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ABSTRACT 
The equivalent definition actually specifies a constant to be called the identity element (neutral element), and a unary 
operation that plays the role of the inverse map. To show the equivalence, we really need to show that the identity 
element and inverse map of a group are already uniquely determined by the binary operation.  
 
 
1.  INTRODUCTION 
 
In mathematics, a group is an algebraic structure consisting of a set of elements equipped with an operation that 
combines any two elements to form a third element. The operation satisfies four conditions called the group axioms, 
namely closure, associativity, identity and invertibility. 
 
The main difference is that the above definition (textbook definition) only postulates existence of an identity element 
(neutral element) and inverses, but does not include them as part of the group structure.  
 
1.1 Definition: Let * be a binary operation defined on G. an element e ∈ G is called a left identity if e * a  =  a for all   
a ∈ G. Then e is called a right identity if  a ∗  e  =  a  for all  a ∈ G. 
 
1.2 Example 

1. In C we define z ° z = |z  |z.  Here all elements z such that |z|  = 1  are left identities. 
2. In R we define a * b = ab2. Here 1 and  -1  are right identities. 
3. In N we define a * b = a. Here every element is a right identity. 

 
1.3 Definition: Let * be a binary operation defined on G. Let e ∈ G be the identity element.  Let a ∈ G. An element     
a’ ∈ G  is called a left inverse of  a if  a’ * a  =  e.   a’ is called a right inverse of a if a * a’  =  e. 
 
1.4 Note: The identity element e of a group G is both a left identity and a right identity. The inverse of any element       
a ∈ G is both a left inverse and a right inverse. 
 
1.5 Theorem: Let G be a non empty set with an associative binary operation defined on it such that there exists a left 
identity  e in  G  and each element  a ∈ G  has a left inverse a’ with respect to  e.  Then G is a group.  
 
Proof: 
a'  is a left inverse of a  so that  a’a  =  e. 
 
let  a’’ be a left inverse of  a’  so that  a’’a’  =  e   
 
then  aa’ = e(aa’)  [since e is left identity] 

= (a’’a’)(aa’) 
= a’’(a’a)a’   [associative] 
= a’’ (ea’) 
= a’’a’    [since e is left identity] 
= e. 
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Hence, a’  is also a right inverse of a. 
 
Also, a = ea  = (aa’)a = a(a’a) = ae. 
 
Hence, e is also a right identity. 
 
Thus ea = a = ae  and  a’a = aa’ = e  and for all  a ∈ G. Hence G is a group. 
 
1.6 Theorem: Let G  be a non empty set with an associative binary operation defined on it such that there exists a right 
identity  e  in  G  and each element a ∈ G  has a right inverse  a’  with respect to  e.  Then G is a group. 
 
The proof is Similar to previous theorem. 
 
1.7 Note: If G is a non empty set with an associative binary operation * defined on it such that there exists a left 
identity and a right inverse for each element, then (G, *) need not be a group. 
 
For example, consider (R, *) where a * b  =  |a|b. 
 
Clearly * is a binary operation on R*. 

 
Now, a * (b*c) = (a * b) * c = |a||b|c and hence  *  is associative. 
(-1)  * a =  |-1|a  =  a 
 
Hence  -1  is a left identity. 
 
Now, when a < 0; 
a *  (1/a)  =  |a|(1/a)  =  (-a)(1/a)  =  -1  and   
 
when a > 0; 
a  *  (-1/a)  =  |a|(-1/a)  =  (a) (-1/a)  = -1.   
 
Hence if a < 0, (1/a) is the right inverse of  a  and if  a>0, (-1/a)  is the right inverse of  a. However  (R*, *)  is not a 
group since the equation  y * a  =  a  has two solutions namely  1  and  -1. 
 
1.8 Theorem: Let G be a non empty set with an associative binary operation defined on it such that the equation ax = b  
and  ya  =  b  have unique solutions for  x  and  y  in  G.  Then G is a group. 
 
Proof:  
Let a ∈ G. Then there exists a unique e ∈ G such that ea = a. 
 
Now, let b be any other element in G.  then there exists a unique x in G  such that  ax = b 
 
Now, eb = e(ax) = (ea)x = ax = b 
eb = b for all  b  ∈  G  so that e  is a left identity. 
 
Let a ∈ G. Then ya = a has a unique solution a’. 
a'a = e so that a’ is the left inverse of a. 
 
Hence by theorem 4.1.5, G  is a group. 
 
1.9 Theorem: Let G be a finite set with an associative binary operation defined on G in which both cancellation laws 
hold good. Then G is group. 
 
Proof: 
Let G = { a1,a2,  ……, an } 
 
Now let  a, b ∈ G 
 
Consider the elements aa1, aa2,   ……..aan. 
 
All these elements are distinct, for if  aar  =  aas  then   ar  =  as  (by cancellation law). 
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Hence aa1, aa2,……aan  are just the elements  a1, a2, ……an  of G  in some order and hence   
aai = b  for some  i. 
 
Thus the equation ax = b has a unique solution for x in G. Similarly taking the elements aa1, aa2,……aan   we can prove 
that the equation  ya = b  has a unique solution for y in  G. 
 
Hence by previous theorem, G is a group. 
 
1.10 Note: The above theorem is not t rue if G is infinite. For example, consider (N, +).  Clearly + is an associative 
binary operation defined on  N  and both cancellation laws holf good in N.        
      
But (N, +) is not a group.  
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