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ABSTRACT
In this paper, we introduced and studied rgwa-open sets in topological space and obtain some of their properties. Also

we introduce rgwe-interior, rgwe-closure, rgwe- neighbourhood and rgwe-limit points in topological spaces.
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1] INTRODUCTION

Regular open sets have been introduced and investigated by stone [6]. P.Sundaram and and M.Sheik John [8] defined
and studied w-closed sets in topological spaces. S.S Benchalli and R.S.Wali [12] introduced and studied rw-closed sets.

N.Jasted [7] introduced and studied a-sets. S.S.Benchalli et al. [11] studied wa-closed sets in topological spaces.
S.S.Benchalli et al. [10] introduced gwa-closed sets. and P.G.Patil et al. [9] introduced g*wa-closed set. A. Vadivel
and Vairamanickam [2] introduced rga-closed sets and rga-open sets in topological spaces. In this paper we define

rgwo-open sets, its properties and rgwa-interior, rgwo.-closure, rgwa- neighbourhood and rgwa-limit points and obtain
some of its basic properties.

2] PRELIMINARIES

Throughout the paper X and Y denote the topological space (X,) and (Y,) respectively. And on which no sepsration
axioms are assumed unless otherwise explicitly stated. For a subset A of space X, cl(A), int(A), A°, and rcl(A) denote
the closure of A, Interior of A, complement of A and regular closure of A in X respectively.

Definition 2.1: A subset A of a space X is called
1) aregular open set [6] if A =int(cl(A)) and a regular closed set if A=cl(int(A)).
2) aa-openset[7] if A< int(cl(intA))) and a-closed set of cl (int(cl(A)) € A.
3) aweakely closed set (briefly, w-closed) [1] if cl(A) €U whenever A €U & U is semi open in X.
4) aweakely a-closed set (briefly, wa-closed) [11] if acl(A)SU whenever A cU & U is w- open in X.
5) aregular a-open set (2) if there is a regular open set U 3 USAC acl(U)

The intersection of all regular closed (resp. a-closed, wa - closed and regular a-closed) subsets of space X containing A
is called regular closure (Resp. a-closure, wa- closure and regular a- closure) of A and denoted by rcl(A) (resp. acl
(A), wacl(A) and racl(A)).
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Definition 2.2: A subset A of a space X is called

1) generalized a-closed set (briefly ga-closed) [4], if acl(A) SU whenever ACU and U is a-open in X.

2) generalized semi-pre closed set (briefly gsp-closed) [5] if spcl(A) €U whenever A €U and U is open in X.

3) generalized weak a-closed (briefly gwa-closed) set [10] if acl(A) SU whenever ACU & U is wa- open in X.

4) generalized star weakly a-closed set (briefly g*wa-closed) [9] if cl(A) €U whenever ACU & U is wa- open in
X.

5) regular generalized a-closed set (briefly rga-closed) [2] if acl(A) €U whenever A €U & U is regular a-open
in X.

The complements of the above mentioned closed sets are respective open sets.

3. rgwa-closed sets in topological spaces.

Definition 3.1 [13]: A subset A of a space X is called regular generalized weakly a-closed set (briefly rgwa-closed) if
racl (A) €U whenever ACU & U is weak o-open set in X.

Results 3.2 from [13]:
1) Every closed set is rgwa-closed set in X.

2) Every regular closed set is rgwa-closed set in X.

3) Every weak- closed set is rgwa-closed set in X.

4) Every a-closed, go-closed, rga-closed, gwa-closed and g*wa-closed sets are rgwa-closed sets in X.
5) Every rw-closed, ra-closed, rs-closed and wa-closed sets are rgwa-closed sets in X.

6) Every rgwo-closed set is gp-closed set in X.

7) The union of two rgwa-closed sets of X is rgwa-closed set in X.

8) The intersection of two rgwa-closed sets of X is need not be rgwa-closed set.

4. rgwo-open sets and their basic properties

In this section we introduce and study rgwa.-open sets in topological spaces and obtain some of their properties.

Definition 4.1: A subset A of X is called regular generalized weakly-o. open set (rgwa-open set) in X if A® is rgwa-

closed in X. We denote the family of all rgwa-open sets in X by RGWaO(X).
Theorem 4.2: If a subset A of a space X is w-open then it is rgwo.-open set, but not conversely.

Proof: Let A be a w-open set in a space X. Then A® is w-closed set. By result 3.2(3) A° is rgwa-closed. Therefore A is

rgwa-open set in X. The converse of this theorem need not be true as seen from the following example.

Example 4.3: Let X={a, b, c, d, e} with topology t={X,¢,{a},{d}.{e}.{a,d}.{a,e}.{d,e}, {a,d,e}}. Then the set A={c}
is rgwa-open set but not w-open set in X.

