SOME NEW CONCEPTS OF CONTINUITY IN TOPOLOGICAL SPACES

C. SANTHINI¹, S. LAKSHMI PRIYA*²

¹Associate Professor, Department of Mathematics, V. V. Vanniaperumal College for Women, Virudhunagar - 626 001, India.

²M.Phil Scholar, Department of Mathematics, V. V. Vanniaperumal College for Women, Virudhunagar - 626 001, India.

(Received On: 15-03-17; Revised & Accepted On: 10-04-17)

ABSTRACT

The purpose of this paper is to introduce and investigate several continuous functions namely $g_{s_{\alpha}}^{**}$ -continuous functions and contra $g_{s_{\alpha}}^{**}$ -continuous functions along with their several characterizations. Further we introduce new types of graphs called $g_{s_{\alpha}}^{**}$-closed graphs, contra $g_{s_{\alpha}}^{**}$ -closed graphs and investigated several characterizations of such notions.

MSC: 54C08, 54C05.

Keywords: $g_{s_{\alpha}}^{**}$ -continuous functions, contra $g_{s_{\alpha}}^{**}$ -continuous functions, $g_{s_{\alpha}}^{**}$-closed graph, contra $g_{s_{\alpha}}^{**}$-closed graph, locally $g_{s_{\alpha}}^{**}$-indiscrete space.

1. INTRODUCTION

In recent literature, we find many topologists have focused their research in the direction of investigating types of generalized continuity. The notion of contra-continuity was first investigated by Dontchev[7]. A good number of researchers have initiated different types of contra-continuous functions which are found in the papers [4],[5],[6]. In 1970, Levine [10] discussed the notion of generalized closed sets in topological spaces. Extensive research on generalizing closedness was done in recent years. In 1963, Levine [11] introduced the concepts of semi-open sets in topological spaces. W. Dunham [9] introduced the concept of generalized closure and defined a new topology τ^* and investigated some of their properties. Quite recently the authors Robert.A and Pious Missier.S introduced and studied semi−open [15] sets and semi-α−open [15] sets using the generalized closure operator. Recently Santhini et.al [16] introduced $g_{s_{\alpha}}^{**}$ -closed sets in topological spaces. In 1969, Long [12] introduced closed graphs in topological spaces. In this paper, by means of $g_{s_{\alpha}}^{**}$-closed sets, we introduce namely, $g_{s_{\alpha}}^{**}$-continuous functions and contra $g_{s_{\alpha}}^{**}$-continuous functions along with their several properties, characterizations and mutual relationships. Further we introduce new types of graphs, called $g_{s_{\alpha}}^{**}$-closed graphs, contra $g_{s_{\alpha}}^{**}$-closed graphs via $g_{s_{\alpha}}^{**}$-open sets. Several characterizations and properties of such notions are investigated.

2. PRELIMINARIES

In this section, we recall some basic definitions and properties used in our paper.

Definition 2.1: A subset A of a space (X, τ) is said to be

(i) semi-open [11] if $A \subseteq \text{cl}(\text{int}A)$.

(ii) semi-open if [15] $A \subseteq \text{cl}_{(\text{int}A)}$.

(iii) semi-α-open [15] if $A \subseteq \text{cl}_{(\text{int}A)}$.

(iv) a g-closed set [2] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Corresponding Author: S. Lakshmi Priya*²
²M.Phil Scholar, Department of Mathematics, V. V. Vanniaperumal College for Women, Virudhunagar - 626 001, India.

International Journal of Mathematical Archive- 8(4), April – 2017
(v) a α-closed set \([17]\) if $\text{cl}(A) \subseteq U$ whenever A and U is semi-open in X.
(vi) a generalized-semi closed set(briefly gs-closed) \([5]\) if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
(vii) a g^* -closed set \([14]\) if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
(viii) a generalized semi pre-closed set(briefly gsp-closed)\([8]\) if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.2: A subset A of a space (X, τ) is called generalized gs*-closed set (briefly gs*-closed) \([16]\) if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-α-open in (X, τ).

The class of all gs*-open subsets of X is denoted by $\text{gs}_a^**O(X, \tau)$ and the class of all gs*-open subsets of X containing x is denoted by $\text{gs}_a^**O(X, x)$.

