

DECOMPOSITION OF G δ S-HOMEOMORPHISM IN TOPOLOGICAL SPACES

K. PRIYA*1, V. THIRIPURASUNDARI²

¹M. Phil Scholar, PG and Research Department of Mathematics, Sri S. R. N. M. College, Sattur - 626 203, Tamil Nadu, India.

²Assistant Professor, PG and Research Department of Mathematics, Sri S. R. N. M. College, Sattur - 626 203, Tamil Nadu, India.

(Received On: 15-03-17; Revised & Accepted On: 10-04-17)

ABSTRACT

In this paper, we introduce the concept of $g\delta sg$ -homeomorphisms and study some of their properties. Also the diagram of implications is given.

Keywords: gδs-closed set, gδs-continuous map, gsc-homeomorphism, sgc-homeomorphism, gsg-homeomorphism, gδsc-homeomorphism.

1. INTRODUCTION

Levine [8] has generalized the concept of closed sets to generalized closed sets. Devi, Balachandran and Maki [2] defined two classes of maps called semi generalized homeomorphisms and generalized semi homeomorphisms and also defined two classes of maps called sgc-homeomorphisms and gsc-homeomorphisms. In this paper, we introduce the class of maps called gδsg-homeomorphisms and study their properties.

2. PRELIMINARIES

Throughout this paper (X, τ) (or simply X) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and Ac denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1 [5]: A subset A of X is called generalized δ -semiclosed (briefly $g\delta s - closed$) set if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in X.

Definition 2.2 [4]: A function f: $X \to Y$ is called gbs-continuous if the inverse image of every closed set in Y is gbsclosed set in X.

Definition 2.3 [6]: A function f: $X \rightarrow Y$ is said to be gds-closed (resp.gds-open) if f(V) is gds-closed (resp.gds-open) in Y for every closed (resp-open) set V in X.

Definition 2.4 [6]: A function f: $X \to Y$ is gos-irresolute if $f^{-1}(V)$ is gos-closed in X for every gos-closed set V in Y

Definition 2.5 [5]: A bijective function f: $X \rightarrow Y$ is said to be gds-homoeomorphism if f is both gds-continuous and gds-open, equivalently, if f and f^{-1} both are gds-continuous.

Definition 2.6 [2]: A bijective map $f: X \to Y$ is called sgc-homeomorphism if the function f and the inverse function f^{-1} are both sg-irresolute.

Corresponding Author: K. Priya^{*1} ¹M. Phil Scholar, PG and Research Department of Mathematics, Sri S. R. N. M. College, Sattur - 626 203, Tamil Nadu, India.

K. Priya^{*1}, *V. Thiripurasundari*² / Decomposition of GδS-Homeomorphism in Topological Spaces / IJMA- 8(4), April-2017.

Definition 2.8 [3]: A bijective map $f: X \to Y$ is called gsg-homeomorphism if the function f and the inverse function f^{-1} are both gsg-irresolute.

Definition 2.9 [7]: A topological space X is called Tgδs-space if every gδs-closed set in it is closed.

Definition 2.10 [7]: A topological space X is called gosT_{1/2}-space if every gos-closed set in it is semiclosed.

3. GoSG-homeomorphism

Definition 3.1: A bijective map $f: X \to Y$ is called gosc-homeomorphism if the function f and the inverse function f^{-1} are both gos-irresolute.

Example 3.2: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\} \text{ and } \sigma = \{Y, \phi, \{b\} \text{ be topologies on } X \text{ and } Y \text{ respectively. Define a function } f : X \rightarrow Y \text{ by } f(a) = a, f(b) = b \text{ and } f(c) = c. \text{ Then } f \text{ is gosc-homeomorphism.}$

Remark 3.3: Every semi-homeomorphism is $g\delta sc$ -homeomorphism. But converse need not be as shown in the following example.

