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ABSTRACT 
A relaxed absolute divisor cordial labeling of a graph G with vertex set V is a bijection  from V to  {−1, 0, 1} such that 
each edge uv is assigned the label 1 if |f(u) − f(v)| is even, otherwise 0 with the condition that  |ef (0) − ef (1)| ≤ 1. The 
graph that admits a relaxed absolute divisor cordial labeling is called a relaxed absolute divisor cordial graph.  In this 
paper, we prove some standard graphs such as path, cycle, wheel, star, and bistar are relaxed absolute divisor cordial 
graphs.                                       
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1. INTRODUCTION 
 
All graphs considered here are finite, simple and undirected. Gallian [1] has given a dynamic survey of graph labeling. 
For graph theoretic terminologies and notations we follow Harary [2]. The origin of graph labeling can be attributed to 
Rosa [3]. A path related relaxed cordial graphs were introduced by Dr.A.Nellai Murugan and R.Megala [4]. This 
definition motivates us to define a Relaxed absolute divisor cordial labeling of a graph and we prove some standard 
graphs such as path, cycle, wheel, star and  bistar are relaxed absolute divisor cordial graphs. 
  
2. PRELIMINARIES 
 
Definition 2.1: Let G = (V (G),E(G)) be a simple graph and f : V (G) → {1, 2, . . . , |V (G)|} be a bijection. For each 
edge uv, assign the label 1if either f(u) | f(v) or f(v) | f(u) and the label 0 otherwise. The function f is called a divisor 
cordial labeling if |ef (0) − ef (1)| ≤ 1. A graph which admits a divisor cordial labeling is called a divisor cordial graph. 
 
Definition 2.2: Let G = (V, E) be a graph with p vertices and q edges. A Relaxed Cordial labeling of a graph G with 
vertex set V is bijection from V to {−1, 0, 1} such that each edge uv is assigned the label 1 if |f(u)+f(v)| = 1or  0 if     
|f(u) + f(v)| = 0 with the condition that |ef (0) − ef (1)| ≤ 1. 
 
Definition 2.3: A Relaxed absolute divisor cordial labeling of a graph G with vertex set V is a bijection from V to       
{−1, 0, 1} such that each edge uv is assigned the label 1 if |f(u) − f(v)| is even, otherwise 0 with the condition that         
|ef (0) − ef (1)| ≤ 1. The graph that admits a relaxed absolute divisor cordial labeling is called a relaxed absolute divisor 
cordial graph. 
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3. MAIN RESULTS 
 
Theorem 3.1: Path Pn is a relaxed absolute divisor cordial graph. 
 
Proof: Let V (Pn) = {ui : 1 ≤ i ≤ n} and E(Pn) = {uiui+1 : 1 ≤ i ≤ n − 1}. Then |V (Pn)| = n and |E(Pn)| = n − 1. 
 
Define    f: V (Pn) → {−1, 0, 1} by 

f(ui)   =

( )
( )
( )
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
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≡
≡−
≡

4mod31
2mod01
4mod10

i
i
i

        1≤ 𝑖𝑖 ≤ 𝑛𝑛 

 
The induced edge labeling are 

𝑓𝑓∗ (uiui+1)  =
( )
( )


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≡
≡

2mod3,21
4mod1,00

i
i

         1≤ 𝑖𝑖 ≤ 𝑛𝑛-1 

 
Here,      ef (1) = ef (0)           for n ≡ 1, 3(mod4) 

ef (1) = ef (0) + 1     for n ≡ 0(mod4) 
ef (0) = ef (1) + 1      for n ≡ 2(mod4) 

 
Therefore, path Pn satisfies the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the path Pn is a relaxed absolute divisor cordial graph. 
 
Example 3.2: Consider the graph P6 

 
Here,   ef (0) = 3 and ef (1) = 2 
 
Therefore, path P6 satisfies the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the path P6 is relaxed absolute divisor cordial graph. 
 
Theorem 3.3: Cycle Cn is a relaxed absolute divisor cordial graph except when n ≡ 2(mod4). 
 
Proof: Let V (Cn) = {ui : 1 ≤ i ≤ n} and E(Cn) = {uiui+1 : 1 ≤ i ≤ n – 1} ∪{u1un}. Then |V (Cn)| = n and |E(Cn)| = n. 
 