Definition 2.3: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a

1. semi-continuous \([11]\) if $f^{-1}(V)$ is semi-closed set in (X, τ) for every closed set V in (Y, σ).
2. semi*α-continuous \([13]\) if $f^{-1}(V)$ is semi*-closed set in (X, τ) for every closed set V in (Y, σ).
3. semi*α-continuous \([15]\) if $f^{-1}(V)$ is semi*α-closed set in (X, τ) for every closed set V in (Y, σ).
4. g-continuous \([2]\) if $f^{-1}(V)$ is g-closed set in (X, τ) for every closed set V in (Y, σ).
5. generalized semi-continuous(briefly gs-continuous) \([5]\) if $f^{-1}(V)$ is gs-closed set in (X, τ) for every closed set V in (Y, σ).
6. generalized semi-precontinuous (briefly gsp-continuous) \([8]\) if $f^{-1}(V)$ is gsp-closed set in (X, τ) for every closed set V in (Y, σ).
7. ω-continuous \([17]\) if $f^{-1}(V)$ is ω-closed set in (X, τ) for every closed set V in (Y, σ).
8. g^*-continuous \([14]\) if $f^{-1}(V)$ is g^*-closed set in (X, τ) for every closed set V in (Y, σ).

Definition 2.4: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

1. contra-continuous \([7]\) if $f^{-1}(V)$ is closed in (X, τ) for every open set V in (Y, σ).
2. contra semi-continuous \([6]\) if $f^{-1}(V)$ is semi-closed in (X, τ) for every open set V in (Y, σ).
3. contra semi*α-continuous \([13]\) if $f^{-1}(V)$ is semi*α-closed in (X, τ) for every open set V in (Y, σ).
4. contra semi*α-continuous \([15]\) if $f^{-1}(V)$ is semi*α-closed in (X, τ) for every open set V in (Y, σ).
5. contra gs-continuous \([3]\) if $f^{-1}(V)$ is gs-closed in (X, τ) for every open set V in (Y, σ).
6. contra gsp-continuous \([1]\) if $f^{-1}(V)$ is gsp-closed in (X, τ) for every open set V in (Y, σ).
7. contra g-continuous \([4]\) if $f^{-1}(V)$ is g-closed in (X, τ) for every open set V in (Y, σ).
8. contra g^*-continuous \([14]\) if $f^{-1}(V)$ is g^*-closed in (X, τ) for every open set V in (Y, σ).

Definition 2.5: A space X is locally indiscrete \([18]\) if every open set in X is closed.

Definition 2.6:
(i) A space (X, τ) is called a T_{α}^{**}-space \([16]\) if every gs*-closed set in it is closed.
(ii) A space (X, τ) is called a T_{α}^{**}-space \([16]\) if every gs-closed set in it is gs*-closed.

3. g_{a}^{**}-Continuous and g_{a}^{**}-Irresolute functions

In this section, the concepts of gs*-continuity and gs*-irresoluteness are introduced and studied.

Definition 3.1: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called gs*-continuous if $f^{-1}(V)$ is gs*-closed set in (X, τ) for every closed set V in (Y, σ).

Example 3.2: Let $X = Y = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\varnothing, Y, \{a, b\}, \{a\}\}$. Then $f: (X, \tau) \rightarrow (Y, \sigma)$ defined by $f(a) = c$, $f(b) = a$, $f(c) = b$ is gs*-continuous.

Theorem 3.3:
(1) Every continuous function is gs*-continuous.
(2) Every ω-continuous function is gs*-continuous.
(3) Every g^*-continuous function is gs*-continuous.
(4) Every semi-continuous function is gs*-continuous.
(5) Every semi*α-continuous function is gs*-continuous.
(6) Every gs*-continuous function is gs-continuous.
(7) Every gs*-continuous function is gsp-continuous.

Proof:
(1) Let V be a closed set in Y. Since, f is continuous, $f^{-1}(V)$ is closed in X. By theorem 3.2 \([16]\), $f^{-1}(V)$ is gs*-closed in X and so f is gs*-continuous.
(2) Similar to the proof of (1).
Remark 3.4: The converses of the above theorems are not be true as seen from the following examples.

Example 3.5: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c, d\}, \{a, c, d\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = b$, $f(b) = c$, $f(c) = d$, $f(d) = a$ is gs*-continuous but not continuous.

Example 3.6: Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}, \{b\}\}$ and $\sigma = \{\emptyset, Y, \{a, b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = f(b) = a$, $f(c) = b$ is gs*-continuous but not α-continuous.

Example 3.7: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b, c\}, \{a\}\}$ and $\sigma = \{\emptyset, Y, \{a, b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = b$, $f(b) = c$, $f(c) = a$ is gs*-continuous but not g^*s continuous.

Example 3.8: Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b, c\}, \{a\}\}$ and $\sigma = \{\emptyset, Y, \{a, b, c\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = c$, $f(b) = a$, $f(c) = b$ is gs*-continuous but not gs*-continuous.

Example 3.9: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b, c, d\}, \{a, d\}\}$ and $\sigma = \{\emptyset, Y, \{a, b, c\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = f(b) = a$, $f(c) = b$, $f(d) = c$ is gs*-continuous but not semi-continuous.