Example 3.4: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$ be topologies on X and Y respectively. Define a function f: $X \to Y$ as f(a) = a, f(b) = b and f(c) = c. Then f is gosc-homeomorphism but not semi-homeomorphism, since for an open set $\{b\}$ in Y, $f^{-1}(\{b\}) = \{b\}$ is not open in X.

Remark 3.5: Every homeomorphism is $g\delta sc$ -homeomorphism. But converse need not be true as shown in the following example.

Example 3.6: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}$ be topologies on X and Y respectively. Then the identity function f: $X \to Y$ is gosc-homeomorphism but not homeomorphism, since for an open set $\{a, b\}$ in Y, $f^{-1}(\{a, b\}) = \{a, b\}$ is not open in X.

Remark 3.7: Every gsc-homeomorphism is gosc-homeomorphism. But converse need not be true as shown in the following example.

Example 3.8: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}\}$ be topologies on X and Y respectively. Define a function f: $X \to Y$ as f(a) = a, f(b) = b and f(c) = c. Then f is gos-chomeomorphism but not gsc-homeomorphism, since the set $\{a, b\}$ is gs-closed in Y, but the set $f^{-1}(\{a, b\}) = \{a, b\}$ is gs-closed in X.

Remark 3.9: Every gosc-homeomorphism is gos-homeomorphism. But converse need not be true as shown in the following example.

Example 3.10: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, c\}\}$ be topologies on X and Y respectively. Define a function f: $X \to Y$ as f(a) = a, f(b) = b and f(c) = c. Then f is gos-homeomorphism but not goschomeomorphism, since for an open set $\{b\}$ in Y, $f^{-1}(\{b\}) = \{b\}$ is not gos-open in X.

Remark 3.11: Every sgc-homeomorphism is gosc-homeomorphism. But converse need not be true as shown in the following example.

Example 3.12: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$ be topologies on X and Y respectively. Define a function f: $X \rightarrow Y$ as f(a) = a, f(b) = b and f(c) = c. Then f is gdsc-homeomorphism but not sgc-homeomorphism, since the set $\{b\}$ is sg-closed in Y, $f^{-1}(\{b\}) = \{b\}$ is not sg-closed in X.

Theorem 3.13: If f: X \rightarrow Y and g: Y \rightarrow Z be two gosc-homeomorphism functions, then (g \circ f) is gosc-homeomorphism.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be bijective map.

(i)To prove $(g \circ f)$ is gos-irresolute map.

Let V be gos-closed set in Z. Since g is gos-irresolute map, $g^{-1}(V)$ is gos-closed set in Y. Since f is gos-irresolute map, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is gos-closed set in X. Therefore $(g \circ f)$ is gos-irresolute.

(ii)To prove $(g \circ f)-1$ is gos-irresolute map.

Let V be gds-closed set in X. Since f^{-1} is gds-irresolute, $(f^{-1})^{-1}(V) = f(V)$ is gds-closed set in Y. Since g^{-1} is gds-irresolute $(g^{-1})^{-1}(f(V)) = gf(V) = g \circ f(V)$ is gds-closed set in Z. Therefore $(g \circ f)^{-1}$ is gds-irresolute map. Hence from (i) and (ii) $(g \circ f)$ is gdsc-homeomorphism.

K. Priya^{*1}, *V. Thiripurasundari*² / Decomposition of GδS-Homeomorphism in Topological Spaces / IJMA- 8(4), April-2017.

Definition 3.14: A bijection map $f : X \to Y$ is said to be gosg-irresolute map, if $f^{-1}(A)$ is sg-closed in X for every gosclosed set A of Y

Example 3.15: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$ be topologies on X and Y respectively. Define a function f: $X \rightarrow Y$ as f(a) = b, f(b) = a and f(c) = c. Then f is gosg-irresolute map.

Definition 3.16: A bijection map $f: X \to Y$ is said to be gdsg-homeomorphism if the function f and the inverse function f^{-1} are both gdsg-irresolute maps. If there exists a gdsg-homeomorphism from X to Y, then the spaces (X, τ) and (Y, σ) are said to be gdsg-homeomorphic.

