When m-Compact Sets Are m_x-Semi Closed ## *HAIDER JEBUR ALI*, MARWA MAKKI DAHHAM *Department of Mathematic, College of Science, Al-Mustansiriyauniversity. (Received On: 22-03-17; Revised & Accepted On: 20-04-17) #### **ABSTRACT** T his paper is devoted to introduce new concepts so called m-k(sc)-space several various theorems about these concepts are proved, Further properties are studied as well as the relationships between these concepts with another types of m-k(sc)-space are investigated. **Key words**: m_x -open set, m-compact, m-kc-space. #### 1. INTRODUCTION It is known that there is no relation between m-compact space and m_x -closed sets, so this motivates the author [1] to introduce the concept of m-kc-spaces; these are the spaces in which every m-compact subset is m_x -closed. In 2015 the authors [1] introduce new concepts namely m- k_2 (= A non empty set X with an m-space is said to be m- k_2 if m_x -cl(A) is m-compact in X). The aim of this paper is to continuous study m-kc-spaces. #### 2- PRELIMINARIES The basic definitions that needed in this work are recalled. In this work, a space (X, m_x) means an m-space where a sub family m_x of the power P(X) set, such that Φ and X belong to m_x [2] each member of m_x is said to be m_x -open set and the complement of an m_x -open set is said to be m_x -closed set, we denoted the (X, m_x) by m-space, for a subset A of an m-space X, the m_x -interior of A and the m_x -closure of A defined as follows: $$mx - cl(A) = \cap \{F: A \subseteq F, X - F \text{ is } mx - open\}$$ $mx - int(A) = \bigcup \{U: U \subseteq A, U \in mX\}$ Note that mx - cl(A)(mx - int(A)) is not necessarily m_x -closed $(m_x$ -open) The m-space need not to be a topological space . And the union and the intersection of any two m_x -open sets are not necessarily to be m_x -open, as the following: **Example:** Let $X=\{1, 2, 3\}$, $m_x=\{\Phi, X\{2,3\}, \{1,2\}, \{1\}, \{3\}\}$. Then (X, m_x) is m-space but it is not topological space, since $\{2\beta\{1,2\}=\{2\}\}$ $\notin m_x$ and $\{1\}\cup\{3\}=\{1,3\}\notin m_x$. The authors [2] introduce the following definitions: An m-space m_x on a nonempty set x is said to have the property (γ) if the intersection of finite number of m_x -open sets is m_x -open. An m-space m_x on a nonempty set X is said to have the property (β) if the union of any family of subsets of m_x belong to m_x , A nonempty set X with m-space is said to be m-compact if every cover of X with m_x -open sets has a finite sub cover(by [3]). An empty set X with m-space m_x is said to be m-lindelof if every cover of X with m_x -open sets has countable sub cover (by [5]). Every m-compact set is m-lindelof but the convers is not true. For example: The m-discrete space (X, τ_D) , where X is infinite countable set, and τ_D =discrete m-space, then (X, τ_D) is m-lindelof, which is not m-compact. The aim of the paper is to continuous study m-kc-space. Corresponding Author: *Haider Jebur Ali* *Department of Mathematic, College of Science, Al-Mustansiriyauniversity. #### 3-On m-k(sc)-spaces In this work we introduce a generalizations of m-kc-spaces namely m-k(sc)-space, where m-kc-space is the space in which every m-compact set is closed (by [1]). Also we study the properties and facts about this concept and the relationships between these concepts. First we introduce the following