Example 3.10: Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}, \{a\}\}$ and $\sigma = \{\emptyset, Y, \{a, b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = c$, $f(b) = a$, $f(c) = b$ is gs*-continuous but not gs*-continuous.

Example 3.11: Let $X = Y = \{a, b, c\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = c$, $f(b) = a$, $f(c) = b$ is gs*-continuous but not gs*-continuous.

Remark 3.12: gs*-continuous and g-continuous functions are independent of each other.

Example 3.13: Let $X = \{a, b, c, d\}$, $Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{a, b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = b$, $f(b) = f(c) = f(d) = a$ is gs*-continuous but not gs*-continuous.

Example 3.14: Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}\}$ and $\sigma = \{\emptyset, Y, \{b\}, \{a, b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = b$, $f(b) = c$, $f(c) = d$, $f(d) = a$ is gs*-continuous but not g-continuous.

Remark 3.15: gs*-continuous and semi*α-continuous functions are independent of each other.

Example 3.16: Let $X = \{a, b, c, d\}$, $Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b, c\}\}$ and $\sigma = \{\emptyset, Y, \{b\}, \{a, b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = f(b) = a$, $f(c) = c$, $f(d) = b$ is gs*-continuous but not gs*-continuous.

4. Characteristics of gs*-continuous functions

Theorem 4.1: The following are equivalent for a function $f: (X, \tau) \to (Y, \sigma)$. Assume that gs*-O(X, τ) is closed under any union.

(i) f is gs*-continuous.

(ii) For each $x \in X$ and each open set F in Y containing $f(x)$, there exists a gs*-open set U in X containing x such that $f(U) \subseteq F$.

Proof:

(i) \Rightarrow (ii): Let $x \in X$ and F be an open set in Y containing $f(x)$. Since f is gs*-continuous, $f^{-1}(F)$ is gs*-open in X containing x. Take $U = f^{-1}(F)$ then U is a gs*-open set in X containing x such that $f(U) \subseteq F$.

(ii) \Rightarrow (i): Let F be an open set in Y such that $x \in f^{-1}(F)$. Then F is an open set containing $f(x)$. By (i), there exists a gs*-open set U_x in X containing x such that $f(U_x) \subseteq F$ which implies $U \subseteq f^{-1}(F)$. Therefore $f^{-1}(F) = U \cup \{U_x : x \in f^{-1}(F)\}$. Since U_x is gs*-open and gs*-O(X, τ) is closed under any union. Hence $f^{-1}(F)$ is open and so f is gs*-continuous.

Theorem 4.2: A function $f: (X, \tau) \to (Y, \sigma)$ is gs*-continuous if and only if $f^{-1}(V)$ is gs*-open in X for every open set V in Y.

Proof: Since $f^{-1}(V) = (f^{-1}(V))^\tau$, proof follows.
Remark 4.3: The composition of two gs_{**}-continuous functions is not gs_{**}-continuous.

Example 4.4: Let $X = Y = Z = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a\}, \{a, b\}\}$, $\sigma = \{\varnothing, Y, \{a\}, \{a, b\}\}$ and $\mu = \{\varnothing, Z, \{a\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = a, f(b) = c, f(c) = b$ and $g: (Y, \sigma) \to (Z, \mu)$ defined by $g(a) = b, g(b) = a, g(c) = c$. Then f and g are gs_{**}-continuous but $g \circ f: (X, \tau) \to (Z, \mu)$ is not gs_{**}-continuous.

Theorem 4.5: Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \mu)$ be any functions. Then

(i) $g \circ f: (X, \tau) \to (Z, \mu)$ is gs_{**}-continuous if g is continuous and f is gs_{**}-continuous.

(ii) $g \circ f: (X, \tau) \to (Z, \mu)$ is gs_{**}-continuous if g is continuous and f is gs_{**}-continuous.

Proof:

(i) Let V be any closed set in Z. Since g is continuous, $g^{-1}(V)$ is closed in Y. By Theorem 4.2, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is gs_{**}-closed in X. Hence $g \circ f$ is gs_{**}-continuous.

(ii) Similar to the proof of (i).

Theorem 4.6: Let X and Y be any topological spaces and σ be a T_{**}-space then the following holds.

(i) $g \circ f: (X, \tau) \to (Z, \mu)$ is gs_{**}-continuous if g is gs_{**}-continuous and f is gs_{**}-continuous.

(ii) $g \circ f: (X, \tau) \to (Z, \mu)$ is semi-continuous if g is gs_{**}-continuous and f is semi-continuous.

(iii) $g \circ f: (X, \tau) \to (Z, \mu)$ is gs_{**}-continuous if g is gs_{**}-continuous and f is gs_{**}-continuous.