Corollary 4.4: Every open set is rgwa-open set but not conversely.

Proof: Follows from definition and theorem 4.2.

Corollary 4.5: Every regular open set is rgwao.-open set but not conversely.

Proof: Follows from definition and theorem 4.2.

Theorem 4.6: If a subset A of a space X is rgwa-open, then it is gf3-open set in X.

Proof: Let A be rgwa-open set in X. Then A®is rgwa-closed set in X. By result 3.2(6) A® is gp-closed set in X.

Therefore A is gB-open set in space X. The converse of this theorem need not be true as seen from the following
example.
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Example 4.7: In example 4.3 the subset {b, c} of X is gB-open set but not rgwa-open set.
Theorem 4.8: If a subset A of X is ga-open set then it is rgwo-open set in X, but not conversely.

Proof: Let A be a go-open set in a space X. Then Ais ga-closed set. By result 3.2(4) A® is rgwa-closed. Therefore A

is rgwa-open set in X. The converse of this theorem need not be true as seen from the following example.
Example 4.9: In example 4.3 the subset A={a, b} of X is rgwa-0pen set but not go-open set in X.
Theorem 4.10: If a subset A of X is gwa-open set then it is rgwa-open set in X, but not conversely.

Proof: Let A be a gwa-open set in a space X. Then A®is gwa-closed set. By result 3.2 (4) A is rgwa-closed.

Therefore A is rgwa-open set in X. The converse of this theorem need not be true as seen from the following example.
Example 4.11: In example 4.3 the sub set A= {b} of X is rgwa-open set but not gwa-open set in X.

Corollary 4.12: If asubset A of X is g*wa-open set then it is rgwa-open set in X, but not conversely.

Proof: it follows from the theorem 4.10 and the implication gwa = g*wa. set.

Theorem 4.13: If A and B are rgwa-open sets in a space X. Then ANB is also rgwa-open set in X.

Proof: If A and B are rgwa-open sets in a space X. Then A®and B®are rgwa-closed sets in a space X. By result 3.2(7).

A°UB® s also rgwa-closed set in X. That is A°U B® = (ANB)® is a rgwa.-closed set in X. Therefore ANB is rgwa.-open
setin X.

Remark 4.14: The union of two rgwa-open sets in X is generally not a rgwa-open in X.

Example 4.15: In example 4.3 the sets A={a,b} and B={c} are rgwa-open sets in X, But AUB={a,b,c} is not argwa-
open set in X.

Theorem 4.16: If a set A is rgwa-open in a space X, then G=X, whenever G is wo-open and int(A)UA® CG.

Proof: Suppose that A is rgwa-open in X. Let G be weak o-open and int(A)UA® CG. This implies G° C (int(A)UA%°
=(int(A))° NA. That is G° C(int(A))°-A°. Thus G® Ccl(A)°-A°, since (int(A))°=cl(A°). Now G°is also weak a-open and

A° is rgwa-closed then by theorem it follows that G°=¢. Hence G=X. The converse of this theorem need not be true as
seen from the following example.

Example 4.17: In Example 4.3 RGWaoO(X)={X, ¢, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d}, {a, e}, {b, d}, {d, e},
{c, d}{c. e}, {a, b, d}, {a, b, e}, {a, ¢, d}, {a, ¢, e}, {a, d, e}, {b, ¢, d}, {b, d, e}, {c, d, e}, {a, b, ¢, d}, {a, b, d, e},

{a, b, c, e}{a, c, d, e},{b, c, d, e}}. And WaO(X) = {X, ¢, {a}, {b}.{d}, {e}, {b, d}, {a, d}, {a, b}, {a, c}, {a, e},
{b, e}, {d, e}, {a, b, c}, {a, b, d}, {a, b, e}, {b, d, e}, {a d, e}, {a b, d, e}, {a c, d, e}}. Take A={a, c, d}. then A is

not rgwa-open. However int(A)UA® ={a, d}u{b, e}= {a, b, d. e}. so for some weak o-open G, we have
int(A)U(A)°={a, b, d, e} Z G gives G=X, but A is not rgwa.-open.

