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ABSTRACT 
This paper is devoted to introduce new concepts so called m-k(sc)-space several various theorems about these 
concepts are proved, Further properties are studied as well as the relationships between these concepts with another 
types of m-k(sc)-space are investigated. 
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1. INTRODUCTION 
 
It is known that there is no relation between m-compact space and mx-closed sets, so this motivates the author [1] to 
introduce the concept of m-kc-spaces; these are the spaces in which every m-compact subset is mx-closed. 
 
In 2015 the authors [1] introduce new concepts namely m-k2 (= A non empty set X with an m-space is said to be m-k2 if 
mx-cl(A) is m-compact in X). The aim of this paper is to continuous study m-kc-spaces.  
 
2- PRELIMINARIES 
 
The basic definitions that needed in this work are recalled. In this work ,a space (X, mx) means an m-space where a sub 
family mx of the power P(X) set, such that Φ and X belong to mx [2] each member of mx is said to be mx-open set and 
the complement of an mx-open set is said to be mx-closed set, we denoted the (X, mx) by m-space, for a subset A of an 
m-space X, the mx-interior of A and the mx-closure of A defined as follows: 

𝑚𝑥 − 𝑐𝑙(𝐴) =∩ {𝐹:𝐴 ⊆ 𝐹,𝑋 − 𝐹 𝑖𝑠 𝑚𝑥 − 𝑜𝑝𝑒𝑛} 
𝑚𝑥 − 𝑖𝑛𝑡(𝐴) = ⋃{𝑈:𝑈 ⊆ 𝐴,𝑈 ∈ 𝑚𝑿} 

 
Note that 𝑚𝑥 − 𝑐𝑙(𝐴)(𝑚𝑥 − 𝑖𝑛𝑡(𝐴)) is not necessarily mx-closed (mx-open) 
 
The m-space need not to be a topological space .And the union and the intersection of any two mx-open sets are not 
necessarily to be mx-open, as the following: 
 
Example: Let X={1, 2, 3}, mx={Φ,X{2,3},{1,2},{1},{3}}. 
 
Then (X, mx) is m-space but it is not topological space, since {2,3}∩{1,2}={2} ∉ mx and {1}⋃{3}={1,3}∉mx. The 
authors [2] introduce the following definitions: 
 
An m-space mx on a nonempty set x is said to have the property (γ) if the intersection of finite number of mx-open sets 
is mx-open. An m-space mx on a nonempty set X is said to have the property (β) if the union of any family of subsets of 
mx belong to mx, A nonempty set X with m-space is said to be m-compact if every cover of X with mx-open sets has a 
finite sub cover(by [3]). An empty set X with m-space mx is said to be 𝑚 − 𝑙𝑖𝑛𝑑𝑒𝑙𝑜𝑓  if every cover of X with mx-open 
sets has countable sub cover (by [5]). Every m-compact set is 𝑚 − 𝑙𝑖𝑛𝑑𝑒𝑙𝑜𝑓  but the convers is not true. For example: 
 
The m-discrete space (X,𝜏𝐷), where X is infinite countable set, and τD=discrete m-space, then (X, 𝜏𝐷) is m-lindelof, 
which is not m-compact. The aim of the paper is to continuous study m-kc-space. 
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3-On m-k(sc)-spaces 
 
In this work we introduce a generalizations of m-kc-spaces namely m-k(sc)-space, where m-kc-space is the space in 
which every m-compact set is closed (by [1]). 
 
Also we study the properties and facts about this concept and the relationships between these concepts. 
 
First we introduce the following definitions: 
 
Definition 1: A subset A of m-space X is said to be mx-semi closed of X if 𝑚𝑥 − 𝑖𝑛𝑡(𝑚𝑥 − 𝑐𝑙(𝐴))  ⊆ 𝐴. 
 
 
For example: (𝑅, 𝜏𝑐𝑜𝑓) is 𝑚 − 𝑘(𝑠𝑐)-space, where X is co countable space. 
 
Lemma 1: A sub set A is mx- semi closed if and only if  there is am mx-closed set G, such that 𝑚𝑥 − 𝑖𝑛𝑡(𝐺) ⊆ 𝐴 ⊆ 𝐺, 
wherever an m-space, whenever X has the property β. 
 
Proof: suppose that A is mx-semi closed, to prove that there is am mx-closed set G, such that 𝑚𝑥 − 𝑖𝑛𝑡(𝐺) ⊆ 𝐴 ⊆
𝐺, 𝑠𝑖𝑛𝑐𝑒 𝐴 𝑖𝑠 𝑚𝑥 − 𝑠𝑒𝑚𝑖 𝑐𝑙𝑜𝑠𝑒𝑑 (𝑖. 𝑒)𝑚𝑥 − 𝑖𝑛𝑡�𝑚𝑥 − 𝑐𝑙(𝐴)� ⊆ 𝐴, 𝑝𝑢𝑡 𝐺 = 𝑚𝑥 − 𝑐𝑙(𝐴) → 𝑚𝑥 − 𝑖𝑛𝑡(𝐺) ⊂
𝐴… (1) 𝑎𝑛𝑑 𝐴 ⊂ 𝑚𝑥 − 𝑐𝑙(𝐴) … (2), 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑔𝑒𝑡 𝑡ℎ𝑎𝑡 𝐴 ⊂ 𝐺, 𝑡ℎ𝑒𝑛 𝑏𝑦 (1) 𝑎𝑛𝑑 (2) 𝑤𝑒 𝑔𝑒𝑡 𝑡ℎ𝑎𝑡 𝑚𝑥 − 𝑖𝑛𝑡(𝐺) ⊆
𝐴 ⊆ 𝑚𝑥 − 𝑐𝑙(𝐴) = 𝐺 ⇒ 𝑚𝑥 − 𝑖𝑛𝑡(𝐺) ⊆ 𝐴 ⊆ 𝐺, 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦: 𝑠𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡 𝑚𝑥 − 𝑖𝑛𝑡(𝐺) ⊆ 𝐴 ⊆ 𝐺,  𝑡𝑜 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 
𝐴 𝑖𝑠 𝑚𝑥 − 𝑠𝑒𝑚𝑖 𝑐𝑙𝑜𝑠𝑒𝑑, 𝑝𝑢𝑡 𝐺 = 𝑚𝑥 − 𝑐𝑙(𝐴) 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑔𝑒𝑡 𝑡ℎ𝑎𝑡 𝑚𝑥 − 𝑖𝑛𝑡�𝑚𝑥 − 𝑐𝑙(𝐴)� ⊆ 𝐴 ⊆ 𝑚𝑥 − 𝑐𝑙(𝐴). 
 
Definition 2: A sub set A of an m-space X is said to be mx-semi open set of x if 𝐴 ⊆ 𝑚𝑥 − 𝑐𝑙(𝑚𝑥 − 𝑖𝑛𝑡(𝐴)). 
 
Lemma 2: A sub set A is mx-semi open if and only if there is an mx-open set U, such that U⊆ 𝐴 ⊆mx-cl(U)), whenever 
X has the property β. 
 