Proof: (i) Let U be any closed set in Z. Since g is gs_{**}-continuous, $g^{-1}(U)$ is gs_{**}-closed in Y. By Theorem 3.2, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is gs_{**}-closed in X and hence $g \circ f$ is gs_{**}-continuous.

(ii)-(iii) similar to the proof of (i).

Theorem 4.7: If a function $f: X \to Y$ is gs_{**}-continuous where X is a T_{**}-space then f is continuous.(resp. semi-continuous)

Proof: Let V be a closed set in Y. Since f is gs_{**}-continuous, $f^{-1}(V)$ is gs_{**}-closed in X. Since X is a T_{**}-space, $f^{-1}(V)$ is closed in X and so f is continuous.

Theorem 4.8: If a function $f: X \to Y$ is gs_{**}-continuous where X is a T_{**}-space then f is gs-continuous.

Proof: Let V be a closed set in Y. Since f is gs_{**}-continuous, $f^{-1}(V)$ is gs_{**}-closed in X. Since X is a T_{**}-space, $f^{-1}(V)$ is closed in X By theorem 3.2[16], $f^{-1}(V)$ is gs-closed in X and so f is gs-continuous.

Definition 4.9: A function $f: (X, \tau) \to (Y, \sigma)$ is called a gs_{**}-irresolute if $f^{-1}(V)$ is gs_{**}-closed set in (X, τ) for every gs_{**}-closed set V in (Y, σ).

Example 4.10: Let $X = Y = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a\}, \{b, c\} \}$ and $\sigma = \{\varnothing, Y, \{a, b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = b, f(b) = a, f(c) = c$ is gs_{**}-irresolute.

Theorem 4.11:

(1) Every gs_{**}-irresolute function is gs_{**}-continuous.

(2) Every gs_{**}-irresolute function is gs-continuous.

(3) Every gs_{**}-irresolute function is gs-continuous.

Proof:

(1) Let V be a closed set in Y. By theorem 3.2[16], V is gs_{**}-closed in Y. Since f is gs_{**}-irresolute, $f^{-1}(V)$ is gs_{**}-closed set in X and so f is gs_{**}-continuous.

(2)-(3) similar to the proof of (1).

Remark 4.12: The converses of the above theorems are not true as seen from the following example.

Example 4.13: Let $X = Y = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a\}\}$ and $\sigma = \{\varnothing, Y, \{a\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = b, f(b) = a, f(c) = c$, is gs_{**}-continuous but not gs_{**}-irresolute.

Example 4.14: Let $X = Y = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{\varnothing, Y, \{a\}, \{b, c\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = a, f(b) = b, f(c) = b$, is gs-continuous but not gs_{**}-irresolute.

Example 4.15: Let $X = Y = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a\}\}$ and $\sigma = \{\varnothing, Y, \{a\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = a, f(b) = c, f(c) = b$, is gs-continuous but not gs_{**}-irresolute.
Theorem 4.16: Let f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, μ) be any functions. Then the following holds.
(i) g ◦ f: (X, τ) → (Z, μ) is gs_α**-irresolute if g is gs_α**-irresolute and f is gs_α***-irresolute.
(ii) g ◦ f: (X, τ) → (Z, μ) is gs_α**-continuous if g is gs_α**-continuous and f is gs_α**-irresolute.

Proof:
(i) Let V be gs_α**-irresolute in Z. Then g_1(V) is gs_α**-closed in Y. Also f is gs_α**-irresolute, f_1(g_1(V)) = (g ◦ f)_1(V) is gs_α**-closed set in X. Hence g ◦ f is gs_α**-irresolute.
(ii) Similar to the proof of (i).

Theorem 4.17: A function f: (X, τ) → (Y, σ) is gs_α**-irresolute if and only if f_1(V) is gs_α**-open in X for every gs_α**-open set V in Y.

Proof: Since f_1(V^c) = (f_1(V))^c, the proof follows.

Theorem 4.18: If a function f: X → Y is gs_α**-continuous where X is a _c _T_x-**-space then f is gs_α**-irresolute.

Proof: Let U be a gs_α**-closed set in Y. Since Y is a _c _T_x-**-space, then U is closed in Y. By theorem 3.2 [16], U is gs_α**-closed set in Y. Since f is gs_α**-irresolute, f_1(U) is gs_α**-closed in X and so f is gs_α**-irresolute.

Theorem 4.19: Let X and Z be any topological spaces and Y be a _c _T_x-**-space then g ◦ f: (X, τ) → (Z, μ) is gs_α**-continuous if g is gs_α**-irresolute and f is gs_α**-continuous.

Proof: Let U be any closed set in Z. Since g is gs_α**-irresolute, g_1(U) is gs_α**-closed in Y. But X is a _c _T_x-**-space which implies g_1(U) is closed in Y. Since f is gs_α**-continuous, f_1(g_1(U)) = (g ◦ f)_1(U) is gs_α**-closed in X and hence g ◦ f is gs_α**-continuous.