Theorem 4.18: A subset A of (X, ) is rgwa-open set if and only if U C raint(A) whenever U is wa.-closed and UCA.
Proof: Assume that A is rgwa-open in X and U is wa.-closed set of (X,) such that USA. Then X-A is rgwa.-closed set

in (X,). Also X-A c X-U and X-U is wa-open set of (X,). This implies that racl(X-A)SX-U. But rocl(X-A) = X-
ra.int(A). Thus X-raint(A)=X-U. So U € raint(A).
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Conversely, Suppose U < raint(A) whenever U is wo.-closed and UCA, To prove that A is rgwa-open in X. Let G be
wa-open set of (X,) s.t. X-A € G. Then X-G € A. Now X-G is wa-closed set containing A. So X-G C raint(A),

X-raint(A)SG, But racl(X-A)= X- raint(A). Thus racl(X-A) € G. i.e X-A is rgwa-closed set. Hence A is rgwa-open
set.

Theorem 4.19: If A is wa-open and rgwo.-closed set then A is ra-closed.

Proof: Since ACA and A is wa-open and rgwa-closed we have racl(A) € A. Thus racl(A)=A. Hence A is ra-closed
set of (X, 7).

Theorem 4.20: If raint(A) € B €A and A is rgwa-open set in X, then B is rgwa-open set in X.

Proof: If raint(A) € B cA, then X-A € X-B € X-raint(A)=racl(X-A). Since (X-A) is rgwa-closed set, then by

theorem 3.15 [13] X-B is also rgwa-closed set set in X. Therfore B is rgwa-open set in X.
Theorem 4.21: If A is rgwa-closed set in X, then racl(A)-A is rgwa-open set in X.

Proof: Let A be rgwa-closed set in X, Let F be an wa-open s.t. F € racl(A)-A. Since A is rgwa-closed, then by
theorem 3.12[13] racl(A)-A does not contain any non empty wa-closed set in X. Thus F=¢. Then F < raint(racl(A)-
A). Therefore by theorem 4.18 racl(A)-A is rgwa-open set in X.

Theorem 4.22: If A and B be subsets of space (X, ). If B rgwa-open and raint(B) € A, then AaB is rgwa.-open set in
X.

Proof: Let B is rgwa-open in X. raint(B) € A and raint(B) < B is always true, then raint(B) € AaB. also raint(B) <

AaB SB and B is rgwa-open set then by theorem 4.20 AaB is also rgwo -open set in X.
5. rgwa-Closure and rgwa-Interior
In this section the notation of rgwa-Closure and rgwa-Interior is defined and some of its basic properties are studied.

Definition 5.1: For a subset A of X, rgwa-Closure of A is denoted by rgwacl(A) and defined as rgwacl(A)= N{G:
ACG, G is rgwa-closed in X} or '{G: ACG, GeE RGWaC(X)}.

Theorem 5.2: If A and B are subsets of a space X then
i) rgwacl(X)=X, rgwocl(p)=q.
i) AC rgwacl(A).
iii) If B is any rgwa-closed set containing A, then rgwo.cl(A)SB.
iv) If A B then rgwocl(A)Srgwacl(B).
v) rgwocl(A)= rgwacl(rgwacl(A)).
vi) rgwocl(AUB)= rgwacl(A) Urgwacl(B).

Proof: i) By definition of rgwa-Closure, X is Only rgwa-closed set containing X, therefore rgwacl(X) = Intersection
of all the rgwa-closed set containing X=N{X}=X, therefore rgwacl(X) = X. Again By the Definition of rgwa-Closure
rgwacl(¢) = Intersection of all rgwo-closed set containing ¢ = ¢N any rgwa-closed set containing ¢ = ¢. Therefore
rgwacl(o) = ¢.

ii) By definition of rgwa-Closure of A it is obious that A< rgwacl(A).
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iii) Let B be any rgwa-closed set containing A, Since rgwacl(A) is the intersection of all rgwo-closed set containing A,
rgwocl(A) is contained in every rgwa-closed set containing A. Hence in particular rgwacl(A)<SB.

iv) Let A and B be subsets of X, such that ASB by definition of rgwa-Closure, rgwacl(B)= N{F: BEFe RGWaC(X)}.
If BcFe RGWaC(X), then rgwacl(B)<F. Since AcB, AcBSFe RGWaC(X), we have rgwacl(A)<SF, rgwacl(A)<
N{F:BSFe RGWaC(X)} = rgwacl(B). Therefore rgwacl(A)Srgwacl(B).

v) Let A be any subset of X by definition of rgwa-Closure, rgwacl(A)= N{F: AcFe RGWauaC(X)}. Therefore
AcFe RGWaC(X) then rgwacl(A)SF, Since F is rgwa-closed set containing rgwacl(A) by (iii) rgwacl(rgwacl(A))=
N{ F:ACSFERGWa.C(X)}= rgwacl(A). therefore rgwacl(rgwacl(A))= rgwacl(A)

vi) Let A and B be subsets of X, clearly AcCAUB, BCAUB from (iv) rgwacl(A)Srgwacl(AUB),
rgwacl(B)Srgwacl(AUB). Hence rgwacl(A)U rgwacl(B)S rgwoacl(AUB). Now we have to prove rgwacl(AUB)CS
rgwacl(A)U rgwacl(B).

