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ABSTRACT 
In this paper we study coc-open sets which used to introduce some concepts namely coc-disconnected, coc-totally 
disconnected spaces, coc*-continuous, Inversely coc (coc*, coc**) totally disconnected and coc-light functions. Some 
facts, Examples and propositions have been given to support our work.    
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1-INTRODACTION 
 
In [5] S.AlGHour  and  S.Samarah introduced the concept coc-open sets in topological spaces and in [3]  a space X is 
said to be totally disconnected if for every pair of distinct points a, b ЄX has a disconnection A∪B to X such that a є A 
and b є B and the author in[6] introduced a concept namely light mapping  (= A surjective mapping f:X→Y is called 
light mapping if for every  y ∈ Y, f-1(y) is totally disconnected set) we used the concept coc-open set to define some 
types of spaces and functions like coc-disconnected, coc-totally disconnected spaces  and coc-light, coc*-continuous, 
Inversely coc (coc*, coc**) totally disconnected and coc-homeomorphism functions. Throw our work X is mean a 
topological space. 
 
Definition (1),  [5]: Asub set A of a space (X, Ʈ) is called co -compact open set (briefly coc-open) if for every x∈A, 
there exists an open set U⊆X and a compact subset K such that x∈U-K⊆A. The complement of coc-open subset is 
called coc-closed. 
 
Remarks 1:  

1. The set of all coc-open sets forms a topology on X denoted by ƮK[5]  
2. Every open set is coc-open set but the converse may be not true in general as in the following: 

 
Example 1: (R, Ʈind), then Q and QC are coc-open sets which they not open, where Ʈ ind is the indiscrete topology. 
 
Definition 2, [2]: Let f  be a function from a space (X, Ʈ) into an space (Y,Ʈ), then f is said to be coc-continuous 
function if the inverse image of every open set U in Y is coc-open in X. 
 
Clearly, every continuous function is coc-continuous function but the converse may be not true. 
 
Example 2: Let f: (R, Ʈind) → (R, ƮD) such that f(x) = x for each  𝑥 ∈ 𝑅  
 
Since any subset of (R, ƮD) is open. 
 
If {1} ∈ ƮD , f-1({1})={1} is not open in (R, Ʈind), since the only open sets in (R, Ʈind) are ∅  and R. 
 
Now if we take A = {1}  
 
For each x ∈ A ∃ just 1∈A such that 1∈R-(R, {1}) = {1}⊆A={1} clearly R-{1} is compact in (R, Ʈ ind). So f-1(A) = A is 
coc-open set.  
 
Therefore f is coc-continuous but not continuous. 
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Definition 3 [1]: A space X is said to be coc-compact if every coc-open cover of X has finite sub cover. 
 
Remark: Every coc-compact space is compact. 
 
Example 3: (R, 𝜏ind) is compact but not coc-compact 
 
Since the space is compact  
 
To prove its not coc-compact. 
 
Let {{x}}∈R be coc –open  cover to R, Where {x} is coc-open set for each x ∈ X,  there exists th only open set R which 
contain x and R-{x} is compact subset of R such that x∈{x}=R-(R-{x})⊆{x}. 
 
But we cannot reduce this cover to a finite sub cover. Since if we remove one coc-open set {x0} so the remind coc-open 
cover is cover R-{x0}.which is not finite sub cover to R. 
 
So (R, 𝜏ind) is not coc-compact space.  
 
Definition 4[2]:A space X is said to be coc-hausdorff space if for each x≠y in X there exist two distinct points an coc-
open sets U, V such that x∈U, y∈V. 
 
Remark 2, [2]: It is clear that every hausdorff space is coc-hausdorff space. But the converse is not true in general as in 
the following. 
 
Example 2-4: Let (R, Ʈind) be indiscrete space. 
Then (R, Ʈ ind) is not T2-space, but (R, Ʈ ind) is coc T2-space, since for each x, y∈ R with x≠y we have {x} and {y} are 
disjoint coc-open sets containing x and y respectively.  
 