Theorem 4.20: Let X and Z be any topological spaces and Y be a _c _T_x-**-space then g ◦ f: (X, τ) → (Z, μ) is gs_α**-continuous if g is gs-continuous and f is gs_α**-irresolute.

Proof: Let U be any closed set in Z. Since g is gs-continuous, g_1(U) is gs-closed in Y. But Y is a _c _T_x-**-space implies g_1(U) is closed in Y. Since f is gs_α**- -irresolute, f_1(g_1(U)) = (g ◦ f)_1(U) is gs_α**-closed in X. Consequently g ◦ f is gs_α**-continuous.

5. Contra gs_α**-continuous functions

In this section, we define contra gs_α**-continuous functions and derives some of their properties.

Definition 5.1: A function f: X → Y is said to be contra gs_α**-continuous if f_1(V) is gs_α**-closed in X for every open set V in Y.

Example 5.2: Let X = Y = {a, b, c}, τ = {∅, X, {a}, {b, c}} and σ = {{∅, Y, {a}}. Then f: (X, τ) → (Y, σ) defined by f(a) = c, f(b) = a, f(c) = b is a contra gs_α**-continuous.

Theorem 5.3: The following are equivalent for a function f: (X, τ) → (Y, σ).
Assume that gs_α**O(X, τ) is closed under any union.
(1) f is contra gs_α**-continuous.
(2) For every closed set F of Y, f_1(F) is gs_α**-open in X.
(3) For each x ∈ X and each closed set F of Y containing f(x), there exists gs_α**-open set U containing x in X such that f(U) ⊆ F.

Proof:
(1) ⇒(2): Let F be a closed set in Y. Then Y−F is an open set in Y. By (1), f_1(Y−F) = X − f_1(F) is gs_α**-closed in X, which implies f_1(F) is gs_α**-open in X.

(2) ⇒(1): Similar to the proof of (1).

(2) ⇒(3): Let F be a closed set in Y containing f(x). Then x ∈ f_1(F). By (2), f_1(F) is gs_α**-open in X containing x.

Let U = f_1(F). Then U is gs_α**-open in X containing x and f(U) = f(f_1(F)) ⊆ F.

(3) ⇒(2): Let F be a closed set in Y containing f(x) which implies x ∈ f_1(F). From (3), there exists gs_α**-open set U_x in X containing x such that f(U_x) ⊆ F which implies U_x ⊆ f_1(F). Therefore f_1(F) = U_x ∪ {U_x : x ∈ f_1(F)} and since U_x is gs_α**-open and gs_α**O(X, τ) is closed under any union, f_1(F) is gs_α**-open in X.
Remark 5.4: Composition of two contra gs**-continuous functions is not contra gs**-continuous.

Example 5.5: $X = \{a, b, c, d\}, Y = Z = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}, \{a, b, d\}\},$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}$ and $\mu = \{\emptyset, Z, \{a\}\}.$ Then $f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = f(b) = c, f(c) = b,$ and $g: (Y, \sigma) \to (Z, \mu)$ defined by $g(a) = b, g(b) = c,$ and $g(c) = a$ are gs**-continuous but $g \circ f: (X, \tau) \to (Z, \mu)$ is not gs**-continuous.

Theorem 5.6:
(i) Every contra-continuous function is contra gs**-continuous.
(ii) Every contra semi-continuous function is contra gs**-continuous.
(iii) Every contra semi*-continuous function is contra gs**-continuous.
(iv) Every contra gs**-continuous function is contra gs-continuous.
(v) Every contra gs**-continuous function is contra gsp-continuous.

Proof:
(i) Let V be any open set in $Y.$ Since f is contra-continuous, $f^{-1}(V)$ is closed in $X.$ By theorem 3.2[16], $f^{-1}(V)$ is gs**-closed in $X.$ Hence f is contra gs**-irresolute.
(ii) - (v). Similar to the proof of (i).

Remark 5.7: The converses of the above theorems are not true as seen from the following examples.

Example 5.8: Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}. Then f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = c, f(b) = a, f(c) = b$ is contra gs**-continuous but not contra-continuous.

Example 5.9: Let $X = \{a, b, c, d\}, Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}. Then f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = f(d) = b, f(c) = d, f(d) = c$ is contra gs**-continuous but not contra semi*-continuous.

Example 5.10: Let $X = \{a, b, c, d\}, Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}, \{a, c, d\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}. Then f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = b, f(b) = a, f(c) = d, f(d) = c$ is contra gs**-continuous but not contra semi*-continuous.

Example 5.11: Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}. Then f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = b, f(b) = a, f(c) = c$ is contra gs-continuous but not contra gs**-continuous.