Define    f: V (Cn) → {−1, 0, 1} by 

f(ui) =

( )
( )
( )




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

≡
≡−
≡

4mod31
2mod01
4mod10
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i
i

      1≤ 𝑖𝑖 ≤ 𝑛𝑛 

 
The induced edge labeling are, 

𝑓𝑓∗ (u1un) = 0  and 

𝑓𝑓∗ (uiui+1) =
( )
( )




≡
≡

2mod3,21
4mod1,00

i
i

    1≤ 𝑖𝑖 ≤ 𝑛𝑛 

 
Here,      ef (0) = ef (1) + 1     for n ≡ 1, 3(mod4) 

ef (0) = ef (1) + 1     for n ≡ 0, 2(mod4) 
 
Therefore, cycle Cn satisfies the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the cycle Cn is relaxed absolute divisor cordial graph except when n ≡ 2(mod4). 
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Example 3.4: Consider the graph C5. 

 
Here, ef (0) = 3, ef (1) = 2 
 
Therefore, cycle C5 satisfies the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the cycle C5 is a relaxed absolute divisor cordial graph except when n ≡ 2(mod4). 
 
Theorem 3.5: Cycle Cn is not a relaxed absolute divisor cordial graph for n ≡ 2(mod4). 
 
Proof: Let V (Cn) = {ui : 1 ≤ i ≤ n} and (Cn) = {uiui+1 : 1 ≤ i ≤ n – 1} ∪{u1un}. Then |V(Cn)| = n and |E(Cn)| = n. 
 
Define    f: V (Cn) → {−1, 0, 1} by 

f(ui) =

( )
( )
( )








≡
≡−
≡

4mod31
2mod01
4mod10

i
i
i

   1≤ 𝑖𝑖 ≤ 𝑛𝑛 

 
The induced edge labeling are, 

𝑓𝑓∗ (u1un) = 0 and 𝑓𝑓∗ (uiui+1) =
( )
( )




≡
≡

2mod3,21
4mod1,00

i
i

    1≤ 𝑖𝑖 ≤ 𝑛𝑛 

 
Here,    ef(0) = 𝑛𝑛  

2
 +1 and  ef (1) =  𝑛𝑛

2
 − 1 

 
Thus,    |ef (0) − ef (1)| = | 𝑛𝑛

2
+ 1 − 𝑛𝑛

2
+ 1| = 2≰1. 

 
Therefore, cycle Cn does not satisfy the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the Cycle Cn is not a relaxed absolute divisor cordial graph n ≡ 2(mod4). 
 
Example 3.6: Consider the graph C6 . 

 
Here, ef (0) = 4 and ef (1) = 2 
 
Therefore, cycle C6 does not satisfy the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the cycle C5 is not a relaxed absolute divisor cordial graph for n ≡ 2(mod4). 
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Theorem 3.7: Wheel Wn is a relaxed absolute divisor cordial graph when n is even. 
 
Proof: Let V (Wn) = {u, ui : 1 ≤ i ≤ n} and E(Wn) = {uui : 1 ≤ i ≤ n}∪{uiui+1 : 1 ≤ i ≤ n − 1}∪{unu1}.  
 
Then  

|V (Wn)| = n + 1 and |E(Wn)| = 2n. 
 
Define    f: V (Wn) → {−1, 0, 1} by 

f(u) = 0 and f(ui) =
( )
( )




≡
≡−

2mod01
2mod11

i
i

    1≤ 𝑖𝑖 ≤ 𝑛𝑛 

 
The induced edge labeling are 

𝑓𝑓∗(uui) = 0         1≤ i ≤ n 
𝑓𝑓∗ (uiui+1) = 1     1 ≤ i ≤ n − 1   and    𝑓𝑓∗ (u1un) = 1 

 
Here,      ef (0) = ef (1), for all n 
 
Therefore, wheel Wn satisfies the condition |ef (0) − ef (1)| ≤ 1 when n is even. 
 
Hence, the Wheel Wn is a relaxed absolute divisor cordial graph when n is even. 
 
Example 3.8: Consider the graph W6. 

 
 
Here, ef (0) = 6 and  ef (1) = 6 
 
Therefore, wheel W6 satisfies the condition |ef (0) − ef (1)| ≤ 1 when n is even. 
 
Hence, the wheel W6 is a relaxed absolute divisor cordial graph when n is even. 
 
Theorem 3.9: Wheel Wn is not a relaxed absolute divisor cordial graph when n is odd. 
 
Proof: Let V (Wn) = {u, ui : 1 ≤ i ≤ n} and E(Wn) = {uui : 1 ≤ i ≤ n}∪{uiui+1 : 1 ≤ i ≤ n − 1}∪{unu1}. 
 
Then |V (Wn)| = n + 1 and |E(Wn)| = 2n. 
 
Define    f: V (Wn) → {−1, 0, 1} by 

f(u) = 0 

f(ui) =
( )
( )




≡
≡−

2mod01
2mod11

i
i

    1≤ 𝑖𝑖 ≤ 𝑛𝑛 

 
The induced edge labeling are 

𝑓𝑓∗ (uui) = 0     1≤ i ≤ n 
𝑓𝑓∗ (uiui+1) = 1 1 ≤ i ≤ n − 1 and   𝑓𝑓∗(u1un) = 1 

 
Here,   ef (0) = n + 1 and ef (1) = n − 1 
 
Thus,  |ef (0) − ef (1)| = |n + 1 − n + 1| = 2≰1. 
 
Therefore, wheel Wn does not satisfy the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the wheel Wn is not a relaxed absolute divisor cordial graph when n is odd. 
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Example 3.10: Consider the graph W3. 

 
 
Here,  ef (0) = 4 and ef (1) = 2 
 
Therefore, wheel W7 does not satisfy the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the wheel W7 is not a relaxed absolute divisor cordial graph when n is odd. 
 
Theorem 3.11: Star K1,n is a relaxed absolute divisor cordial graph. 
 
Proof: Let V (K1,n) = {u, ui : 1 ≤ i ≤ n} and E(K1,n) = {uui : 1 ≤ i ≤ n}. Then |V (K1,n)| = n + 1 and |E(K1,n)| = n. 
 
Define    f: V (K1,n) → {−1, 0, 1} by 
 

f(u) = 1 

f(ui) =

( )
( )
( )








≡
≡−
≡

4mod31
2mod01
4mod10

i
i
i

 1≤ 𝑖𝑖 ≤ 𝑛𝑛 

 
The induced edge labeling are 

𝑓𝑓∗(uui)  = 
( )
( )




≡
≡

2mod01
2mod10

i
i

         1≤ 𝑖𝑖 ≤ 𝑛𝑛 

 
Here,      ef (0) = ef (1)           for n ≡ 0(mod2) 

ef (0) = ef (1) + 1    for n ≡ 1(mod2) 
 
Therefore, star K1,n satisfies the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the star K1,n is a relaxed absolute divisor cordial graph. 
. 
Example 3.12: Consider the graph K1,7. 
 
 

 
 
Here, ef (0) = 4 and ef (1) = 3. 
 
Therefore, star K1,7 satisfies the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the star K1,7 is a relaxed absolute divisor cordial graph. 
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Theorem 3.13: Bistar Bm,n is a relaxed absolute divisor cordial graph. 
 
Proof: Let V (Bm,n) = {u, v, ui, vj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(Bm,n) = {uui:1 ≤ i ≤ m}∪{vvj : 1 ≤ j ≤ n}.  
 
Then |V(Bm,n) | = m + n + 2 and |E(Bm,n)| = m + n + 1. 
 
Define    f: V (Bm,n)→ {−1, 0, 1} by 
 

f(u) = f(v) = 1 and 

f(ui) = 
( )
( )




≡
≡−

2mod11
2mod01

i
i

    1≤ 𝑖𝑖 ≤ 𝑚𝑚 

 

f(vj) =
( )
( )




≡
≡

2mod11
2mod00

j
j

      1≤ 𝑗𝑗 ≤ 𝑛𝑛 

 
The induced edge labeling are 

𝑓𝑓∗(uui)=
( )
( )




≡
≡

2mod11
2mod00

i
i

     1≤ 𝑖𝑖 ≤ 𝑚𝑚 

 

 𝑓𝑓∗(vvj)=
( )
( )




≡
≡

2mod11
2mod00

j
j

    1≤ 𝑗𝑗 ≤ 𝑛𝑛 

 
Here, ef (0) = ef (1)    for all n 
 
Therefore, bistar Bm,n satisfies the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the bistar Bm,n is a relaxed absolute divisor cordial graph. 
 
Example 3.14: Consider the graph B4,5. 

 
 
Here, ef (0) = 5 and  ef (1) = 5 
 
Therefore, bistar B4,5 satisfies the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the bistar B4,5 is a relaxed absolute divisor cordial graph. 
 
Observation 3.15: Bistar Bn,n is a relaxed absolute divisor cordial graph. 
 
For, the vertex labeling and edge labeling are defined by the above theorem - 3.12. 
 
Here,   ef (0) = ef (1) + 1    for i ≡ 0(mod2)   and 
            ef (1) = ef (0) + 1    for i ≡ 1(mod2) 
 
Therefore, bistar Bn,n satisfies the condition |ef (0) − ef (1)| ≤ 1. 
 
Hence, the bistar Bn,n is a relaxed absolute divisor cordial graph. 
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