The family of all gosg-homeomorphism of any topological spaces (X, τ) is denoted by $gosgh(X, \tau)$

Remark 3.17: The following two examples shows that the concepts of homeomorphism and $g\delta sg$ -homeomorphism are independent of each other.

Example 3.18: Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, c\}\}$ be topology on X. Define a function $f_X : (X, \tau) \rightarrow (X, \tau)$ as $f_X(a) = a, f_X(b) = b$ and $f_X(c) = c$. Then f_X is homeomorphism but not gosg-homeomorphism, since the set $\{a, b\}$ is gosclosed but the set $f_X^{-1}(\{a, b\}) = \{a, b\}$ is not sg-closed in X.

Example 3.19: Let X be any set which contains at least two elements, τ and σ be discrete and indiscrete topologies on X respectively. The identity map $I_X: (X, \tau) \to (X, \sigma)$ is a gosg-homeomorphism but is not a homeomorphism.

Remark 3.20: Every gosg-homeomorphism is gsc-homeomorphism. But converse need not be true as shown in the following example.

Example 3.21: Let $X = \{a, b, c\}, \tau = \{X, \varphi, \{a\}, \{a, b\}\}$ be topologies on X. Define a function $f_X : (X, \tau) \rightarrow (X, \tau)$ as $f_X(a) = a, f_X(b) = b$ and $f_X(c) = c$. Then f is gsc-homeomorphism but not gosg-homeomorphism, since the set $\{a, b\}$ is gos-closed set but the set $f_X^{-1}(\{a, b\}) = \{a, b\}$ is not sg-closed in X.

Theorem 3.22: Every gosg-homeomorphism is gosc-homeomorphism.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be bijective map.

(i)To prove f is gδs-irresolute map.

Let V be a gos-closed set in Y. Since f is gos-irresolute map, $f^{-1}(V)$ is sg-closed set in X. We know that, every sgclosed set is gos-closed set. Therefore, $f^{-1}(V)$ is gos-closed set in X. Hence f is gos-irresolute map.

(ii)To prove f^{-1} is gos-irresolute map.

Let V be a gos-closed set in X. Since f^{-1} is gosg-irresolute map, $(f^{-1})^{-1}(V) = f(V)$ is sg-closed set in Y. We know that, every sg-closed set is gos-closed set.

Therefore, f(V) is gos-closed set in Y. Hence f^{-1} is gos-irresolute map.

Hence from (i) and (ii) f is gosc-homeomorphism.

Remark 3.23: Converse of the above theorem need not be true as shown in the following example.

Example 3.24: Let $X = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}\}$ be topology on X. Define a function $f_X : (X, \tau) \to (X, \tau)$ as $f_X(a) = a, f_X(b) = b$ and $f_X(c) = c$. Then f_X is gosc-homeomorphism but not gosg-homeomorphism, since the set $\{a, b\}$ is gos-closed but the set $f_X^{-1}(\{a, b\}) = \{a, b\}$ is not sg-closed in X.

Theorem 3.25: Every gosc-homeomorphism from $gost_{1/2}$ space onto itself is gosg-homeomorphism.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be bijective map.

(i)To prove f is gosg-irresolute map.

Let V be a gos-closed set in Y. Since f is gos-irresolute map, $f^{-1}(V)$ is gosclosed set in X. Since X is $gosT_{1/2}$ space, $f^{-1}(V)$ is semiclosed in X. We know that every semiclosed set is sg-closed set. Therefore, $f^{-1}(V)$ is sg-closed set in X. (ii) To prove f^{-1} is gosg-irresolute map.

Let V be a gos-closed set in X. Since f^{-1} is gos-irresolute map, $(f^{-1})^{-1}(V) = f(V)$ is gos-closed set in Y. Since Y is $gosT_{1/2}$ space, f(V) is semiclosed. We know that, every semiclosed set is sg-closed set. Therefore, f(V) is sg-closed set in Y. Hence from (i) and (ii) f is gosg - homeomorphism.