Example 5.12: Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}\}$ and $\sigma = \{\emptyset, Y, \{a, b\}\}. Then f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = c, f(b) = a, f(c) = b$ is contra gsp-continuous but not contra gs**-continuous.

Remark 5.13: From the above results we have the following diagram.

In the above diagram $A \to B$ denotes A implies B but not conversely.

Remark 5.14: Contra g-continuous function and contra gs**-continuous functions are independent of each other.

Example 5.15: Let $X = \{a, b, c, d\}, Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$ and $\sigma = \{\emptyset, Y, \{a, b\}\}. Then f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = f(b) = a, f(c) = d, f(d) = b$ is contra g-continuous but not contra gs**-continuous.

Example 5.16: Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{\emptyset, Y, \{a, b\}\}. Then f: (X, \tau) \to (Y, \sigma)$ defined by $f(a) = c, f(b) = a, f(c) = b$ is contra gs**-continuous but not contra g-continuous.
Remark 5.17: Contra gs*-continuous function and contra semi*-α-continuous functions are independent of each other.

Example 5.18: Let \(X = \{a, b, c, d\}, Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}, \{b\}\} \). Then \(f: (X, \tau) \rightarrow (Y, \sigma) \) defined by \(f(a) = f(d) = b, f(b) = a, f(c) = c \) is contra gs*-continuous but not contra semi*-α-continuous.

Example 5.19: Let \(X = \{a, b, c, d\}, Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \) and \(\sigma = \{\emptyset, Y, \{a, b\}\} \). Then \(f: (X, \tau) \rightarrow (Y, \sigma) \) defined by \(f(a) = f(c) = a, f(a) = c, f(d) = b \) is contra semi*-α-continuous but not contra gs*-continuous.

Theorem 5.20:
(i) If \(f: X \rightarrow Y \) is gs*-continuous and \(h: Y \rightarrow Z \) is contra-continuous then \(h \circ f: X \rightarrow Z \) is contra gs*-continuous.
(ii) If \(f: X \rightarrow Y \) is contra gs*-continuous and \(h: Y \rightarrow Z \) is continuous then \(h \circ f: X \rightarrow Z \) is contra gs*-continuous.
(iii) If \(f: X \rightarrow Y \) is contra gs*-continuous and \(h: Y \rightarrow Z \) is contra-continuous then \(h \circ f: X \rightarrow Z \) is contra gs*-continuous.

Proof:
(i) Let \(V \) be an open set in \(Z \). Since \(h \) is contra-continuous, \(h^{-1}(V) \) is closed in \(Y \). If \(f \) is gs*-continuous, \(f^{-1}(h^{-1}(V)) = (h \circ f)^{-1}(V) \) is gs*-closed in \(X \) and hence \(h \circ f \) is gs*-continuous.
(ii) - (iii) Similar to the proof of (i).

Remark 5.21: The concept of gs*-continuity and contra gs*-continuity are independent.

Example 5.22: Let \(X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}, \{b\}\} \). Then \(f: (X, \tau) \rightarrow (Y, \sigma) \) defined by \(f(a) = b, f(b) = a, f(c) = c \) is contra gs*-continuous but not gs*-continuous.

Example 5.23: Let \(X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}, \{b\}\} \). Then \(f: (X, \tau) \rightarrow (Y, \sigma) \) defined by \(f(a) = b, f(b) = a, f(c) = c \) is gs*-continuous but not contra gs*-continuous.

Theorem 5.24: If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is gs*-irresolute and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) is a contra gs*-continuous function then \(g \circ f: X \rightarrow Y \) is contra gs*-continuous.

Proof: Let \(V \) be an open set in \(Z \). Since \(g \) is contra gs*-continuous, \(g^{-1}(V) \) is gs*-closed in \(Y \). Since \(f \) is gs*-irresolute, \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is gs*-closed in \(X \) and hence \(g \circ f \) is contra gs*-continuous.

Theorem 5.25: If a function \(f: X \rightarrow Y \) is contra gs*-continuous and \(Y \) is regular, then \(f \) is gs*-continuous.

Proof: Let \(x \in X \) and \(V \) be an open set in \(Y \) containing \(f(x) \). Since \(Y \) is regular there exists an open set \(W \) in \(Y \) containing \(f(x) \) such that \(\text{cl}(W) \subseteq V \). Since \(f \) is contra gs*-continuous. By theorem 4.1, there exists gs*-open set \(V \) in \(X \) containing \(x \) such that \(f(U) \subseteq \text{cl}(W) \). Then \(f(U) \subseteq \text{cl}(W) \subseteq V \). Therefore \(f \) is gs*-continuous.