Suppose x¢ rgwacl(A) U rgwacl(B) then 3 rgwa-closed set A; and B; with AcA;, BcB; & x¢A;UB; . We have
AUBc AU B;and AU By is the rgwa-closed set such that xg A;U By, Thus x¢ rgwacl(AUB) hence rgwacl(AUB) <
rgwocl(A)U rgwacl(B) (2). From (1) and (2) we have rgwacl(AUB)= rgwacl(A)U rgwacl(B).

Theorem 5.3: If AcX is rgwa-closed set then rgwacl(A)=A.

Proof: Let A be rgwa-closed subset of X. We know that Acrgwacl(A) - (1) . Also AcA and A is rgwa-closed set by
theorem 5.2 (iii) rgwocl (A) cA- (2). Hence rgwacl(A)=A.

The converse of the above need not be true as seen from the following example.

Example 5.4: Let X={a, b, c, d, e} with topology = {X, ¢, {a}, {d}, {e}, {a, d}, {a, e} {d, €}, {a, d, e} } here
A={a, d} and rgwacl (A)={a, d}=A but A is not rgwa.-closed set.

Theorem 5.5: If A and B are subsets of Space X then rgwacl (AnB) < rgwacl (A) n rgwacl (B).

Proof: Let A and B be subsets of X, clearly AnB cA, AnB <B, by theorem 5.2 (iv)
rgwocl (AnB)c rgwacl(A), rgwacl(AnB) < rgwacl(B), hence rgwacl(AnB) < rgwacl(A) N rgwacl(B).

Remark 5.6: In general rgwacl(A) N rgwacl(B)€ rgwocl(ANB).
Theorem 5.7: For an xe X, xe rgwacl(X) if and only if AnV = ¢ for every rgwa-open set V containing x.

Proof: Let xe rgwacl(A). To prove AnV = ¢ for every rgwo-open set V containing x by contradiction. Suppose
3 rgwa-open set V containing x s.t. ANV = ¢ then AcX-V, X-V is rgwa-closed set, rgwacl(A)SX-V. This Shows that

x¢ rgwacl(A) which is contradiction. Hence ANV = ¢ for every rgwa-open set V containing X.

Conversely: Let AnV = ¢ for every rgwa-open set V containing x. To prove xergwacl(A). We prove the result by
contradiction. Suppose x¢ rgwacl(A) then there exist a rgwa-closed subset F containing A s.t. x¢F. Then xeX-F is

rgwa-open. Also, (X-F) nA= ¢ which is contradiction. Hence xergwacl(A).

Theorem 5.8: If A is subset of space X, then
i) rgwacl(A)c cl (A)
ii) rgwacl(A)c racl (A)
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Proof: Let A be subset of space X by definition of closure cl (A)=n{F: AcFeC(X)} If AcFeC(X) then
AcFeRGWaC(X) because every closed set is rgwa-closed that is rgwacl(A) < F, therefore rgwacl(A) <

N{F:AcFeC(x)} Hence rgwacl(A) < cl (A).

i) let A be subset of space X by definition of ra-closure rocl(A)= c~{F:AcFeraC(x)}, If AcFeraC(x) then
AcFergwaC(x) because every ro-closed set is rgwo-closed that is rgwacl(A) cF therefore rgwocl(A) <
N{F:AcFeraC(x)}= racl(A). Hence rgwacl(A)c rocl(A).

Remark 5.9: Containment relation in the above theorem 5.8 may be proper as seen from following example.

Example 5.10: Let X={a, b, ¢, d, e,} with topology 7= {X, ¢, {a}, {d}.{e}.{a, d}, {a, e} {d, e}, {a d, e},
A={a, b, d, e,} cl(A)={X}, rgwacl(A)={a, b, d, e} & racl(A)={X}. It follows that rgwacl(A) < ClI (A) and rgwacl(A)

c racl(A).
Theorem 5.11: If A is subset of space X then gspcl(A) < rgwacl(A) where gspcl (A)= c{F: AcFe GSPC (X)}.

Proof: Let A be subset of X by definition of rgwa-closure rgwocl(A)= ~{F: AcFe RGWaC(X)}. If AcFe
RGWaC(X) then AcFe GSPC(X), because every rgwa-closed is gsp-closed i.e. gspcl (A) cF. therefore gspcl (A)
cn{F: AcFe RGWaC(X)}= rgwacl(A).

Hence gspcl(A) < rgwacl(A).

Theorem 5.12: rgwa-Closure is a kuratowski-Closure operator on a space X.

Proof: Let A and B be the subsets of space X. i) rgwacl(x) =X, rgwacl(¢p) = ¢ ii) Ac rgwacl(A) iii) rgwacl(A)

=rgwacl(rgwacl (A))  iv) rgwocl (AUB) = rgwacl (A) U rgwacl (B) by theorem 5.2 Hence, rgwa-Closure is a
Kuratowski-Closure operator on a space X.

Definition 5.13: For a subset A of X, rgwa-Interior of A is denoted by rgwaint (A) and defined as rgwaint
(A)=U{G:GcA and G is rgwa-open in X} or U {G: GcA and G eRGWaO(X)}.

i.e. rgwa-int(A) is the union of all rgwa-open set contained in A.

Theorem 5.14: Let A and B be subset of space x then
i) rgwaint (X)=X, rgwaint (¢)=¢
i) rgwaint(A)cA
iii) If B is any rgwa-open set contained in A then B < rgwaint(A)
iv) If AcB then rgwaint(A) < rgwaint(B)
V) rgwaint(A)= rgwaint (rgwaint(A)).
vi) rgwoint(AnB) = rgwaint(A) N rgwaint(B)

Proof: i) and ii) by definition of rgwa-Interior of A, it is obvious.
iii) Let B be any rgwa-open set such that BCA. Let xeB, B is an rgwa-open set contained in A,
x is an element of rgwa-Interior of A i.e. X € rgwaint (A). Hence B rgwaint (A).

iv), v) vi) similar proof as theorem 5.2 and definition of rgwa-Interior.
Theorem 5.15: If a subset A of X is rgwa-open then rgwaint (A) = A.

Proof: Let A be rgwa-open subset of X. We know that rgwaint (A) < A —(1) Also A is rgwa.-open set contained in A
from theorem 5.13 iii) Ac rgwaint (A) —(2) hence from (1) and (2) rgwaint (A)=A.
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Theorem 5.16: If A and B are subsets of space X then rgwaint (A) U rgwaint (B) < rgwaint (AUB)

Proof: We know that Ac (AUB) and Bc (AUB) we have theorem 5.13 iv) rgwaint (A) < rgwaint (AUB) and
rgwaint (B) < rgwaint (AUB). This implies that rgwaint (A) U rgwaint (B) < rgwaint (AUB).

Remarks 5.17: The converse of the above theorem need not be true.
Theorem 5.18: If A is a subset of X then i) int (A) < rgwaint (A) ii) raint (A) < rgwaint (A).

Proof: Let A be a subset of a space X. Let xeint (A)= xeU{G:G is open, Gc A}
= J an open set G s.t. xeG < A= an rgwa-open set G s.t. XxeG < A as every open set is rgwa-open set in X =

xeU{G:G is rgwa-open set in X} axe rgwaint (A), thus xeint (A) =xe rgwaint (A), Hence, int (A) < rgwaint (A).
ii) Let A be a subset of space X. Let x€ raint (A), = xeU{G:G is rec-open Gc A}

= Janra-open set G s.t. xe G A

= Janrgwa-open set G s.t. xe GC A, as every ra-open set is an rgwa-open set in X= xeU{G:G is rgwa-open set in

X} = xe rgwaint (A).
Thus xe raint (A) = xe rgwaint (A).

Hence raint (A) < rgwaint (A).
Remark 5.19: Containment relation in the above theorem may be proper as seen from the following example.

Example 5.20: Let x={a, b, ¢, d, e} with topology 7={x, ¢, {a}, {d}, {e}, {a, d}, {a, e}, {a d, e}} A= {a b}
int(A)={a}, raint(A)={a}, rgwaint (A)= {a, b} therefore int (A) crgwaint (A) and raint (A) < rgwaint (A)

Theorem 5.21: If A is subset of X, then rgwaint (A) < gspint (A), where gspint (A) is given by gspint (A)=U{Gc X:G
is gsp-open, GcA}.

Proof: Let A be a subset of a space X. Let x e rgwaint (A) =xeU{G:G is rgwa-open Gc A}

= 3 an rgwa-open set G s.t. xe Gc A, as every rgwa-open set is an gsp-open set in X = xeU{G:G is gsp-open
Gc A} = xe gspint (A).
Thus, xe rgwaint (A) } = xe gspint (A) Hence, rgwaint (A) < gspint(A).

Theorem 5.22: For any subset A of X
i) X- rgwaint (A)=rgwacl (X-A)
ii) X- rgwocl (A)= rgwaint (X-A)

Proof: xeX- rgwaint (A), then x is not in rgwaint (A) i.e. every rgwa-open set G containing x such that G < A. This
implies every rgwa-open set G containing x intersects (X-A) i.e. G n(X-A)=6¢. Then by theorem 5.7 xe rgwacl (X-A)
Therefore X- rgwacl (A) < rgwacl (x-A)---(1)

and let xe rgwacl (X-A) , then every xe rgwa-open set G containing X interests X-A i.e. GN(X-A)#¢. i.e. every
rgwa-open set G containing X s.t. Gz A. Then by definition 5.12. x is not in rgwacl (A), i.e. xeX-rgwaint (A) and so

rgwacl (X-A) < x-rgwaint (A)---(2)

Thus X-rgwaint (A)= rgwacl(X-A). Similarly we can prove ii).
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6. rgwa-Neighbourhood and rgwa-Limit points

In this section we define the notation of rgwa-Neighbourhood, rgwa-Limit points and rgwa-Derived set and some of
their basic properties and analogous to those for open sets.

Definition 6.1: Let (X,7) be a topological space and let xe X, A subset N of X is said to be rgwa-Neighbourhood of x if

there exists an rgwa-open set G s.t. xeGeN.

Definition 6.2: i) Let (X, ) be a topological space and A be a subset of X, A subset N of X is said to be rgwa
Neighbourhood of A, if there exists an rgwa.-open set G s.t. Ac GeN
ii) The collection of all rgwa-Neighbourhood of xeX called rgwa-Neighbourhood system at x and shall be denoted

by rgwaN (x)

Definition 6.3: i) Let (X, 1) be a topological space and A be a subset of X, then a point xeX is called a rgwa-Limit
point of A if every rgwa-Neighbourhood of x contains a point of A distinct from x i.e. (N-{x} n A = ¢ for each rgwa-
Neighbourhood N of x. Also equivalently iff, every rgwa-open set G containing x contains a point of A other than x.

ii) The set of all rgwa-Limit points of the set A is called Derived set of A and is denoted by rgwad(A).
Theorem 6.4: Every neighbourhood N of xe X is called is a rgwa-Neighbourhood of xe X.

Proof: Let N be neighbouhood of point xeX. To prove that N is a rgwa-Neighbourhood of x by definition of
neighbourhood, 3 an open set G s.t. xeGcN =3 an rgwa.-open set G s.t. xeGcN, as every open set is rgwo.-open set.

Hence N is rgwa-Neighbourhood of x,

Remark 6.5: In general, a is rgwa-nbhd N of xe X. need not be a nbhd of x in X, as seen from the following example.

Example 6.6 : Let X={a, b, ¢, d, e} with topology = = {x, ¢, {a}, {d}, {e}, {a, d.,}, {a, e}, {d, e}, {a, d, e}}. The set
{a, b} is rgwa-Neighbourhood of the point b, since 3 the rgwa-open set {b} s.t. be{b}={a, b}, However the set {a, b}
is not a nbhd of the point b. Since no open set G exists s.t. beG <{a, b}

Theorem 6.7: If a subset N of a space X is rgwa.-open, then N is rgwo-nbhd of each of its points.

Proof: Suppose N is rgwa-open. Let xeN. We claim that N is rgwa-nbhd of x. For N is a is rgwa-open set such that

xeNcN. Since X is an arbitrary point of N, it follows that N is a rgwa-nbhd of each of its points.

Remark 6.8: Let X= {a, b, c, d, e} with topology = {X, ¢, {a}, {d}, {e}.{a, d.}, {a, €}, {d, e}, {a, d, e}}. The set
{b, c} is a is rgwa-nbhd of the point b, since the rgwa-open set {b} is s.t. be{b}{b, c}, Also the set {b, c} is rgwoc-

nbhd of the point ¢, Since the rgwa-open set {c} is s.t. ce{c} < {b, ¢,}. That is {b, c,} is a rgwa-nbhd of each of its

points. However the set {b, c} is not rgwa-open set in X.

Theorem 6.10: Let X be a topological space. If F is a rgwa-closed subset of X, and xeF® . Prove that there exists
argwa-nhbd N of x such that NmF=¢. Proof: let F be rgwa-closed subset of X and xeF®. Then F®is rgwa.-open set of

X. So by theorem 6.7 F° contains a rgwa.-nbhd of each of its points. Hence there exists a rgwa-nbhd of N of x such that
NeF°. That is NnF=¢.

Theorem 6.11: Let X be a topological space and for each xe X, Let rgwa-N (x) be the collection of all rgwa-nbhd of x.
Then we have following results.
i)  vxeX, rgwa-N (X) #b.
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ii) Nergwa-N (xX) = xeN.

iii) Nergwa-N (x), MoN= Me rgwa-N (X)

iv) Nergwa-N (X), Me rgwa-N (X) =NnMe rgwa-N (x)

v) Nergwa-N (X)= There exists Me rgwa-N (x) such that MeN & Me rgwa-N (y), for every yeM.