Proof: suppose that A is mx-semi open , to prove that there is an mx-open set G, such that G ⊆ 𝐴 ⊆mx-cl(G), since A is 
mx-semi open (i.e) 𝐴 ⊆ 𝑚𝑥 − 𝑐𝑙(𝑚𝑥 − 𝑖𝑛𝑡(𝐴), 𝑝𝑢𝑡 𝐺 = 𝑚𝑥 − 𝑖𝑛𝑡(𝐴) ⟹ 𝐴 ⊂ 𝑚𝑥 − 𝑐𝑙(𝐺) … (1)𝑎𝑛𝑑 𝑚𝑥 −
𝑖𝑛𝑡(𝑎) ⊆ 𝐴… (2), 𝑡ℎ𝑒𝑛 𝑏𝑦 (1) 𝑎𝑛𝑑 (2) 𝑤𝑒 𝑔𝑒𝑡 𝑡ℎ𝑎𝑡 𝐺 ⊆ 𝐴 ⊆ 𝑚𝑥 − 𝑐𝑙(𝐺), 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦: 𝑔𝑖𝑣𝑒𝑛 𝐺 ⊆ 𝐴 ⊆ 𝑚𝑥 −
𝑐𝑙(𝐺), 𝑏𝑢𝑡 𝑚𝑥 − 𝑖𝑛𝑡(𝐴) 𝑖𝑠 𝑚𝑥 − 𝑜𝑝𝑒𝑛 �𝑏𝑦 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝛽)� 𝑎𝑛𝑑 𝑚𝑥 − 𝑖𝑛𝑡(𝐴) ⊆ 𝐴, 𝑖𝑓 𝑤𝑒 𝑝𝑢𝑡 𝐺 = 𝑚𝑥 − 𝑖𝑛𝑡(𝐴),
𝑡ℎ𝑒𝑛 𝑤𝑒 𝑔𝑒𝑡 𝑡ℎ𝑎𝑡 𝑚𝑥 − 𝑖𝑛𝑡(𝐴) ⊆ 𝐴 ⊆ 𝑚𝑥 − 𝑐𝑙�𝑚𝑥 − 𝑖𝑛𝑡(𝐴)�. 
 
Definition 3: Let (X, mx) be am m-space we say that (X, mx) is an m-k(sc)-space if every m-compact sub set of X is 
mx-semi-closed. For example: (R,𝜏𝐷), whenever 𝜏𝐷= m-discrete space. 
 
Remark 1: Every mx-open (mx-closed) set is mx-semi open (mx-semi closed) set, but the converse is not true. 
 
Since A⊆mx-cl(A)                                                                                                                                                             (1) 
(by definition of mx-closure set), but A is mx-open in X , so A= mx-int(A)                                                                     (2) 
 
Then by (1) and (2) we get that A⊆mx-int(A). 
 
Example 1: Let m-usual space (R, τu), then the set [0, 1) in R is mx-semi open (mx-semi closed), but not mx-open     
(mx-closed) set 
 
Remark 2: An m-kc-space is m-k(sc)-space but the converse may be not true for Example(2). Let R be the real line, N 
be a sub set of R and mx={U⊆ R /U=R or U∩N=Φ} 
 
The finite sub sets of (R, mx) which does not contain any members of N is m-compact and mx-semi closed but not mx-
closed  
 
Since if we take a sub set {1/2,1/3} it is mx-open of (R,mx) and it is m-compact, so ∃ F={1/2,3/4,1} is mx-closed of    
(R, mx), s.t {1/2,3/4}=mx-int({1/2,3/4,1})⊆{1/2,3/4}⊆{1/2,3/4,1}, but {1/2,3/4} is not mx-closed sub set of R. 
 
Definition 4: Anon empty set X with m-space mx is said to be mx-semi compact if every cover of X with mx-semi open 
sets has a finite sub cover  
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Proposition 1: m-semi compact is m- compact. but the converse may be not true. 
 
Proof: Since {𝑈𝛼}𝛼Є𝛾be an mx-open cover of X, so {𝑈𝛼}𝛼Є𝛾is mx- semi open cover to X, but X is mx-semi compact, 
so X=⋃ un

i=1 αi 
 
That is, X is m-compact  
 
Example 3: Let R be the real line, N be a sub set of That is of R 
𝑀𝑥 = {𝑈 ⊆ 𝑅:𝑈 = 𝑅 𝑜𝑟 𝑈 ∩ 𝑁 = 𝛷}, 𝑖𝑡 𝑖𝑠 𝑐𝑙𝑒𝑎𝑟 𝑡ℎ𝑎𝑡 (𝑅,𝑚𝑥) 𝑖𝑠 𝑎𝑛 𝑚− 𝑠𝑝𝑎𝑐𝑒 𝑝𝑢𝑡 𝑈𝑖 = 𝑁𝑐⋃{𝑖} = {𝑅 − 𝑁}⋃{𝑖} , 𝑖

= 1,2, … ,𝑈𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑥 −  𝑜𝑝𝑒𝑛 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑅, 𝑠𝑖𝑛𝑐𝑒 𝑖𝑓 𝑖 ∈ 𝑁 𝑠𝑖𝑛𝑐𝑒 𝑈𝑖 ∩ 𝑁 = {𝑖}, 𝑖 = 1,2, …  
 
Now to show that 
𝑈𝑖 𝑖𝑠 𝑚𝑥 − 𝑠𝑒𝑚𝑖 𝑜𝑝𝑒𝑛 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑅, 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑜𝑛𝑙𝑦 𝑚𝑥 − 𝑜𝑝𝑒𝑛 𝑜𝑓 𝑅 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑈𝑖 𝑖𝑠 𝑁𝑐 𝑎𝑛𝑑 𝑠𝑜 𝑁𝑐 ⊆
𝑈𝑖 = 𝑁𝑐⋃{𝑖} ⊆ 𝑚𝑥 − 𝑐𝑙(𝑁𝑐) = 𝑅, 𝑡ℎ𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑈𝑖 𝑖𝑠 𝑚𝑥 −  𝑠𝑒𝑚𝑖 𝑜𝑝𝑒𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1,2, … 
 
Hence the family{𝑈}𝑖=1∞  forms mx-semi open cover of R is ⋃ 𝑢𝑖∞

𝑖=1 =⋃ ({𝑅 − 𝑁}⋃{𝑖})∞
𝑖=1 =R 

 
But this cover can not reducible in to finite subcover, now if U is afinite subset of R which contains at least one point I 
of N, where i=1,2,3,… so U is not mx-open but it is mx-semi open, since mx-U-{i}⊆mx-U⊆cl(mx-U-{i}=R, then mx-U is 
not mx-semi open set, also it is not has finite subcover since if we remove a one element of the mx-semi open cover, 
then it will not cover to R therefore R is not mx-semi compact to show that R is m-compact , since the only mx-open set 
which is cover N is mx-U=R and so every mx-open cover to R  must be contains mx-U=R this means every mx- open 
cover to R, we can choose finite subfamily {R} cover to R, therefore R is m-compact . 
 
Remark 3: m-compact is m− 𝑙𝑖𝑛𝑑𝑒𝑙 𝑜𝑓, but the converse is not true. 
 
For example: the m− 𝑑𝑖𝑠𝑐𝑟𝑒𝑎𝑡 space (𝑍, 𝜏𝐷) be an m-lindelof, but not m-compact. 
 
Definition 5: let (X, mx) be an m- space we say that (X, mx) is an m−(𝑠𝑘)𝑠𝑐-space if every m-semi compact is mx- 
semi closed. 
 
Definition 6: let (X, mx) be an m-space we say that (X, mx) is an m-(𝑠𝑘)c-space if every m-semi compact is mx-closed, 
for example (R, 𝜏D), whenever𝜏𝐷= m-discrete space. 
 
Remark 4: m-kc-space is m-(sk)c-space. 
 
Since if A is be an m-semi compact to prove that A is mx-closed 
 
A is m-compact ((by mx-semi compact is m-compact)), but X is m-kc-space, then we get that A is mx- closed ((by every 
mx-compact is m-kc-space is mx-closed)). 
 
Remark 5: 𝑚 − 𝑘(𝑠𝑐) − 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 𝑚− (𝑠𝑘)𝑠𝑐 − 𝑠𝑝𝑎𝑐𝑒. 
 
Definition 7: A space X is said to be mx-T1-space if for every two distinct points x and y in X, ∃ two mx-open sets u 
and v s.t x∈u and 𝑦 ∈ vbut y∉ u and x∉v [1]. 
 
Definition 8: An m-space X is called m-semi k2-space or (m-sk2) if mx-semi cl(A) is m-compact, wherever A is m-
compact, where mx-semi cl(A)((= the intersection of all semi closed set which contain A)). 
 
Definition 9: A space X is said to be mx-semi T1(mx-sT1) if for every two distinct points x and y in X ,∃ two mx-semi 
open sets u and v s.t x∈u, but y∉u and y∈v, but x∉v. 
 
Example 4: the m-cofinite space (𝑅, 𝜏𝑐𝑜𝑓) is mx-sT1-space. 
 
*Every mx-T1-space is mx-sT1-space, but the converse is not true. 
 
For example (*): Let X = {1, 2, 3} and, let mx={Φ, X, {a}, {b}, {a, b}}, the semi open sets in X are Φ, X, {b, c},      
{a, c}, {a}, {b},{a, b}, it is clear that X is sT2, but not T2-space. 
 
Definition 10: Let (X, mx) be an m-space, then X is m-semi T2-space or (m-sT2) if for every two distinct points            
x, y∈ X, there are disjoint mx-semi open sets u and v s.t x∈u & y∈v, it is clear that m-sT2-space is m-ST1-space, but the 
converse is not true. 
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For example:(𝑋, 𝜏𝑐𝑜𝑓), where X is infinite set and 𝜏𝑐𝑜𝑓 is the m-cofinite space, 𝜏𝑐𝑜𝑓 = {U⊆X/ Uc is finite}⋃{Φ}. 
 
Lemma 3: Every m-T2-space is s-T2-space, but the converse is not true. For Example (*). 
 
Remark 6: Every m-k(sc)-space X is m-sT1-space. 
 
Since {x} is an m-compact in X which is a m-k(sc)-space so , {x} is mx-semi closed, there for X is m-ST1-space. 
 
Remark 7: m-sT1-space is not m-k(sc)-space, 
 
For example: The m-cofinite space (𝑅, 𝜏𝑐𝑜𝑓) is m-ST1-space, which is not a m-k(sc)-space, where𝜏𝑐𝑜𝑓 is m-cofinite 
space R it is definition by τcof={U⊆X/Uc is finite}⋃{Φ} 
 
Since (𝑅, 𝜏𝑐𝑜𝑓) is m-T1-space and every m-T1-space is m-sT1-space, but it is not m-𝑘(𝑠𝑐)-space, since(R,τcof) is m-
compact, also if we take (𝑄, 𝜏𝑐𝑜𝑓) is m-compact, but it is not mx-semi closed, because the only mx-closed set which 
contains Q is just R, but 𝑅 = 𝑖𝑛𝑡(𝑅)  ⊆ 𝑄 ⊆ 𝑅, so (Q, τcof) is not m-k(sc)-space. 
 
From remark (1) and (2) we get that: 
𝑚 − 𝑘(𝑠𝑐) is m-ST1-space 𝑖𝑓𝑓 {x} is mx-semi closed. 
 
Remark 8: Every m-k(sc)-space is m-sk2, Since if M is a m-compact subset of X, which 𝑖𝑠 𝑚 − 𝑘(𝑠𝑐) −space, thenM 
is a mx-semi closed in X, so M=mx-semi cl(M), therefore mx-semi cl(M) is m-compact in X, so X is a m-sk2-space. 
 
Proposition 2: Every mx-closed subset of m-compact space is m-compact [4]. 
 
Proposition 3: The m-continuous image of m-compact set is also m-compact [4]. 
 
Theorem 1: Every m-continuous function f from m-compact space X in to a m-kc-space Y is mx-semi closed function . 
 
Proof: Since if F is a mx-closed subset of X , which is m-compact space, then F is a m-compact in X, so f(F) is m-
compact in Y, which is m-kc-space, then f(F) is mx-closed subset in a space (( by theorem of [1]" every m-continuous 
function from m-compact space in to m-kc-space is m-closed function)), therefore f is mx-closed function , also f is     
mx-semi closed function ((since every mx-closed is mx-semi closed)). 
 
Lemma 4: If W is mx-semi closed in X, and Y is a subspace of X, then W∩Y is mx-semi closed in Y. 
 
Proof: Since W is mx-semi closed in X, then ∃ mx-closed set F of X, such that mx-𝑖𝑛𝑡(𝐹𝑖𝑛𝑋) ⊆ 𝑊 ⊆ 𝐹, 𝑠𝑜 𝑚𝑥 −
𝑖𝑛𝑡(𝐹𝑖𝑛𝑌) = 𝑚𝑥 − 𝑖𝑛𝑡(𝐹𝑖𝑛𝑋) ∩ 𝑌 ⊆ 𝑊 ∩ 𝑌 ⊆ 𝐹 ∩ 𝑌 ⊆ 𝐹 𝑖𝑛 𝑌, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟 𝑊 ∩ 𝑌 is mx-semi closed in Y. 
 
Proposition 4: Every subspace of m-k(sc)-space is m-k(sc)-space. 
 
Proof: Let Y be a subspace of m-m-k(sc)-space X and A be any m-compact subset of Y, then A is m-compact in X 
which is m-k(sc)-space, then A is mx-semi closed in X, but A∩Y=A, then A is mx-semi closed in Y, therefore Y is also 
m-k(sc)-space. 
 
Remark 9: The intersection of any family of mx-semi open set is not mx-semi open set. 
 
Example 5: X={1,2,3}, mx={Φ,X,{1,2},{2,3}} it is mx-semi open, let A ={1,2}& B={2,3}, then A∩B={2} ∉ mx, but 
{2} is not mx-open set 
 
Definition 11: An m-space mx on a nonempty set X is said to have the property (sβ) if the union of any family of       
mx-semi subsets of mx belong to mx. 
 
Theorem 2: An m-space X which has (sβ) property is mx-sT1-space 𝑖𝑓𝑓 every singleton set is mx-semi closed set. 
 
Proof: Suppose that X is mx –sT1-space, let x∈X T.P {x} is mx-semi closed subset of X. 
First {x}⊆mx-semi cl ({x}) by remark (*) 
(𝑖. 𝑒) T.P mx-semi cl ({x}) = {x}, now T.P mx-semi cl({x})⊆{x} 
 
Suppose not (𝑖. 𝑒) mx-semi cl({x})ȼ{x}, then Ǝ y ∈ mx-semi cl({x}), but y∉{x} s.t x҂y, since X is an m x-sT1-space 
(𝑖. 𝑒) 𝑈𝑥,𝑉𝑦 are mx-semi open subsets of X s.t x∈Ux&𝑦 ∈ 𝑉𝑦, this implies, then y∉cl(As) C! y is not semi 𝑎𝑙𝑑ℎ𝑟𝑒𝑎𝑛𝑡 
point, so mx-semi cl({x})⊆{x}…(**), then by (*) and (**) we get that mx-cl({x})={x}, then {x} is mx-semi closed 
subset of X. the converse direction suppose that for all x∈X, {x} is mx-semi closed in X T.P X is mx-sT1-space, 
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Let 𝑥,𝑦 ∈X s.t x≠y, then by hypothis {x}, {y} are mx-semi closed in X, X-{x} and X-{y} are mx-semi open subsets of 
X s.t x∈{x}, x∉X-{x} &y∉{x}, y∈X-{x}&x∉{y}, x∈X-{y}, then (X, mx) is mx-ST1-space. 
 
Definition 12: An m- space (𝑋, 𝜏) is said to be an m- locally kc-space if and only if each point has a neighborhood 
which is an m-kc-subspace. 
 
Proposition 5: Every m-T2-space is m-locally kc-space. 
 
Proof: Let X be an m-T2-space and 𝑥 ∈ 𝑋to show that x has a neighborhood, let 𝑁𝑥 be neighborhood to x and k be an 
m-compact subset of a subspace X is m-T2, and the property of a space being m- T2 is 𝑎 ℎ𝑒𝑟𝑒𝑑𝑖𝑡𝑟𝑎𝑟𝑦 property so N is 
an m-T2-subspace, which implies that k is 𝑚𝑥 − 𝑐𝑙𝑜𝑠𝑒𝑑 (since X has the property (β)), then X is m-locally kc-space. 
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