Theorem 5.26: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function and \(X \) is a \(s_{T_{s^*}} \)-space. Then the following are equivalent.
(i) \(f \) is conra semi-continuous.
(ii) \(f \) is contra gs*-continuous.

Proof:
(i) \(\Rightarrow \) (ii): By theorem 5.6, proof follows.
(ii) \(\Rightarrow \) (i): Let \(V \) be any open set in \(Y \). Since \(f \) is contra gs*-continuous, \(f^{-1}(V) \) is gs*-closed in \(X \). Since \(X \) is a \(s_{T_{s^*}} \)-space, \(f^{-1}(V) \) is closed in \(X \) and hence \(f^{-1}(V) \) is semi-closed in \(X \) if \(f \) is contra semi-continuous.

Theorem 5.27: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function and \(X \) is a \(s_{T_{s^*}} \)-space. Then the following are equivalent.
(i) \(f \) is contra gs*-continuous.
(ii) \(f \) is contra gs-continuous.

Proof: Similar to the proof of theorem 5.26.

Theorem 5.28: If \(f \) is gs*-continuous and if \(Y \) is locally indiscrete then \(f \) is contra gs*-continuous.

Proof: Let \(V \) be an open set in \(Y \). Since \(Y \) is locally indiscrete, \(V \) is closed in \(X \). Since \(f \) is gs*-continuous, \(f^{-1}(V) \) is gs*-closed in \(X \) hence \(f \) is contra gs*-continuous.
Theorem 5.29: If a function $f: (X, \tau) \to (Y, \sigma)$ is continuous and X is locally indiscrete then f is contra $g_{s\alpha}$ continuous.

Proof: Let V be an open set in (Y, σ). Since f is continuous, $f^{-1}(V)$ is open in X. Since X is locally indiscrete, $f^{-1}(V)$ is closed set in X. By theorem 3.2, $f^{-1}(V)$ is $g_{s\alpha}$-closed in X and hence f is contra $g_{s\alpha}$ continuous.

Theorem 5.30: If a function $f: (X, \tau) \to (Y, \sigma)$ is contra $g_{s\alpha}$ continuous and X is a σ_f-space then $f: (X, \tau) \to (Y, \sigma)$ is contra $g_{s\alpha}$ continuous.

Proof: Let V be an open set in Y. Since f is contra $g_{s\alpha}$-continuous, $f^{-1}(V)$ is $g_{s\alpha}$-closed in X. Since X is σ_f-space, $f^{-1}(V)$ is closed and $g_{s\alpha}$-closed in X and hence f is contra $g_{s\alpha}$-continuous.

Definition 5.31: A space X is called locally $g_{s\alpha}$-indiscrete if every $g_{s\alpha}$-open set is closed in X.

Theorem 5.32: If a function $f: (X, \tau) \to (Y, \sigma)$ is $g_{s\alpha}$-continuous and the space X is locally $g_{s\alpha}$-indiscrete then f is contra continuous.

Proof: Let V be an open set in Y. Since f is $g_{s\alpha}$-continuous, $f^{-1}(V)$ is $g_{s\alpha}$-open in X. Since X is locally $g_{s\alpha}$-indiscrete, $f^{-1}(V)$ is closed in X and by theorem 3.2, $f^{-1}(V)$ is $g_{s\alpha}$-closed in X. Consequently f is contra $g_{s\alpha}$-continuous.

Theorem 5.33: If a function $f: (X, \tau) \to (Y, \sigma)$ is $g_{s\alpha}$-irresolute where Y is a locally $g_{s\alpha}$-indiscrete space and $g: (Y, \sigma) \to (Z, \mu)$ is contra $g_{s\alpha}$-continuous function then $g \circ f$ is $g_{s\alpha}$-continuous.

Proof: Let V be any closed set in Z. Since g is contra $g_{s\alpha}$-continuous, $g^{-1}(V)$ is $g_{s\alpha}$-open in Y. But Y is locally $g_{s\alpha}$-indiscrete implies $g^{-1}(V)$ is closed in Y. By theorem 3.2, $g^{-1}(V)$ is $g_{s\alpha}$-closed in Y. Since f is $g_{s\alpha}$-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $g_{s\alpha}$-closed in X and hence $g \circ f$ is $g_{s\alpha}$-continuous.

Theorem 5.34: If a function $f: (X, \tau) \to (Y, \sigma)$ is $g_{s\alpha}$-continuous and the space (X, τ) is locally $g_{s\alpha}$-indiscrete space then f is contra $g_{s\alpha}$-continuous.

Proof: Let V be any open set in (Y, σ). Since f is $g_{s\alpha}$-continuous, $f^{-1}(V)$ is $g_{s\alpha}$-open in X. Since X is locally $g_{s\alpha}$-indiscrete, $f^{-1}(V)$ is closed in X. By theorem 3.2, $f^{-1}(V)$ is $g_{s\alpha}$-closed set in X and hence f is contra $g_{s\alpha}$-continuous.