Definitions 5: Let f:X→Y be function of a space X into a space Y then: 

i: f is called an coc-closed function if f(A) is an coc-closed set in Y for every closed set A in X [2]. 
ii f is called an coc*-closed function if f(A) is an closed set in Y for every coc-closed set A in X. 
iii f is called an coc**-closed function if f(A) is an coc-closed set in Y for every coc-closed set A in X [2]. 

 
Definition 6 [2]: Let X and Y be spaces and let f be a function from X into Y then f is said to be coc-homeomorphism 
if: 

1. f is bijective. 
2. f is coc-continuous. 
3. f is coc-closed (coc-open). 

It is clear that every homeomorphism is an coc-homeomorphism. 
 
Example 5: 𝐼R: (R, Ʈind) →(R, ƮD) where IR be the identity function .Then IR is bijective, coc-open and coc-continuous. 
 
So it is coc-homeomorphism but not homeomorphism since if it is not continuous. 
 
Definition 7: Let (X, Ʈ) be a space and let A, B be nonempty coc -open sets on X, then A∪B is said to be coc-
disconnection to X if and only if A∪B=X and A∩B=ф. 
 
Definition 8: A space X is said to be coc-disconnected if there is coc-disconnection A∪B to X. 
 
So a space X is coc-connected if it is not coc-disconnected.      
 
Example 6: (R, ƮD) is coc-disconnected space. 
 
Since R=Q∪QC, Q∩QC=ф where Q and QC are coc-open sets.  
 
Clearly the space is also disconnected. 
 
Remark 3: If the set is both coc-open and coc-closed, then we say that its coc-clopen as in discrete space. 
 
Lemma 1: A space X is said to be coc-disconnected if it has nonempty proper subset which is coc-clopen set. 
 
Proof:  Let A be a nonempty proper subset of X which is coc-clopen. 
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To prove X is coc-disconnected. let B=Ac, then B is nonempty (since A is proper subset of X) moreover, A∪B = X and 
A∩B = ф. 
 
Since A is coc-clopen that is, A is coc-closed so B is coc-open but A is coc-open 
 
So X is coc-disconnected. 
 
Conversely: 
 
Let X is coc-disconnected. Then there exist nonempty subsets A and B are coc-open sets in X such that A∩B= ∅, 
A∪B=X. Since B is coc-open in X ⟹ BC is coc-closed in X but A∩B=∅,  so BC=A (A, B are nonempty sets) ⟹A is 
coc-clopen in X. So B is similarly. 
 
Then A and B are coc-clopen sets.   
 
Definition 9: A space X is said to be coc-totally disconnected if for every pair of distinct points a, b ∈X has coc-
disconnection A∪B to X such that a ∈ A and b ∈ B. 
 
Example 7: (R, ƮD) is coc-totally disconnected. 
 
let R be the set of all real number with discrete space, then for every two distinct points s, n we have {s}, R-{s} are two 
coc-open sets containing s, n respectively.  
 
Remark 4: Every coc-totally disconnected is coc-disconnected but the converse may be not true in general. 
 
Example 8: Let X = (m, n)∪(r, s) such that m<n<r<s, m, n, r, s distint point in R (the set of all real numbers). Let Ʈ be 
topological space define to X. 
 
But X = (m, n)∪(r, s), (m, n)∩(r, s) = ф, so (m, n)∪(r, s) is coc-disconnection to X. 
 
Then X is coc-disconnected but X may be not coc-totally disconnected. 
  
Proposition 1: Let X be a space and let Y⊆ X if X is coc-totally disconnected, then Y is also coc-totally disconnected 
space. 
 
Proof:  Let m, n are different points in Y but Y⊆X, then m, n Є X, which is coc-totally disconnected, then there exists 
coc-disconnection M∪N to X such that m є M and nє N, so m є M∩Y and n є N∩Y.  
 