Theorem 3.26: Every gosg-homeomorphism is gos-homeomorphism.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be bijective map.

(i)To prove f is gδs-continuous map.

Let V be a closed set in Y. Since f is gosg-irresolute map, $f^{-1}(V)$ is sg-closed set in X. We know that, every sg-closed set is gos-closed set. Therefore, $f^{-1}(V)$ is gos-closed set in X.

(ii)To prove f-1 is gδs-continuous map.

Let V be a closed set in X. We know that every closed set is gos-closed set. Since f^{-1} is gosg-irresolute map, $(f^{-1})^{-1}(V) = f(V)$ is sg-closed set in Y, but we know that, every sg-closed set is gos-closed set. Therefore, f(V) is gos-closed set in Y.

Hence from (i) and (ii) f is gos-homeomorphism.

Remark 3.27: Converse of the above theorem need not be true as shown in the following example.

Example 3.28: Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$ be topology on X. Define a function f: $(X, \tau) \rightarrow (Y, \sigma)$ as f(a) = a, f(b) = b and f(c) = c. Then f is gos-homeomorphism but not gosphomeomorphism, since the set $\{b, c\}$ is gos-closed set in Y, but the set $f^{-1}(\{b, c\}) = \{b, c\}$ is not sg-closed in X.

Theorem 3.29: Every gos-homeomorphism from Tgos space onto itself is gosg-homeomorphism.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be bijective map.

(i)To prove f is gδsg-irresolute map.

Let V be a gos-closed set in Y. Since f is gos-continuous map, $f^{-1}(V)$ is gos-closed set in X. Since X is Tgos space, $f^{-1}(V)$ is closed in X. We know that every closed set is sg-closed set. Therefore, $f^{-1}(V)$ is sg-closed set in X.

(ii)To prove f^{-1} is gosg-irresolute map.

Let V be a gos-closed set in X. Since f^{-1} is gos-continuous map, $(f^{-1})^{-1}(V) = f(V)$ is gos-closed set in Y. Since Y is gosT space, f(V) is closed. We know that, every closed set is sg-closed set. Therefore, f(V) is sg-closed set in Y. Hence from (i) and (ii) f is gosg-homeomorphism.

Remark 3.30: From the all above statement, we have the following diagram.

REFERENCES

8.

- 1. Ahmet Z. Ozcelik, Seran Narli, "Decomposition of homeomorphism on topological spaces", International Journal of Mathematics Sciences Vol. 1, No 1, 2007, 72-75.
- 2. R. Devi, H. Maki, K. Balachandran, "Semi-Generalized closed maps and Generalized Semi closed maps", Mem. Fac. Sci. Kochi Univ. (Math) 14 (1993), 41-54
- 3. Mohamed Rajik. M. "Decomposition of homeomorphism in topological spaces", International Journal of Advanced Science and Engineering Research Vol. 1, Issue 1, June 2016
- 4. S. S. Benchalli, Umadevi I. Neeli and G. P. Siddapur, "gδs-continuous functions in topological spaces", Int. Jl. Pure Appl. Maths (Bulgeria)
- 5. S. S. Benchalli and Umadevi I. Neeli, "Generalized Delta semiclosed sets in Topological spaces", Int. Jl. Appl. Mahs, Vol. 24. No. 1(2011), 21-38
- S. S. Benchalli and Umadevi I. Neeli, "gδs-closed functions in Topological Spaces", Vol. 1(1), (2012), 161-173.
- S. S. Benchalli and Umadevi I Neeli, "On gδs-Separation axioms in Topologica Spaces", Jl. Adv. Stud, in Topology. Jl. of Advanced Studies in Topology Vol. 3 No 4, (2012), P. 93-101

N. Levine, "Generalized closed sets in topology", Rend. Circ. Mat. Patemo (2) 19(1970), 89-96.

Source of support: Nil, Conflict of interest: None Declared.