6. Contra $g_{s\alpha}$-closed graph

Definition 6.1: The graph $G(f)$ of a function $f: X \to Y$ is said to be $g_{s\alpha}$-closed (resp.contra $g_{s\alpha}$-closed) if for each $(x, y) \in (X \times Y) - G(f)$, there exist an $U \in g_{s\alpha}$-O(X,x) and an open (resp. closed) set V in Y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 6.2: A function $f: X \to Y$ is $g_{s\alpha}$-closed (resp.contra $g_{s\alpha}$-closed) if for each $(x, y) \in (X \times Y)$, $G(f)$ there exists $U \in g_{s\alpha}$-O(X,x) and an open (resp. closed) set V in Y containing y such that $f(U) \cap V = \emptyset$.

Proof: We shall prove that $f(U) \cap V = \emptyset$ if $(U \times V) \cap G(f) = \emptyset$. Let $(U \times V) \cap G(f) \neq \emptyset$. Then there exists $(x, y) \in (U \times V)$ and $(x, y) \in G(f)$ which implies $x \in U, y \in V$ and $y = f(x) \in V$. Therefore $f(U) \cap V \neq \emptyset$.

Theorem 6.3: If a function $f: X \to Y$ is $g_{s\alpha}$-continuous and Y is a T_1-space then $G(f)$ is contra $g_{s\alpha}$-closed in $X \times Y$.

Proof: Let $(x, y) \in (X \times Y)-G(f)$. Then $y \neq f(x)$. Since Y is T_1, there exists an open set V of Y such that $f(x) \in V, y \not\in V$. Since f is $g_{s\alpha}$-continuous, by theorem 4.1 there exists a $g_{s\alpha}$-open set U of X containing x such that $f(U) \subset V$. Therefore $f(U) \cap (Y - V) = \emptyset$ where $Y - V$ is closed in Y containing y. By lemma 6.2, $G(f)$ is a $g_{s\alpha}$-closed graph in $X \times Y$.

Theorem 6.4: Let $f: X \to Y$ be a function and $g: X \times Y$ be the graph of f defined by $g(x) = (x, f(x))$ for every $x \in X$. If g is contra $g_{s\alpha}$-continuous, then f is contra $g_{s\alpha}$-Continuous.

Proof: Let U be an open set in Y, then $X \times U$ is an open set in $X \times Y$. Since g is contra $g_{s\alpha}$-continuous, $f^{-1}(U) = g^{-1}(X \times U)$ is $g_{s\alpha}$-closed in X. Thus f is contra $g_{s\alpha}$-continuous.
Definition 6.5:

(i) α-T$_0$ if for every pair of distinct points x, y in X there exists a α-open set U containing one of the points but not the other.

(ii) α-T$_1$ if for every pair of distinct points x, y in X there exists a α-open set U containing x not y and a α-open set V containing y but not x.

(iii) α-T$_2$ if for every pair of distinct points x, y in X there exists disjoint α-open sets U and V containing x and y respectively.

Theorem 6.6: If $f : (X, \tau) \rightarrow (Y, \sigma)$ is an injective function with the α-closed graph $G(f)$ then X is α-T$_1$.

Proof: Let x and y be two distinct points of X, then $f(x) \neq f(y)$. Thus $(x, f(y)) \in X \times Y - G(f)$. Since $G(f)$ is α-closed, there exists a α-open set U containing x and an open set V containing $f(y)$ such that $f(U) \cap V = \emptyset$. By theorem 3.2 \cite{16}, U and V are α-open sets containing x and y such that $f(U) \cap f(V) = \emptyset$. Hence $y \notin U$. Similarly there exist α-open sets M and N containing y and $f(x)$ such that $f(M) \cap N = \emptyset$. Hence $x \notin M$. It follows that X is α-T$_1$.

Theorem 6.7: If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a surjective function with the α-closed graph $G(f)$ then Y is α-T$_1$.

Proof: Let y and z be two distinct points of Y. Since f is surjective there exist a point x in X such that $f(x) = z$. Therefore $(x, y) \notin G(f)$, by lemma 6.2, there exists a α-open set U containing x and an open set V containing y such that $f(U) \cap V = \emptyset$. By theorem 3.2 \cite{16}, U and V are α-open sets containing x and y such that $f(U) \cap V = \emptyset$. It follows that $z \notin V$. Similarly there exist $w \in X$ such that $f(w) = y$. Hence $f(w) \notin G(f)$. Similarly there exist α-open sets M and N containing w and z respectively such that $f(M) \cap N = \emptyset$. Thus $y \notin N$. Hence the space Y is α-T$_1$.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared.