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ABSTRACT 
In this paper we introduce pg**- connected space, pg**-component, pg**- connected modulo 𝐼𝐼 space andestablish 
results about the relation between them. 
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1. INTRODUCTION  
 
Levine [3] introduced the class of g-closed sets in 1970. Veerakumar[7] introduced g*-closed sets. P M Helen [5] 
introduced g**-closed sets. A.S.Mashhour, M.E Abd El. Monsef and S.N.EI.Deeb [5] introduced a new class of pre-
open sets in 1982. Ideal topological spaces have been first introduced by K.Kuratowski [2] in 1930. The purpose of this 
paper is to introduce pg**- connected space, pg**-component and pg**- connected modulo 𝐼𝐼 space and investigate 
their properties. 
 
2. PRELIMINARIES 
 
Definition 2.1: A subset 𝐴𝐴 of a topological space (𝑋𝑋, 𝜏𝜏) is called a pre-open set [4] if 𝐴𝐴 ⊆ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝐴𝐴) and a pre-closed 
set if 𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) ⊆ 𝐴𝐴. 
 
Definition 2.2: A subset 𝐴𝐴 of topological space (𝑋𝑋, 𝜏𝜏) is called 

1. generalized closed set (g-closed) [3] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open in (𝑋𝑋, 𝜏𝜏). 
2. g*-closed set [7] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g-open in (𝑋𝑋, 𝜏𝜏). 
3. g**-closed set [5] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g*-open in(𝑋𝑋, 𝜏𝜏). 
4. pg**- closed set[6] if 𝑝𝑝𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g*-open in(𝑋𝑋, 𝜏𝜏). 

 
Definition 2.3: A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏)  →  (𝑌𝑌,𝜎𝜎) is called  

1. pg**-irresolute[6] if 𝑓𝑓−1(𝑉𝑉) is a pg**-closed set of (𝑋𝑋, 𝜏𝜏) for every pg**-closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
2. pg**-continuous[6] if 𝑓𝑓−1(𝑉𝑉) is a pg**-closed set of (𝑋𝑋, 𝜏𝜏)for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
3. pg**-resolute[6] if 𝑓𝑓(𝑈𝑈) is pg**- open in 𝑌𝑌 whenever 𝑈𝑈 is pg**- open in 𝑋𝑋. 

 
Definition 2.4: An ideal [2] I on a nonempty set 𝑋𝑋  is a collection of subsets of 𝑋𝑋  which satisfies the following 
properties.(𝑖𝑖) 𝐴𝐴 ∈ 𝐼𝐼, B ∈I⟹ 𝐴𝐴∪ 𝐵𝐵 ∈ 𝐼𝐼   (𝑖𝑖𝑖𝑖)𝐴𝐴 ∈ 𝐼𝐼,𝐵𝐵 ⊂ 𝐴𝐴 ⟹ 𝐵𝐵 ∈ 𝐼𝐼 .  A topological space (𝑋𝑋, 𝜏𝜏) with an ideal 𝐼𝐼on 𝑋𝑋 is 
called an ideal topological space and is denoted by (𝑋𝑋, 𝜏𝜏, I). 
 
3. pg**- Connected space 
 
Definition 3.1: Let 𝑋𝑋 be a topological space. A pg**-separation of 𝑋𝑋 is a pair 𝐴𝐴 and 𝐵𝐵 of disjoint nonempty pg**- open 
subsets of 𝑋𝑋 whose union is 𝑋𝑋. The space 𝑋𝑋 is said to be pg**- Connected if there does not exist a pg**-separation of 
𝑋𝑋. If there exist a pg**-separation then 𝑋𝑋 is said to be pg**-disconnected. 
 
Note: If 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵 is a pg**-separation then 𝐴𝐴𝑐𝑐 = 𝐵𝐵 and 𝐵𝐵𝑐𝑐 = 𝐴𝐴 and hence 𝐴𝐴 and 𝐵𝐵 are pg**- closed. 
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Remark 3.2: A space 𝑋𝑋 is pg**- connected if and only if the only subsets of 𝑋𝑋 that are both pg**- open and pg**- 
closed in 𝑋𝑋 are the empty set and 𝑋𝑋 itself. 
 
Proof is obvious. 
 
Example 3.3: An infinite set with finite complement topology is pg**- connected since it is impossible to find two 
disjoint pg**- open sets. 
 
Example 3.4: Any indiscrete topological space (𝑋𝑋, 𝜏𝜏)with more than one point is pg**- disconnected since every 
subset is pg**- open. 
 
Theorem 3.5: Every pg**- connected space is connected but not conversely. 
 
Proof: Obvious, since every open set is pg**- open. 
 
Theorem 3.6: Every pg**- connected space is g**- connected but not conversely. 
 
Proof: Obvious, since every g**- open set is pg**- open. 
 
Example 3.7: The space in example (3.4) is connected but not pg**- connected. 
 
Example 3.8: The space 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} with topology 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎, 𝑐𝑐}} is g**-connected but not pg**- connected. 
 
Example 3.9: ℝ withusualtopology is connected and g**- connected but not pg**- connected. 
 
Since ℚ and ℚ𝑐𝑐  are pg**- open but not open and g**- open. 
 
Theorem 3.10: Let(X, τ) be a topological space. The following conditions are equivalent: 

(i) 𝑋𝑋 is pg**- connected. 
(ii) If 𝐴𝐴 and 𝐵𝐵 are disjoint pg**- open subsets of 𝑋𝑋 with 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵, then either 𝐴𝐴 = 𝜑𝜑 (hence 𝐵𝐵 = 𝑋𝑋) or 𝐵𝐵 = 𝜑𝜑     

(hence 𝐴𝐴 = 𝑋𝑋). 
(iii) If C and D are disjoint pg**- closed subsets of 𝑋𝑋 with  𝑋𝑋 = 𝐶𝐶 ∪ 𝐷𝐷, then either 𝐶𝐶 = 𝜑𝜑 (hence 𝐷𝐷 = 𝑋𝑋) or 𝐷𝐷 = 𝜑𝜑 

(hence 𝐶𝐶 = 𝑋𝑋). 
 
Proof: 
(𝒊𝒊) ⟹  (𝒊𝒊𝒊𝒊):  Let 𝑋𝑋 be pg**- connected and let 𝐴𝐴 and 𝐵𝐵 be pg**- open subsets of 𝑋𝑋 with 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵 and 𝐴𝐴 ∩ 𝐵𝐵 = 𝜑𝜑. 
Since 𝐴𝐴 = 𝑋𝑋 ∖ 𝐵𝐵, A is also pg**- closed, so either 𝐴𝐴 = 𝜑𝜑 or 𝐴𝐴 = 𝑋𝑋, (ii) follows. 
 
(𝒊𝒊𝒊𝒊) ⟹  (𝒊𝒊):  Assume (ii) and let G be a subset of 𝑋𝑋 which is both pg**- open and pg**- closed and hence 𝑋𝑋 ∖  G is also 
both pg**- open and pg**- closed. Since 𝑋𝑋 = 𝐺𝐺 ∪ 𝑋𝑋 ∖ G, (ii) gives that either 𝐺𝐺 = 𝜑𝜑 or 𝐺𝐺 = 𝑋𝑋. 
 
(𝒊𝒊𝒊𝒊) ⟺ (𝒊𝒊𝒊𝒊𝒊𝒊): This follows from the fact that if A and B are disjoint pg**- open sets with 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵, then 𝐴𝐴 and 𝐵𝐵 are 
also pg**- closed. Similarly if 𝐴𝐴 and 𝐵𝐵 are disjoint pg**- closed sets with 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵,  then 𝐴𝐴 and 𝐵𝐵 are also  pg**- 
open. 
 
Definition 3.11: Let 𝑌𝑌 be a subset of a topological space 𝑋𝑋. A pg**- separation of 𝑌𝑌 is a pair of disjoint nonempty 
pg**- open subsets𝐴𝐴 and 𝐵𝐵 of 𝑋𝑋 whose union is 𝑌𝑌. The space 𝑌𝑌 is said to be pg**- connected if there does not exist a 
pg**- separation of.𝑌𝑌 is said to be pg**- disconnected if there exist a pg**- separation of 𝑌𝑌. 
 
Theorem 3.12: If the sets 𝐴𝐴 and 𝐵𝐵 form a pg**-separation of 𝑋𝑋, and if 𝑌𝑌 is a pg**- open and pg**- connected subset of 
𝑋𝑋, then 𝑌𝑌 lies entirely within either 𝐴𝐴 or 𝐵𝐵. 
 
Proof: 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵 is a pg**- separation of 𝑋𝑋. Suppose 𝑌𝑌 intersects both 𝐴𝐴 and 𝐵𝐵 then 
            𝑌𝑌 = (𝐴𝐴 ∩ 𝑌𝑌) ∪ (𝐵𝐵 ∩ 𝑌𝑌) is a pg**- separation of 𝑌𝑌 which is a contradiction. 
 