definitions: **Definition 1:** A subset A of m-space X is said to be m_x semi closed of X if $mx - int(mx - cl(A)) \subseteq A$. For example: (R, τ_{cof}) is m - k(sc)-space, where X is co countable space. **Lemma 1:** A sub set A is m_x - semi closed if and only if there is am m_x -closed set G, such that $mx - int(G) \subseteq A \subseteq G$, wherever an m-space, whenever X has the property β . **Proof:** suppose that A is m_x -semi closed, to prove that there is am m_x -closed set G, such that $mx - int(G) \subseteq A \subseteq G$, since A is mx - semi closed $(i.e)mx - int(mx - cl(A)) \subseteq A$, $put G = mx - cl(A) \rightarrow mx - int(G) \subseteq A \dots (1)$ and $A \subseteq mx - cl(A) \dots (2)$, then we get that $A \subseteq G$, then by (1) and (2) we get that $mx - int(G) \subseteq A \subseteq mx - cl(A) = G$ and $mx - int(G) \subseteq A \subseteq G$, to prove that $mx - int(G) \subseteq A \subseteq G$, then we get that $mx - int(mx - cl(A)) \subseteq A \subseteq mx - cl(A)$. **Definition 2:** A sub set A of an m-space X is said to be m_x -semi open set of x if $A \subseteq mx - cl(mx - int(A))$. **Lemma 2:** A sub set A is m_x -semi open if and only if there is an m_x -open set U, such that $U \subseteq A \subseteq m_x.cl(U)$, whenever X has the property β . **Proof:** suppose that A is m_x -semi open, to prove that there is an m_x -open set G, such that $G \subseteq A \subseteq m_x$ -cl(G), since A is m_x -semi open (i.e) $A \subseteq mx - cl(mx - int(A))$, $put G = mx - int(A) \Rightarrow A \subseteq mx - cl(G) \dots (1)$ and $mx - int(A) \subseteq A \dots (2)$, then by (1) and (2) we get that $G \subseteq A \subseteq mx - cl(G)$, conversely: given $G \subseteq A \subseteq mx - cl(G)$, but mx - int(A) is mx - open (by the property(β)) and $mx - int(A) \subseteq A$, if we put G = mx - int(A), then we get that $mx - int(A) \subseteq A \subseteq mx - cl(mx - int(A))$. **Definition 3:** Let (X, m_x) be am m-space we say that (X, m_x) is an m-k(sc)-space if every m-compact sub set of X is m_x -semi-closed. For example: (R, τ_D) , whenever τ_D = m-discrete space. Remark 1: Every m_x-open (m_x-closed) set is m_x-semi open (m_x-semi closed) set, but the converse is not true. Since $$A \subseteq m_x$$ -cl(A) (1) (by definition of m_x -closure set), but A is m_x -open in X , so $A = m_x$ -int(A) (2) Then by (1) and (2) we get that $A \subseteq m_x$ -int(A). **Example 1:** Let m-usual space (R, τ_u) , then the set [0, 1) in R is m_x -semi open $(m_x$ -semi closed), but not m_x -open $(m_x$ -closed) set **Remark 2:** An m-kc-space is m-k(sc)-space but the converse may be not true for Example(2). Let R be the real line, N be a sub set of R and $m_x = \{U \subseteq R / U = R \text{ or } U \cap N = \Phi\}$ The finite sub sets of (R, m_x) which does not contain any members of N is m-compact and m_x -semi closed but not m_x -closed Since if we take a sub set $\{1/2,1/3\}$ it is m_x -open of (R,m_x) and it is m-compact, so $\exists F=\{1/2,3/4,1\}$ is m_x -closed of (R,m_x) , s.t $\{1/2,3/4\}=m_x$ -int($\{1/2,3/4,1\}$) $\subseteq \{1/2,3/4,1\}$, but $\{1/2,3/4\}$ is not m_x -closed sub set of R. **Definition 4:** Anon empty set X with m-space m_x is said to be m_x -semi compact if every cover of X with m_x -semi open sets has a finite sub cover **Proposition 1:** m-semi compact is m- compact. but the converse