But (M∩Y)∪(N∩Y) = (M∪N)∩Y=X∩Y=Y 
       (M∩Y)∩ (N∩Y) = (M∩N) ∩ Y=ф ∩ Y=ф. 
 
Then there exists coc-disconnection M∪N to Y, such that M∩Y ≠ ф and N∩Y ≠ ф are coc-open sets in Y. 
 
Then Y is also coc-totally disconnected sub space.  
 
Now we introduce the following definition: 
 
Definition 10:A function f: X→Y is said to be coc*-continuous if the inverse image of coc-open set in Y is open set in 
X. 
 
Proposition 2: Let f: X→Y be bijective coc*-continuous function, a space Y is coc-compact if X is compact space. 
 
Proof: Let {U𝛼}α∈Ω be a coc-open cover to Y then f-1{U𝛼}α∈Ω  be an open cover to X (since f is coc*-continuous 
function). 
 
But Y⊆⋃ U𝛼α∈Ω  ⟹X=f-1(Y) ⊆ f-1(⋃ U𝛼α∈Ω ) =  f-1 {U𝛼} 
 
Proposition 3: Every coc-compact sub set of coc-T2 space is coc-closed. 
 
Proposition 4: Let f: X→Y be coc*- continuous function where X and Y are spaces. 
 
If X is coc-compact and Y is coc- T2 space then f is coc-closed. 
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Proof: Let F be Closed Set in X which coc-compact Then X is Compact (by remark 2) 
 
So F compact, but f is coc*-continuous. Then f (F) is coc-compact in Y, Which coc-T2 then by (proposition (3)) 
 
f(F) is coc-closed set in Y.  
 
Then f is coc –closed function.  
 
Proposition 5: Let f: X→Y be continuous function where X and Y are spaces. 
 
If X is coc-compact and Y is T2 space then f is coc*-closed. 
 
Proof: Since F is coc-closed set in X which is X is coc-compact so by proposition (every coc-closed subset of coc-
compact is coc-compact)  
 
Then F is coc-compact in X (by remark 2) ⟹ F is compact in X  
 
But f is continuous then f(F) is compact in Y by proposition(the continuous image of compact set is also compact) 
 
But Y is T2-space then by proposition: (every compact subset of T2 space is closed).  
 
Then f(F) is closed in Y.  
 
Therefore f is coc*-closed function. 
 
Proposition 6: Let f: X→Y be coc**- continuous function where X and Y are spaces. 
 
If X is coc-compact and Y is coc- T2 space then f is coc**-closed. 
 
Proof: Since F is coc-closed set in X which is X is coc-compact so by proposition (every coc-closed subset of coc-
compact is coc-compact)  
 
Then F is coc-compact in X  
 
But f is coc**-continuous then f(F) is compact in Y by proposition(the coc**-continuous image of compact set is coc-
compact) 
 
But Y is coc-T2 space then by proposition: (every coc-compact subset of coc-T2 space is coc-closed)  
 
Then f(F) is coc-closed in Y  
 
Therefore f is coc*-closed function. 
 
Definition 11: A surjective function f: X→Y is said to be coc-totally disconnected function if and only if for every coc-
totally disconnected G⊆X, f(G) is coc-totally disconnected in Y. 
 
Remark 5: The coc-continuous image of coc-totally disconnected set not necessary coc-totally disconnected set for 
example: 
 
Example 9: Let X = {a, b, c} where ƮD is discrete topology to X. 
 
And Y = {p, q} where Ʈind is indiscrete topology to Y. 
 
A coc-continuous f: X→Y define the following: 
 
 f(a)=f(b) =p, f(c)=q 
 
Note that f is coc-continuous and X is coc-totally disconnected but y is indiscrete space which is not coc-totally 
disconnected.  
 
Remark 6: Every totally disconnected is coc-totally disconnected but the converse may be not true in general: 
 
Example 10: Let (R, Ʈind) is coc-totally but not totally disconnected. 
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To prove it is coc-totally disconnected. 
 
If x, y ∈ Q ⊆ R with x ≠ 𝑦, there exist q ∈ QC such that x<q<y then U={r ∈ R: r < q} and V={r ∈ R: r ≥ q} so U∪V =R, 
U∩V=∅, we claim U is coc-open set in R, since there exist only R open in R with x∈ R and U1={r ∈ R: r < x} so U1∪V 
is compact in R. 
⟹ x∈R-(U1∪V) ⊆ U!!!!   
 
Proposition 7: Let X and Y be spaces and let f: X→Y be bijective and coc-open function. 
 
If X be totally disconnected, then Y is coc-totally disconnected.  
 
Proof: Let y1 and y2 Є Y with y1≠y2, but f is surjective function, then there exist only two points  x1,x2Є X such that 
f(x1)=y1,f(x2)=y2 , also X is totally disconnected  
 
Then there exists disconnection G∪H to X such that x1єG and x2єH, f is coc-homeomorphism. Where G and H are two 
open sets. 
 
Then f(G) and f(H)are coc-open sets in Y and f(G)∪f(H)=f(G∪H)=f(X)=Y, but f is bijective function,  
f(G)∩f(H) = f(G∩H) = f(ф)=ф such that y1єf(G), y2єf(H) 
 
Then f(G)∪f(H) is coc-disconnection to Y.  
 
That mean Y is coc-totally disconnected. 
 
Corollary 1: Let X and Y are spaces and let f: X→Y be coc-homeomorphism. 
 
If X be totally disconnected, then Y is coc-totally disconnected.  
 
Proposition 8: Let X and Y are spaces and let f: X→Y be coc-homeomorphism. 
 
If X be coc-totally disconnected, then Y is also coc-totally disconnected.  
 
Proof: Let y1 and y2 Є Y with y1≠y2, but f is surjective function, then there exist only two points  x1, x2Є X such that 
f(x1) = y1, f(x2) = y2, also X is coc-totally disconnected  
 
Then there exists coc-disconnection G∪H to X such that x1єG and x2єH, f is coc-homeomorphism.so G and H are coc-
open sets in X. 
 
Then f(G) and f(H) are coc-open sets in Y and f(G)∪f(H) = f(G∪H) = f(X)=Y, but f is bijective function, 
f(G)∩f(H) = f(G∩H) = f(ф) = ф such that y1єf(G), y2єf(H) 
 
Then f(G)∪f(H) is coc-disconnection to Y.  
 
That mean Y is coc-totally disconnected 
 
Definition 12: f: X→Y is said to be coc*-open if f(A) is open in Y whenever A is coc-open in X. 
 
Proposition 9: Let f: X→Y be coc*-open function and bijective, if X is coc-totally disconnected then Y is totally 
disconnected. 
 
Proof: Let y1, y2 ∈Y with y1ǂ y2 but f is bijective function, then there exist only two point x1, x2∈X such that f(x1)=y1, 
f(x2)=y2. 
 
Also X is coc-totally disconnected, then there exist coc-disconnected G∪H to X such that x1∈G and x2∈H.f is coc*-
open function, then f(G) and f(H)are open in Y. f(G)∪ f(H)=f(G∪H)=f(X)=Y 
 
But f is bijective function, f(G)∩ f(H) = f(G∩H) = f(∅) = ∅ 
 
Such that y1∈f(G)and y2∈f(H) then f(G)∪f(H) is disconnected to Y. 
 
That mean Y is totally disconnected.  
 
Now we introduce the following definitions: 
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Definition 13: A surjective function f: (X, Ʈ)→(Y, σ) is said to be inversely coc -totally disconnected mapping if and 
only if for every totally disconnected set G in Y, f-1(G) is coc-totally disconnected set in X. 
 
Definition 14: A surjective function f: (X, Ʈ)→(Y, σ) is said to be inversely coc* -totally disconnected mapping if and 
only if for every coc- totally disconnected set G in Y, f-1(G) is totally disconnected set in X. 
 