Theorem 3.13: Let 𝐶𝐶  be a pg**-connected subset of a topological space 𝑋𝑋  and let 𝐷𝐷  be a subset such that                  
𝐶𝐶 ⊂ 𝐷𝐷 ⊂ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐶𝐶), then 𝐷𝐷 is pg**-connected. 
 
Proof: Suppose 𝐷𝐷 is pg**-disconnected, then 𝐷𝐷 = 𝐴𝐴 ∪ 𝐵𝐵 is a pg**-separation of 𝐷𝐷. Since 𝐶𝐶 is pg**-connected and 
𝐶𝐶 ⊂ 𝐷𝐷 = 𝐴𝐴 ∪ 𝐵𝐵, then either 𝐶𝐶 ⊂ 𝐴𝐴 or 𝐶𝐶 ⊂ 𝐵𝐵. To be specific, that 𝐶𝐶 is disjoint from 𝐵𝐵. This implies 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐶𝐶) ∩ 𝐵𝐵 = 𝜑𝜑, 
and 𝐷𝐷 ⊂ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐶𝐶). Therefore 𝐷𝐷 ∩ 𝐵𝐵 = 𝜑𝜑, this is not true. Hence 𝐷𝐷 is pg**-connected. 
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Theorem 3.14: Let 𝐶𝐶 be a pg**-connected subset of a topological space 𝑋𝑋. Then 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝑐𝑐) is also pg**-connected. 
 
Proof follows from taking 𝐷𝐷 = 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐶𝐶) in theorem (3.13). 
 
Theorem 3.15: If 𝐶𝐶 is a pg**-dense subset of a topological space (X, τ) and if  𝐶𝐶 is also pg**-connected, then X is 
pg**-connected. 
 
Proof: Follows from 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐶𝐶) = X. 
 
Theorem 3.16: Let (X, τ) and (Y, σ)  be two topological spaces and  𝑓𝑓 ∶ (X, τ) → (Y, σ) be a function. Then, 

1. 𝑓𝑓 is onto,  pg**- continuous and X is pg**- connected ⟹ Y is connected. 
2. 𝑓𝑓 is onto,  continuous and X is pg**- connected ⟹ Y is connected. 
3. 𝑓𝑓 is strongly pg**- continuous and X is connected ⟹ Y is pg**- connected. 
4. 𝑓𝑓 is onto and  pg**- resolute then Y is pg**- connected ⟹ X is connected. 
5. 𝑓𝑓 is a bijection and open then Y is pg**- connected ⟹X is connected. 
6. 𝑓𝑓 is onto,  pg**- irresolute and X is pg**- connected ⟹ Y is pg**- connected. 
7. 𝑓𝑓 is a bijection and pg**- resolute then Y  is pg**- connected ⟹ X is pg**- connected.    

 
Proof: (1) Suppose 𝑌𝑌 = 𝐴𝐴 ∪ 𝐵𝐵 is a separation of Y then 𝑋𝑋 = 𝑓𝑓−1(𝑌𝑌) = 𝑓𝑓−1(𝐴𝐴) ∪ 𝑓𝑓−1(𝐵𝐵) is a pg**- separation of 𝑋𝑋 
which is a contradiction.  Therefore Y is connected. 
 
Proofs for (2) to (7) are similar to the above proof. 
 
Remark 3.17: The property of being “pg**- connected” is a pg**- topological property. This follows from (6) and (7) 
of theorem (3.16). 
 
Theorem 3.18: A topological space (𝑋𝑋, 𝜏𝜏) is pg**- disconnected if and only if there exists a pg**- continuous map of 
𝑋𝑋 onto discrete two point space 𝑌𝑌 = {0, 1}. 
 
Proof: (𝑋𝑋, 𝜏𝜏) is pg**- disconnected and 𝑌𝑌 = {0, 1}  is a space with discrete topology. Let𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵  be a pg**- 
separation of 𝑋𝑋. Define 𝑓𝑓 ∶ X → Y such that 𝑓𝑓(𝐴𝐴) =  0 and 𝑓𝑓(𝐵𝐵) = 1. Obviously 𝑓𝑓 is onto, pg**- continuous map.  
 
Conversely, let 𝑓𝑓 ∶ X → Y be pg**- continuous, onto map. Then 𝑋𝑋 = 𝑓𝑓−1(0) ∪ 𝑓𝑓−1(1) is a pg**- separation of X. 
 
Theorem 3.19: The union of a collection {𝐴𝐴𝛼𝛼} of pg**- connected subsets of 𝑋𝑋 that have a point 𝑝𝑝 in common is pg**- 
connected. 
 
Proof: Let ∪ 𝐴𝐴𝛼𝛼 =  𝐵𝐵 ∪ 𝐶𝐶 be pg**- separation of ∪ 𝐴𝐴𝛼𝛼 . Then 𝐵𝐵 and 𝐶𝐶 are disjoint non empty pg**- open sets in 𝑋𝑋. 
𝑝𝑝 ∈∩ 𝐴𝐴𝛼𝛼 ⟹ 𝑝𝑝 ∈ 𝐵𝐵 or 𝑝𝑝 ∈ 𝐶𝐶 . Assume that 𝑝𝑝 ∈ 𝐵𝐵 . Then by theorem (3.12), 𝐴𝐴𝛼𝛼 lies entirely within 𝐵𝐵  for all                      
𝛼𝛼 (since 𝑝𝑝 ∈ 𝐵𝐵). Therefore 𝐶𝐶 is empty which is a contradiction. 
 
Corollary 3.20: Let {𝐴𝐴𝑖𝑖} be a sequence of pg**- open pg**- connected subsets of 𝑋𝑋 such that 𝐴𝐴𝑖𝑖 ∩ 𝐴𝐴𝑖𝑖+1 ≠ 𝜑𝜑, for all 
n. Then ∪ 𝐴𝐴𝑖𝑖  is pg**- connected. 
 
Proof: This can be proved by induction on n. By theorem (3.14), the result is true for 𝑖𝑖 =  2. Assume that the result to 

be true when n = k. Now to prove the result when 𝑖𝑖 = 𝑘𝑘 + 1. By the hypothesis 
𝑘𝑘
𝖴𝖴
𝑖𝑖 = 1

𝐴𝐴𝑖𝑖 is pg**- connected. Now 

(
𝑘𝑘
𝖴𝖴
𝑖𝑖 = 1

𝐴𝐴𝑖𝑖) ∩ 𝐴𝐴𝑘𝑘+1 ≠ 𝜑𝜑. Therefore 
𝑘𝑘+1
𝖴𝖴
𝑖𝑖 = 1

𝐴𝐴𝑖𝑖  is pg**- connected. By induction hypothesis the result is true for all n. 

 
Corollary 3.21: Let {𝐴𝐴𝛼𝛼}𝛼𝛼∈𝐴𝐴be an arbitrary collection of pg**-open pg**-connected subsets of 𝑋𝑋.  Let 𝐴𝐴 be a pg**- 
open pg**- connected subset of 𝑋𝑋. If 𝐴𝐴 ∩ 𝐴𝐴𝛼𝛼 ≠ 𝜑𝜑, forall 𝛼𝛼 then 𝐴𝐴 ∪ (∪ 𝐴𝐴𝛼𝛼) is pg**- connected. 
 
Proof: Suppose that 𝐴𝐴 ∪ (∪ 𝐴𝐴𝛼𝛼) = 𝐵𝐵 ∪ 𝐶𝐶  be a pg**- separation of the subset 𝐴𝐴 ∪ (∪ 𝐴𝐴𝛼𝛼) . Since 𝐴𝐴 ⊆ 𝐵𝐵 ∪ 𝐶𝐶 , by 
theorem (3.10) 𝐴𝐴 ⊆ 𝐵𝐵 or 𝐴𝐴 ⊆ 𝐶𝐶. Without loss of generality assume that 𝐴𝐴 ⊆ 𝐵𝐵. Let 𝛼𝛼 ∈ 𝐴𝐴 be arbitrary. 𝐴𝐴𝛼𝛼 ⊆ 𝐵𝐵 ∪ 𝐶𝐶 ⟹
𝐴𝐴𝛼𝛼 ⊆ 𝐵𝐵  or 𝐴𝐴𝛼𝛼 ⊆ 𝐶𝐶 . But 𝐴𝐴 ∩ 𝐴𝐴𝛼𝛼 ≠ 𝜑𝜑 ⟹ 𝐴𝐴𝛼𝛼 ⊆ 𝐵𝐵 . Since 𝛼𝛼  is arbitrary, 𝐴𝐴𝛼𝛼 ⊆ 𝐵𝐵,∀ . Hence 𝐴𝐴 ∪ (∪ 𝐴𝐴𝛼𝛼) ⊆ 𝐵𝐵 , 
contradicting the fact that 𝐶𝐶 is nonempty. Therefore 𝐴𝐴 ∪ (∪ 𝐴𝐴𝛼𝛼) is pg**- connected. 
 
Definition 3.22: A space (𝑋𝑋, 𝜏𝜏) is said to be totally pg**- disconnected if its only pg**- connected subsets are one 
point sets.  
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Example 3.23: Let (𝑋𝑋, 𝜏𝜏) be an indiscrete topological space with more than one point. Here all subsets are pg**- open. 
If 𝐴𝐴 = {𝑥𝑥1, 𝑥𝑥2} then 𝐴𝐴 = {𝑥𝑥1} ∪ {𝑥𝑥2} is a pg**-separation of 𝐴𝐴. Therefore any subset with more than one point is pg**- 
disconnected. Hence (𝑋𝑋, 𝜏𝜏) is totally pg**- disconnected. 
 
Example 3.24: An infinite set with finite complement topology is not totally pg**- disconnected. 
 
Remark 3.25: Totally pg**- disconnectedness implies pg**- disconnectedness. 
 
Definition 3.26: A point 𝑥𝑥 ∈ 𝑋𝑋 is said to be in pg**-boundary of 𝐴𝐴 (𝑝𝑝𝑝𝑝**𝐵𝐵𝐵𝐵(𝐴𝐴)) if every pg**- open set containing 𝑥𝑥 
intersects both 𝐴𝐴 and 𝑋𝑋 − 𝐴𝐴.  
 
Example 3.27: Any infinite subset A of ℝ whose complement is also infinite has every real number as its pg**-
boundary point.  
 
Theorem 3.28: Let (𝑋𝑋, 𝜏𝜏) be a topological space and let A be a subset of 𝑋𝑋.  If 𝐶𝐶 is pg**- open pg**- connected subset 
of 𝑋𝑋 that intersects both 𝐴𝐴 and 𝑋𝑋 − 𝐴𝐴 then 𝐶𝐶 intersects 𝑝𝑝𝑝𝑝**𝐵𝐵𝐵𝐵(𝐴𝐴). 
 
Proof: Given that 𝐶𝐶 ∩ 𝐴𝐴 ≠ 𝜑𝜑 and 𝐶𝐶 ∩ 𝐴𝐴𝑐𝑐 ≠ 𝜑𝜑. Now 𝐶𝐶 = (𝐶𝐶 ∩ 𝐴𝐴) ∪ (𝐶𝐶 ∩ 𝐴𝐴𝑐𝑐) is a nonempty disjoint union. Suppose 
both are pg**- open then it is a contradiction to the fact that C is pg**- connected. Hence either 𝐶𝐶 ∩ 𝐴𝐴 or 𝐶𝐶 ∩ 𝐴𝐴𝑐𝑐  is not 
pg**- open. Suppose that 𝐶𝐶 ∩ 𝐴𝐴 is not pg**- open. Then there exist 𝑥𝑥 ∈ 𝐶𝐶 ∩ 𝐴𝐴 which is not pg**-interior point of  
𝐶𝐶 ∩ 𝐴𝐴 . Let U be a pg**- open set containing 𝑥𝑥 . Then 𝑈𝑈 ∩ 𝐶𝐶  is a pg**- open set containing 𝑥𝑥  and hence                     
(𝑈𝑈 ∩ 𝐶𝐶) ∩ (𝐶𝐶 ∩ 𝐴𝐴)𝑐𝑐 ≠ 𝜑𝜑 . This implies U intersects both 𝐴𝐴  and 𝐴𝐴𝑐𝑐  and therefore 𝑥𝑥 ∈ 𝑝𝑝𝑝𝑝 ** 𝐵𝐵𝐵𝐵(𝐴𝐴) . Hence                    
𝐶𝐶 ∩ 𝑝𝑝𝑝𝑝**𝐵𝐵𝐵𝐵(𝐴𝐴) ≠ 𝜑𝜑. 
 
Next we extend the intermediate value theorem for pg**- connected space. 
 
Theorem 3.29: (Generalisation of Intermediate value theorem) Let 𝑓𝑓 ∶  𝑋𝑋 → ℝ be a pg**- continuous map, where X is 
pg**- connected space and ℝ with usual topology. If 𝑥𝑥,𝑦𝑦 are two points of X and 𝑎𝑎 = 𝑓𝑓(𝑥𝑥) and 𝑏𝑏 = 𝑓𝑓(𝑦𝑦) then for 
every real number r between 𝑎𝑎 and 𝑏𝑏, there exists a point 𝑐𝑐 of 𝑋𝑋 such that 𝑓𝑓(𝑐𝑐) = r. 
 
Proof: Assume the hypothesis of the theorem. Suppose there is no point 𝑐𝑐 of 𝑋𝑋 such that 𝑓𝑓(𝑐𝑐) = r, then 𝐴𝐴 = (−∞, 𝑟𝑟) 
and 𝐵𝐵 = (𝑟𝑟,∞) are disjoint open sets in ℝ and 𝑋𝑋 = 𝑓𝑓−1(𝐴𝐴) ∪ 𝑓𝑓−1(𝐵𝐵) which is a pg**-separation of 𝑋𝑋, contradicting 
the fact that 𝑋𝑋 is pg**- connected. Therefore there exists 𝑐𝑐 ∈ 𝑋𝑋 such that 𝑓𝑓(𝑐𝑐) = r. 
 
Remark 3.30: The above theorem holds even if, 

 𝑓𝑓 is continuous and 𝑋𝑋 is pg**- connected. 
 𝑓𝑓 is pg**- irresolute and 𝑋𝑋 is pg**- connected. 
 𝑓𝑓 is strongly pg**- continuous and 𝑋𝑋 is pg**- connected. 
 𝑓𝑓 is strongly pg**- continuous and 𝑋𝑋 is connected. 

 
4. pg**-components 
 
Definition 4.1: Let(𝑋𝑋, 𝜏𝜏) be a topological space. Define an equivalence relation on 𝑋𝑋 by setting 𝑥𝑥 ∼ 𝑦𝑦 if and only if 
there exists a pg**- connected subset of 𝑋𝑋  containing both 𝑥𝑥 and 𝑦𝑦 . The equivalence classes are called                       
pg**- components of 𝑋𝑋. pg**- component containing 𝑥𝑥 is denoted by 𝐶𝐶𝑥𝑥 = {𝑦𝑦 ∈ 𝑋𝑋/ 𝑦𝑦 ∼ 𝑥𝑥}. 

(i) 𝑥𝑥 ∼ 𝑥𝑥, since {𝑥𝑥} is pg**- connected. Hence ∼ is reflexive. 
(ii) If 𝑥𝑥 ∼ 𝑦𝑦, then there exists a pg**- connected subset of 𝑋𝑋 containing both 𝑥𝑥 and 𝑦𝑦 and hence 𝑦𝑦 ∼ 𝑥𝑥. Therefore 

∼ is symmetric. 
(iii) Let 𝑥𝑥 ∼ 𝑦𝑦 and 𝑦𝑦 ∼ 𝑧𝑧. Then there exists a pg**- connected subset 𝐴𝐴of 𝑋𝑋 containing both 𝑥𝑥 and 𝑦𝑦 and a pg**- 

connected subset 𝐵𝐵  of 𝑋𝑋  containing both 𝑦𝑦and 𝑧𝑧 . Since 𝐴𝐴  and 𝐵𝐵  are pg**- connected have a point 𝑦𝑦  in 
common 𝐴𝐴 ∪ 𝐵𝐵 is a pg**- connected subset of 𝑋𝑋 containing 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧. Therefore ∼ is transitive. 

 
Example 4.2: Let (𝑋𝑋, 𝜏𝜏) be an indiscrete topological space with more than one point. Then each pg**- component of 𝑋𝑋 
consists of a single point. 
 
Theorem 4.3: Any two pg**- components are either identical or disjoint. 
 
Proof: Follows from the definition of pg**- component. 
 
Theorem 4.4: The pg**-components of 𝑋𝑋 are pg**-connected subsets of 𝑋𝑋 whose union is 𝑋𝑋, such that each nonempty 
pg**-connected subset of 𝑋𝑋 intersects only one of the pg**-components. 
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Proof: Each pg**- connected subset 𝐴𝐴 of 𝑋𝑋 intersects only one of the pg**- components. For, if 𝐴𝐴 intersects the pg**- 
components 𝐶𝐶1 and 𝐶𝐶2 of 𝑋𝑋, say in points 𝑥𝑥1 and 𝑥𝑥2 then 𝑥𝑥1 ∼ 𝑥𝑥2, this implies 𝐶𝐶1 =  𝐶𝐶2. To prove the pg**- component 
𝐶𝐶 is pg**- connected, choose a point 𝑥𝑥0 ∈ 𝐶𝐶. 
  
Now for every 𝑥𝑥 ∈ 𝐶𝐶, 𝑥𝑥0 ∼ 𝑥𝑥. Therefore there exists a pg**- connected subset 𝐴𝐴𝑥𝑥  containing 𝑥𝑥 and 𝑥𝑥0, implies 𝐴𝐴𝑥𝑥 ⊂ 𝐶𝐶. 
Therefore 𝑈𝑈

𝑥𝑥∈𝐶𝐶𝐴𝐴𝑥𝑥 = 𝐶𝐶. Since 𝐴𝐴𝑥𝑥  are pg**- connected subsets having the point 𝑥𝑥0 in common, 𝐶𝐶 is pg**- connected. 
 
Corollary 4.5: 𝐶𝐶𝑥𝑥  is the union of all pg**- connected sets containing 𝑥𝑥. 
 
Theorem: 𝐶𝐶𝑥𝑥  is the largest pg**- connected set containing 𝑥𝑥. If there is another pg**- connected subset 𝐴𝐴 of 𝑋𝑋 such 
that 𝑥𝑥 ∈ 𝐴𝐴, then 𝐴𝐴 ⊂ 𝐶𝐶𝑥𝑥 . 
 
Proof: Let 𝑖𝑖 ∈ 𝐴𝐴 ⟹ 𝑥𝑥, 𝑖𝑖 ∈ 𝐴𝐴, where 𝐴𝐴 is pg**- connected, this implies 𝑖𝑖 ∼ 𝑥𝑥. Therefore 𝑖𝑖 ∈ 𝐶𝐶𝑥𝑥  and hence ⊂ 𝐶𝐶𝑥𝑥 . Hence 
𝐶𝐶𝑥𝑥  is the largest pg**- connected set containing 𝑥𝑥. 
 
Theorem 4.6: Let(𝑋𝑋, 𝜏𝜏) be a topological space, then the following are true. 

(i) Each point in 𝑋𝑋 is contained in exactly one pg**-component of 𝑋𝑋. 
(ii) Each pg**- connected subset of 𝑋𝑋 is contained in a pg**-component of 𝑋𝑋. 
(iii) A pg**- connected subset of 𝑋𝑋 which is pg**-clopen is a pg**-component of 𝑋𝑋. 
(iv) If 𝐶𝐶 is pg**- component of 𝑋𝑋 then 𝐶𝐶 = 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐶𝐶). If (𝑋𝑋, 𝜏𝜏) is a pg**-multiplicative space then every pg**- 

component is pg**-closed. 
 

Proof: 
(i) Let 𝑥𝑥 ∈ 𝑋𝑋 and consider the collection {𝐶𝐶𝑖𝑖} of all pg**- connected subsets of 𝑋𝑋 containing 𝑥𝑥, this collection is 

non empty since {𝑥𝑥} itself is pg**- connected. 𝐶𝐶 = ∪ 𝐶𝐶𝑖𝑖  is a maximal pg**- connected subset of 𝑋𝑋  which 
contains 𝑥𝑥 and therefore a pg**-component of 𝑋𝑋. Suppose 𝐶𝐶∗ is another pg**-component of 𝑋𝑋 containing 𝑥𝑥, it 
clearly among the 𝐶𝐶𝑖𝑖’s and is therefore contained in 𝐶𝐶, since 𝐶𝐶∗ is also pg**-component we must have 𝐶𝐶 = 𝐶𝐶∗. 

(ii) A pg**- connected subset of 𝑋𝑋 is contained in the pg**-component which contains any one of its points. 
(iii) Let 𝐴𝐴 be a pg**- connected subset of 𝑋𝑋 which is pg**-clopen, then (by (ii)) 𝐴𝐴 is contained in some pg**-

component 𝐶𝐶. If 𝐴𝐴 is a proper subset of 𝐶𝐶, then 𝐶𝐶 ∩ 𝐴𝐴 and 𝐶𝐶 ∩ 𝐴𝐴𝑐𝑐  forms a pg**-separation of 𝐶𝐶 which is a 
contradiction to the fact that 𝐶𝐶, being a pg**-component, is pg**- connected. Therefore 𝐴𝐴 = 𝐶𝐶. 

(iv) If the pg**-component 𝐶𝐶 ≠ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐶𝐶) then its pg**-closure (𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐶𝐶)) is a pg**- connected (3.14) subset of 
𝑋𝑋 which properly contains 𝐶𝐶, this is the contradiction to the maximality of 𝐶𝐶 as pg**- connected subset of 𝑋𝑋. 
Hence 𝐶𝐶 = 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐶𝐶). If 𝑋𝑋 is a pg**-multiplicative space, then 𝐶𝐶 is pg**-closed. 

 
Theorem 4.7: Let 𝑋𝑋 be a totally pg**- disconnected space. Then 𝐶𝐶𝑥𝑥 = {𝑥𝑥}, where 𝐶𝐶𝑥𝑥  is a pg**-component of 𝑥𝑥. 
 