may be not true. **Proof:** Since $\{U\alpha\}\alpha\in\gamma$ be an m_x -open cover of X, so $\{U\alpha\}\alpha\in\gamma$ is m_x - semi open cover to X, but X is m_x -semi compact, so $X=\bigcup_{i=1}^n u_{\alpha i}$ That is, X is m-compact **Example 3**: Let R be the real line, N be a sub set of That is of R ``` Mx = \{U \subseteq R: U = R \text{ or } U \cap N = \Phi\}, \text{ it is clear that } (R, mx) \text{ is an } m - \text{space put } Ui = Nc \cup \{i\} = \{R - N\} \cup \{i\}, i = 1, 2, ..., Ui \text{ is not } mx - \text{ open subset of } R, \text{since } if i \in N \text{ since } Ui \cap N = \{i\}, i = 1, 2, ... ``` Now to show that *Ui* is mx - semi open subset of R, since the only mx - open of R which is contained in Ui is Nc and so $Nc \subseteq Ui = Nc \cup \{i\} \subseteq mx - cl(Nc) = R$, this implies that Ui is mx - semi open for each i = 1, 2, ... Hence the family $\{U\}_{i=1}^{\infty}$ forms m_x semi open cover of R is $\bigcup_{i=1}^{\infty} ui = \bigcup_{i=1}^{\infty} (\{R-N\} \cup \{i\}) = R$ But this cover can not reducible in to finite subcover, now if U is afinite subset of R which contains at least one point I of N, where i=1,2,3,... so U is not m_x -open but it is m_x -semi open, since m_x -U- $\{i\}\subseteq m_x$ -U= $\{i\}\subseteq m_x$ -U= $\{i\}=R$, then m_x -U is not m_x -semi open set, also it is not has finite subcover since if we remove a one element of the m_x -semi open cover, then it will not cover to R therefore R is not m_x -semi compact to show that R is m-compact, since the only m_x -open set which is cover N is m_x -U=R and so every m_x -open cover to R must be contains m_x -U=R this means every m_x - open cover to R, we can choose finite subfamily $\{R\}$ cover to R, therefore R is m-compact. **Remark 3:** m-compact is $m-lindel\ of$, but the converse is not true. For example: the m- discreat space (Z, τ_D) be an m-lindelof, but not m-compact. **Definition 5:** let (X, m_x) be an m-space we say that (X, m_x) is an m-(sk)sc-space if every m-semi compact is m_x -semi closed. **Definition 6:** let (X, m_x) be an m-space we say that (X, m_x) is an m-(sk)c-space if every m-semi compact is m_x -closed, for example (R, τ_D) , whenever τ_D = m-discrete space. **Remark 4:** m-kc-space is m-(sk)c-space. Since if A is be an m-semi compact to prove that A is m_x-closed A is m-compact ((by m_x -semi compact is m-compact)), but X is m-kc-space, then we get that A is m_x - closed ((by every m_x -compact is m-kc-space is m_x -closed)). **Remark 5**: m - k(sc) - space is m - (sk)sc - space. **Definition 7:** A space X is said to be m_x - T_1 -space if for every two distinct points x and y in X, \exists two m_x -open sets u and v s.t x \in u and $y \in$ vbut y \notin u and x \notin v [1]. **Definition 8:** An m-space X is called m-semi k_2 -space or $(m-sk_2)$ if m_x -semi cl(A) is m-compact, wherever A is m-compact, where m_x -semi cl(A) ((= the intersection of all semi closed set which contain A)). **Definition 9:** A space X is said to be m_x -semi $T_1(m_x$ -s $T_1)$ if for every two distinct points x and y in X , \exists two m_x -semi open sets u and v s.t x \in u, but y \notin u and y \in v, but x \notin v. **Example 4:** the m-cofinite space (R, τ_{cof}) is m_x -s T_1 -space. *Every m_x - T_1 -space is m_x - sT_1 -space, but the converse is not true. For example (*): Let $X = \{1, 2, 3\}$ and, let $m_x = \{\Phi, X, \{a\}, \{b\}, \{a, b\}\}\$, the semi open sets in X are Φ , X, $\{b, c\}$, $\{a, c\}$, $\{a\}$, $\{b\}$, $\{a, b\}$, it is clear that X is sT_2 , but not T_2 -space. **Definition 10:** Let (X, m_x) be an m-space, then X is m-semi T_2 -space or $(m-sT_2)$ if for every two distinct points $x, y \in X$, there are disjoint m_x -semi open sets u and v s.t $x \in u$ & $y \in v$, it is clear that $m-sT_2$ -space is $m-ST_1$ -space, but the converse is not true. **For example:** (X, τ_{cof}) , where X is infinite set and τ_{cof} is the m-cofinite space, $\tau_{cof} = \{U \subseteq X/U^c \text{ is finite}\} \cup \{\Phi\}$. **Lemma 3:** Every m-T₂-space is s-T₂-space, but the converse is not true. For Example (*). **Remark 6:** Every m-k(sc)-space X is m-s T_1 -space. Since $\{x\}$ is an m-compact in X which is a m-k(sc)-space so, $\{x\}$ is m_x -semi closed, there for X is m-ST₁-space. **Remark 7:** m-sT₁-space is not m-k(sc)-space, For example: The m-cofinite space (R, τ_{cof}) is m-ST₁-space, which is not a m-k(sc)-space, where τ_{cof} is m-cofinite space R it is definition by $\tau_{cof} = \{U \subseteq X/U^c \text{ is finite}\} \cup \{\Phi\}$ Since $(R, \tau cof)$ is m-T₁-space and every m-T₁-space is m-sT₁-space, but it is not m-k(sc)-space, since (R, τ_{cof}) is m-compact, also if we take (Q, τ_{cof}) is m-compact, but it is not m_x-semi closed, because the only m_x-closed set which contains Q is just R, but $R = int(R) \subseteq Q \subseteq R$, so (Q, τ_{cof}) is not m-k(sc)-space. From remark (1) and (2) we get that: m - k(sc) is m-ST₁-space $iff \{x\}$ is m_x-semi closed. **Remark 8:** Every m-k(sc)-space is m-sk₂, Since if M is a m-compact subset of X, which is m - k(sc) -space, then M is a m_x-semi closed in X, so M=m_x-semi cl(M), therefore m_x-semi cl(M) is m-compact in X, so X is a m-sk₂-space. **Proposition 2**: Every m_x-closed subset of m-compact space is m-compact [4]. **Proposition 3:** The m-continuous image of m-compact set is also m-compact [4]. **Theorem 1:** Every m-continuous function f from m-compact space X in to a m-kc-space Y is m_x -semi closed function. **Proof:** Since if F is a m_x -closed subset of X , which is m-compact space, then F is a m-compact in X, so f(F) is m-compact in Y, which is m-kc-space, then f(F) is m_x -closed subset in a space ((by theorem of [1]" every m-continuous function from m-compact space in to m-kc-space is m-closed function)), therefore f is m_x -closed function , also f is m_x -semi closed function ((since every m_x -closed is m_x -semi closed)). **Lemma 4:** If W is m_x -semi closed in X, and Y is a subspace of X, then $W \cap Y$ is m_x -semi closed in Y. **Proof:** Since W is m_x -semi closed in X, then $\exists m_x$ -closed set F of X, such that m_x -int(FinX) $\subseteq W \subseteq F$, so mx – int(FinY) = mx – int(FinX) $\cap Y \subseteq W \cap Y \subseteq F \cap Y \subseteq F$ in Y, therefor $W \cap Y$ is m_x -semi closed in Y. **Proposition 4:** Every subspace of m-k(sc)-space is m-k(sc)-space. **Proof:** Let Y be a subspace of m-m-k(sc)-space X and A be any m-compact subset of Y, then A is m-compact in X which is m-k(sc)-space, then A is m_x -semi closed in X, but $A \cap Y = A$, then A is m_x -semi closed in Y, therefore Y is also m-k(sc)-space. **Remark 9:** The intersection of any family of m_x -semi open