Definition 15: Asurjective function f: (X, Ʈ)→(Y, σ) is said to be inversely coc** -totally disconnected mapping if and 
only if for every coc-totally disconnected set G in Y, f-1(G) is coc-totally disconnected set in X. 
 
Propositions 10:  

1. Every coc*-totally disconnected is coc-totally disconnected. 
2. Every coc**-totally disconnected is coc-totally disconnected. 
3. Every coc*-totally disconnected is coc**-totally disconnected. 

 
Proof: 

1. Let G is totally disconnected in Y⟹ G is coc-totally disconnected (remark 6). 
f-1(G) is totally disconnected by (definition 14) ⟹ f-1(G) is coc-totally disconnected (by remark 6). 
So f is coc-totally disconnected. 

2. Let G is totally disconnected in Y⟹ G is coc-totally disconnected (remark 6). 
f-1(G) is coc-totally disconnected by (definition 15). 
So f is coc-totally disconnected 

3. Let G is coc-totally disconnected in Y. 
f-1(G) is totally disconnected by (definition 14) ⟹ f-1(G) is coc-totally disconnected (by remark 6). 
So f is coc**-totally disconnected. 

 
Definition 16: Let X and Y be two spaces. A surjictive function f: (X, 𝜏) → (Y, σ) is said to be coc-light function if 
f(y) is coc-totally disconnected for each y∈Y. 
 
Example 11: Let f:(R, Ʈ D)→(R, ƮU) be coc-continuous define the following: f(x)=5 for each x∈R so fis coc-light 
mapping.  
 
Remarks 7: 

1. Every light mapping is coc-light mapping but the converse may be not true in general for example: 
2. Every coc-homeomorphism is coc-light mapping but the converse may be not true in general as in example7: 

 
Theorem 1: Let f: X→Y and g:Y→K are surjictive functions then a surjictive function h: X→K such that h=g∘f is 
light function if f is inversely coc*-totally disconnected and g is coc-light function. 
 
Proof: To prove h is light function, let k∈K but g is coc-light function, then g-1(k) is coc-totally disconnected. 
 
Also f is inversely coc*-totally disconnected mapping, then f-1(g-1(k)) is totally disconnected. 
 
But f-1(g-1(k))=(g∘f)-1(k)=h-1(k). 
 
So h is light mapping. 
 
Theorem 2: Let f: X→Y and g: Y→K are surjictive functions then a surjictive function h:X→K such that h=g∘f is coc-
light function if f is inversely coc-totally disconnected and g is light function. 
 
Proof: To prove h is coc-light function, let k ∈ K but g is light function, then g-1(k) is totally disconnected 
 
Also f is inversely coc-totally disconnected function, then f-1(g-1(k)) is coc-totally disconnected. 
 
But f-1(g-1(k))=(g∘f)-1(k)=h-1(k). 
 
So h is coc-light mapping. 
 
Theorem 3: Let f: X→Y and g:Y→K are surjictive functions then a surjictive function h:X→K such that h=g∘f is coc-
light function if f is inversely coc**-totally disconnected and g is coc-light function. 
 
Proof: To prove h is coc-light mapping, let k ∈ K but g is coc-light function, then g-1(k) is inversely coc**-totally 
disconnected. 
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Also f is inversely coc-totally disconnected function, then f-1(g-1(k)) is coc-totally disconnected. 
 
But f-1(g-1(k)) = (g∘f)-1(k) = h-1(k). So h is coc-light mapping. 
 
Theorem (4):  Let h:X→Y be surjective mapping, where h=g∘f, f: X→K and g:K→Y are mappings  then: 

1. If g bijective mapping and f is coc-light mapping, then h is coc-light mapping. 
2. If h coc-light mapping and g is injective mapping, then f is coc-light mapping. 
3. If h is coc-light mapping and f is surjective coc**-totally disconnected then g is coc-light mapping again. 

 
Proof: 

1. let y∊ Y  
 

As g is bijective mapping then there exists one and only one point k ∈ K such that g(k) = y. 
 

But h-1(y) = (g∘f)-1(y) = f-1(g-1(y)) = f-1(g-1(g(k))) = f-1(k). 
 

But f is coc-light mapping, then f-1(k) is coc-totally disconnected in X. 
 

but h-1(y) = f-1(k), then h-1(y)is coc-totally disconnected. 
 

So we get h is coc-light mapping. 
 

2. let k∈K, then g(k)∈Y but h is coc-light mapping, then h-1(g(k)) is coc-totally disconnected in X . 
Let h-1(g(k)) = (g∘f)-1(g(k)) = f-1(g-1(g(k))) = f-1(k) (since g is injective mapping). 

 
So f-1(k) is coc-totally disconnected in X, then f is coc-light mapping. 

 
3. let y є Y  

 
But h is coc-light mapping, so h-1(y) is coc-totally disconnected in X. 

 
But f is coc-totally disconnected, then f(h-1(y)) is coc-totally disconnected set in K. 

 
But f(h-1(y)) = f((g∘f)-1(y)) = f(f-1(g-1(y))) = g-1(y) (since f is surjictive mapping). 

 
So g-1(y) is coc-totally disconnected in K. 

 
Then g is coc-light mapping. 

 
Theorem 5: Let f: X1→Y1 and g: X2→Y2 be surjective mappings so a mapping f×g: X1×X2→Y1×Y2 is coc-light 
mapping if f is coc-homeomorphism and g is coc-light mapping.  
 
Proof: Let (y1, y2) ∈Y1×Y2  
 
So (f×g)-1(y1, y2) = (f-1×g-1) (y1, y2) = f-1(y1) ×g-1(y2) 
 
But f is homeomorphism, so there exist x1ЄX1 such that f-1(y1) = f-1(f(x1)) = x1 
I mean (f×g)-1(y1, y2) = x1×g-1(y2) 
 
But g is coc-light mapping, so f2

-1(y2) is coc-totally disconnected. 
 
But {x1}×g-1(y2) is homeomorphic to g-1(y2), then (f×g)-1(y1,y2)is coc-totally disconnected. So f×g is coc-light mapping. 
 
Lemma 2: Let f: X1→Y1 and g: X2→Y2 are surjictive mappings. 
 
If a mapping f×g: X1×X2→Y1×Y2 is coc-light mapping then: 

1. If f is coc-homeomorphism, then g is coc-light mapping.  
2. If g is coc-homeomorphism, then f is coc-light mapping. 

 
Proof:  

1. let (y1,y2)∈Y1⨯Y2, whereas (f×g)-1(y1,y2)=(f-1×g-1)(y1,y2)=f-1(y1) ×g-1(y2). 
 

But f is coc-homeomorphism, then there exists x1 in X1 such that f-1(y1) = x1 
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(f×g)-1(y1, y2) = {x1}×g-1(y2). But f×g is coc-light mapping, then (f×g)-1(y1, y2) is coc-totally disconnected 

 
So we get {x1}×g-1(y2) is coc-totally disconnected. 

 
But {x1}×g-1(y2) is coc-homeomorphic to g-1(y2), then g-1(y2) is coc-totally disconnected. Hence g is coc- light 
mapping.   

 
2. let (y1, y2)∈Y1×Y2. 

     (f×g)-1(y1, y2)=f-1(y1) ×g-1(y2). 
 

But g is coc-homeomorphism, then there exists x2єX such that g-1(y2) = x2  
 

So (f×g)-1(y1, y2) = f-1(y1) ×{x2} 
But f×g is coc-light mapping, then (f×g)-1(y1, y2) is coc-totally disconnected. 

 
So we get f-1×{x2} is coc-totally disconnected. 

 
But f-1(y1) × {x2} is coc-homeomorphic to f-1(y1), then f-1(y1) is coc-totally disconnected. So f is coc-light 
mapping. 
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