Proof: i) Since X is a rgwa-open set, it is rgwa-nbhd of every xeX. Hence there exists at least one rgwa-nbhd
(namely_X) for each xe X. Hence rgwa.-N (X) #¢ for every xeX.

ii) If Ne rgwa-N (x), then N is a rgwa-nbhd of x, so by definition of rgwa-nbhd, xeN. Let Ne rgwa-N (x) and
MeN. Then there is a rgwa.-open set G such that xe GeN. Since NeM, xeGcM and so M is rgwa-nbhd of x. Hence
Me rgwa-N ().

iv) Let Ne rgwa-N (x) and Me rgwa.-N (x). Then by definition of rgwa.-nbhd there exists rgwo.-open sets G, and G,
such that xeG;cN and xe G,cM.

Hence xeG;nG, cNnM---(1). Since Gin G, is a rgwa-open set (being the intersection of two rgwa.-open sets) it
follows from (1) that NmM is also rgwa -nbhd of x. Hence NmMe rgwa-Nc x).

v) If Ne rgwa-N(x), then there exists a rgwa-open set M such that xeMcN. Since M is rgwa-open set, it is rgwo.-
nbhd of each of its points. Therefore Mergwa-N( y) for every ye M.

Theorem 6.12: Let X be a non empty set, and for each xe X, let rgwa-N( X) be a nonempty collection of subsets of X
satisfying following conditions.

i) Nergwa-N(x) =xeN

i) Nergwa-N(x), Mergwo-N(x=NnMe rgwaN(x)

Let 7 consists of the empty set and all those non-empty subsets of G of X having the property that xeG implies that
there exists an Nergwa-N(x) such that xe NcG. Then t is a topology for X.

Proof:
(i) ¢eT by definition. We now show that Xet. Let x be any arbitrary element of X. Since rgwa-N(X) is

nonempty, there is Nergwa-N(x) and so xeN by (i). Since N a subset of X, we have xeNcX. Hence Xer.
(ii) Let Gyet and G,et. if X € Gy G, Then xeG;, X €G, Since G;e71, Gyet, there exist Nergwa-N(x) and

Mergwa-N(x) , such that xeNcG; and xeMcG,, Then xeNNM < G;~ G,. But NmMe rgwa-N(x) by

theorem 6.11 (iv) Hence G;n Gycr.
(iii) Let G, et for every AeA. If xeU{ G, : LeA}, then xeG,, for some A,eA. Since G;xet, there exists an

Nergwa-N(X) such that xeNc G, and consequently xeNcU{G, . AeA}. Hence U {G, . AeA}et. It follows
that 7 is a topology for X.

Theorem 6.13: Let X be a topological space then
i) rgwa d(A)=¢
i) If AcB= rgwad(A) c rgwoe.d(B)
iii) rgwo.d(AUB) = rgwa.d(A) U rgwa d(B)

Proof: i) Suppose that rgwa d(A) #¢ then rgwa d(A) contains at least one element. Therefore let xe rgwo.d(¢) then x is
a rgwa.-Limit point of ¢ therefore for every rgwa-open set G containing ‘x’, (G-{x}) n ¢=¢, But this is not true. Since
intersection of ¢ with any set is again a ¢. Therefore rgwoa.d(A)= ¢.

ii) Given AcB to prove rgwad(A) c rgwad(B). let xergwad(A). = X is a rgwec-limit point of A. Therefore by
definition, 3 an rgwa-open set G containing x such that (G-{x})nA=¢---(1). But AcB =A-{x} <B-{x} =(G-
{})nB=p. =x is a rgwa-limit point of B = xe rgwoad(B). Thus xe rgwocd(A) = Xxe rgwocd(B). Therefore
rgwod(A) < rgwad(B)

iii)We have AcAUB and BcAUB. Therefore rgwod(A)c rgwad(AUB) and rgwad(B) < rgwad(AUB). Therefore
rgwad(A)U rgwad(B) crgwad(AUB). ---(1). To prove rgwad(AUB)c rgwad(A)U rgwad(B). Let xe
rgwa d(AUB) = x is rgwa-limit point of (AUB).

=(G-{x})N(AUB) =¢ for every rgwa-open set G containing X. =[(G-{x})nA] U [(G-{x})nB] #0 =(G-{Xx})nA =¢
or (G-{x})nB #¢ = x is a rgwa.-limit point of A or x is a rgwa-limit point of B. i.e. xergwad(A) or xergwod(B)
therefore xergwa d(A) U rgwa d(B).