set is not m_x -semi open set. Example 5: $X=\{1,2,3\}$, $m_x=\{\Phi,X,\{1,2\},\{2,3\}\}$ it is m_x -semi open, let $A=\{1,2\}$ & $B=\{2,3\}$, then $A\cap B=\{2\} \notin m_x$, but $\{2\}$ is not m_x -open set **Definition 11:** An m-space m_x on a nonempty set X is said to have the property $(s\beta)$ if the union of any family of m_x -semi subsets of m_x belong to m_x . **Theorem 2:** An m-space X which has $(s\beta)$ property is m_x -s T_1 -space *if f* every singleton set is m_x -semi closed set. **Proof:** Suppose that X is m_x - sT_1 -space, let $x \in X$ T.P $\{x\}$ is m_x -semi closed subset of X. First $\{x\} \subseteq m_x$ -semi cl $(\{x\})$ by remark (*) (i.e) T.P m_x -semi cl $(\{x\}) = \{x\}$, now T.P m_x -semi cl $(\{x\}) \subseteq \{x\}$ Suppose not (i.e) m_x -semi $cl(\{x\}) \not \in \{x\}$, then $\exists y \in m_x$ -semi $cl(\{x\})$, but $y \notin \{x\}$ s.t $\not = x$, since X is an m_x -s T_1 -space (i.e) Ux, Vy are m_x -semi open subsets of X s.t $x \in U_x \& y \in Vy$, this implies, then $y \notin cl(A^s)$ C! y is not semi aldhreant point, so m_x -semi $cl(\{x\}) \subseteq \{x\}$...(**), then by (*) and (**) we get that m_x - $cl(\{x\}) = \{x\}$, then $\{x\}$ is m_x -semi closed subset of X. the converse direction suppose that for all $x \in X$, $\{x\}$ is m_x -semi closed in X T. P X is m_x -s T_1 -space, Let $x, y \in X$ s.t $x \neq y$, then by hypothis $\{x\}$, $\{y\}$ are m_x -semi closed in X, $X-\{x\}$ and $X-\{y\}$ are m_x -semi open subsets of X s.t $x \in \{x\}$, $x \notin X-\{x\}$ & $y \notin \{x\}$, $y \in X-\{x\}$ & $x \notin \{y\}$, $x \in X-\{y\}$, then (X, m_x) is m_x-ST_1 -space. **Definition 12:** An m- space (X, τ) is said to be an m- locally kc-space if and only if each point has a neighborhood which is an m-kc-subspace. **Proposition 5:** Every m-T₂-space is m-locally kc-space. **Proof:** Let X be an m-T₂-space and $x \in X$ to show that x has a neighborhood, let N_x be neighborhood to x and k be an m-compact subset of a subspace X is m-T₂, and the property of a space being m-T₂ is a hereditrary property so N is an m-T₂-subspace, which implies that k is mx - closed (since X has the property (β)), then X is m-locally kc-space. ### REFERENCES - 1. Huda A.S., "On some Types of kc-spaces And Lc-spaces of sci. Al-mustansiriyahuniversity (2015). - 2. Maki H., "[1] Huda A.S., "On generalizing semi open sets and preopen sets" in Report for meeting on Topological spaces Theory and it is Applications Yastsushirocollge of Technology (24-25 August 1996), 13-18. - 3. Saleh M., "On θ -closed sets and some forms of continuity, Archirum mathematicum (Brno), 40, (2004), 383.393. - 4. Ali H.J., "Strong and weak forms of m-lindelof spaces", Editorial board of Zenco J. for pure and Appl. Sciences, Salahaddin university Hawler-Iraqi Kurdistan Region, special issue-Vol.22, (2010),60-64. - 5. Muthana H.A. and Ali H.J., "Some Types of m-compact functions" 4(2014). - 6. Al-Meklafi S.A., "On new types of separation axioms, thesis submitted to the college of education, Al-mustansiriyah university (2002) - 7. Carpintero C., Rosas E. and Salas M., "Minimal structure and separations properties", international journal of pure and applied mathematics, vol.34, No.4, (2007), 473-48. Source of support: Nil, Conflict of interest: None Declared. [Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]