tz = z  
 
Now                      STz = Tz = z   implies  Sz = z. 
 
Hence                   Sz = Tz = Qz = z                               3.1(v) 
 
Combining 3.1(iv) and 3.1(v) we have 

Az = Bz = Pz = Sz = Tz = Qz = z 
 
Hence z is the common fixed point of A, B, S, T, P and Q. 
 
Uniqueness: Let u be another common fixed point of A, B, S, T, P and Q. Then  

Au = Bu = Su = Tu = Pu = Qu = u 
 
Putting  x = u  and  y = z in 3.1(c) then we get 

∫ ξ(v)
 F�M

2(Pu,Qz,θ,kt),,M2(Pu,ABu,θ,t)
M2(Qz,STz,θ,t),M2(ABu,Qz,θ,t)

�

0  dv > 1  
 
Taking   limit both side then we get 

∫ ξ(v)
 F� M2(u,z,θ,kt),(u,u,θ,t)

M2(z,z,θ,t),M2(u,z,θ,t) 
�

0  dv > 1  
 

∫ ξ(v) M2(u,z,θ,kt)
0  dv ≥ ∫ ξ(v)M2(u,z,θ,t)

0  dv    
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Since ξ(v)  is a lebesgue integrable function so we have  

M(u, z,θ, kt) ≥  M(u, z, θ, t) 
 
We get                 z = u.  
 
That is z   is a unique common fixed point of A, B, S, T, P and Q in X. 
 
Remark 3.1: If we take ξ(v) = 1  then we get Theorem 3.1. 
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