For xergwa d(AUB) = xergwa d(A) U rgwad(B). =rgwa d(AUB)c rgwoe.d(A) U rgwad(B)---(2)

=From (1) and (2) rgwa.d(AUB)= rgwa.d(A) U rgwo.d(B)
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Theorem 6.14: Let X be a topological space and Ac X. Then AUrgwad(A) is rgwa-closed set in X.

Proof: To prove AUrgwa d(A) is a rgwa.-closed set in X. that is to prove X- AUrgwa d(A) is an rgwa.-open set in X.
Let xe X- AUrgwad(A) =xeX & x¢ AUrgwad(A) =XeX & (XA & xgrgwa d(A)) =xeX & (x¢A & x is not a limit
point of A). =xeX ,xgA , there exist an rgwa-open set G containing x s.t. GN(A-{x})=¢ i.e. GNA=¢. Further,
GNrgwad(A)=¢. Let yeG. then y¢A because GNA=¢. Now G is an rgwo.-open set containing y and GNA=¢and yeA.
therefore G is an rgwa.-open set containing y s.t. GN (A-{y}) =¢. Therefore there exist an rgwa.-open set G containing
y st. GN(A-{y}) =¢. Therefore y is not a limit point of A. i.e. ygrgwad(A). YEG, ygrgwad(A). therefore
GNrgwad(A)=¢. Thus we have GNA=¢ and GNrgwad(A)=¢. =(GNA)J (GNrgwad(A))=¢. OG NAUrgwoe.d(A)=d
=Gd X AUrgwa.d(A)}. Thus for all xe{ X- (AUrgwa d(A))} there exist an open set G s.t. xeG C {X (AUrgwo.d(A))}
=X (AUrgwad(A)) is an rgwa-open set. Therefore AUrgwa d(A) must be argwa - closed set in X.

Theorem 6.15: Let X be a topological space and Ac X, then A is rgwa.-closed iff A o rgwad(A) i.e. A is rgwa.-closed
if and only if A contains all its rgwa -limit points. i.e. A is rgwa-closed if and only if rgwad(A) < A.

Proof: Suppose A is rgwa-closed set, To prove A > rgwad(A) i.e rgwad(A) < A. Let XZA, we prove x¢& rgwad(A).
Since x¢A, we have xeX-A.

Now X-A is an rgwa.-open set containing x and (X-A) N A=¢. i.e (X-A) N (A-{x})=¢. There exist an rgwo.-open set
(X-A) containing x s.t. (X-A) N (A-{x})=d. Therefore x is not a limit point of A. x& rgwod(A). Thus xgA =x¢
rgwa d(A). therefore A o rgwa d(A) i.e rgwad(A) c A.

Conversely, on the other hand suppose A o rgwad(A) i.e rgwad(A) < A. we prove A is rgwa-closed set i.e we
prove X-A is rgwa.-open set .

Let xeX-A = A =x¢& rgwad(A). =x is not a limit point of A.=there exist an rgwa-open set G containing X s.t.
GN (A-{x})=0¢ =>there exist an rgwa.-open set G containing x s.t. GN A=¢ =there exist an rgwo.-open set G containing
X 8.t. G C XA =there exist an rgwa.-open set G containing X s.t. X€G C XA. for all x€X-A there exist an rgwo -open set
G containing X s.t. XEG C XA. therefore (X-A) must be an rgwa -open set. Therefore A must be a rgwa-closed set.

Theorem 6.16: Let X be topological space and Ac X then rgwacl(A)=AU rgwa d(A).

Proof: w.k.t. AU rgwad(A) is rgwa-closed set in X. Also we have Ac AU rgwo.d(A). Therefore AU rgwad(A) is a

closed set containing A. But rgwacl(A) is the smallest closed set containing A. Therefore rgwacl(A) < AU rgwec-
d(A). (1)

Further we have Ac rgwad(A)__(i). To prove rgwad(A) < rgwacl(A). Let xergwad(A). =x is a rgwa-limit point
of A. We prove that xergwacl(A). If possible let xgrgwacl(A). Then xeX- rgwa.cl(A), Therefore X- rgwacl(A) is an
rgwa-open set containing x and [X- rgwacl(A)]n [A-{x}]=¢. Therefore x is not a limit point of A. Which is wrong.
Therefore xergwa.cl(A). If xergwod(A) then xergwa.cl(A) = rgwod(A) < rgwacl(A)---(ii)

From (i) and (ii) AU rgwad(A) crgwacl (A)---(2)
From (1) and (2) rgwo.cl (A)=AU rgwad(A).
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