Proof: Let 𝑋𝑋 be a totally pg**- disconnected space, and then its only pg**- connected subsets are one point sets. 
Suppose 𝑦𝑦 𝜖𝜖 𝐶𝐶𝑥𝑥  such that 𝑥𝑥 ≠ 𝑦𝑦  then 𝐶𝐶𝑥𝑥  is not pg**- connected which is contradiction to the fact that the pg**- 
components of 𝑋𝑋 are pg**- connected subsets of 𝑋𝑋 (4.4). Therefore in a totally pg**- disconnected space the pg**-
component of 𝑥𝑥is{𝑥𝑥}. 
 
5. pg**- connected modulo I 
 
Definition 5.1: Let (𝑋𝑋, 𝜏𝜏, I) be an ideal topological space then 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵 is said to be pg**-separation modulo I  if 𝐴𝐴 
and 𝐵𝐵 arenon empty pg**- open sub sets of 𝑋𝑋 such that 𝐴𝐴 ∩ 𝐵𝐵 ∈ 𝐼𝐼.(𝑋𝑋, 𝜏𝜏, I) is said to be pg**- connected modulo 𝐼𝐼 if 
there is no pg**-separation modulo I for 𝑋𝑋. 
 
Definition 5.2: Let 𝑌𝑌 be a subset of 𝑋𝑋. 𝑌𝑌 = 𝐴𝐴 ∪ 𝐵𝐵 is said to be pg**-separation modulo I  of 𝑌𝑌 if 𝐴𝐴 and 𝐵𝐵 are non 
empty pg**- open sub sets of 𝑋𝑋 and 𝐴𝐴 ∩ 𝐵𝐵 ∈ 𝐼𝐼. 
 
If there is no pg**-separation modulo I for 𝑌𝑌 then we say 𝑌𝑌 is pg**- connected modulo 𝐼𝐼 subset. 
 
Theorem 5.3: 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵 is pg**-separation of 𝑋𝑋 implies 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵 is a pg**-separation modulo I of 𝑋𝑋 for any ideal 
I. 
 
Proof: It follows since 𝜑𝜑 ∈ 𝐼𝐼. 
 
Theorem 5.4: (𝑋𝑋, 𝜏𝜏,I ) is pg**- connected modulo 𝐼𝐼 for some ideal I implies (𝑋𝑋, 𝜏𝜏 ) is pg**- connected. Equivalently If 
(𝑋𝑋, 𝜏𝜏) is pg**- disconnected then (𝑋𝑋, 𝜏𝜏,I ) is pg**- disconnected modulo 𝐼𝐼 for some ideal I. 
 
Proof follows from theorem (5.3). 
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Remark 5.5: The converse is false as seen in the following example. 
 
Example 5.6: Let(𝑋𝑋, 𝜏𝜏 ) be infinite cofinite topological space and 𝐼𝐼 = 𝓅𝓅(𝑋𝑋). Then 𝑋𝑋 is pg**- connected. On the other 
hand 𝑋𝑋 − {𝑥𝑥},𝑋𝑋 − {𝑦𝑦} are pg**-open and non empty, and (𝑋𝑋 − {𝑥𝑥}) ∪ (𝑋𝑋 − {𝑦𝑦}) is a pg**-separation modulo I of 𝑋𝑋. 
Therefore (𝑋𝑋, 𝜏𝜏, I) is not pg**- connected modulo 𝐼𝐼. 
 
Theorem 5.7: Let (𝑋𝑋, 𝜏𝜏, I) be an ideal topological space, 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵 is a pg**-separation modulo I of 𝑋𝑋 and 𝑌𝑌 is pg**- 
open pg**- connected subset of 𝑋𝑋 modulo I  then 𝑌𝑌 lies entirely within either 𝐴𝐴 or 𝐵𝐵. 
 
Proof: 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵  is a pg**-separation of 𝑋𝑋  modulo I .Therefore 𝐴𝐴  and 𝐵𝐵  are non emptypg**- open sets and            
𝐴𝐴 ∩ 𝐵𝐵 ∈ 𝐼𝐼.  
 
Now 𝑌𝑌 = (𝑌𝑌 ∩ 𝐴𝐴) ∪ (𝑌𝑌 ∩ 𝐵𝐵), (𝑌𝑌 ∩ 𝐴𝐴) and (𝑌𝑌 ∩ 𝐵𝐵) are  pg**-open sets and (𝑌𝑌 ∩ 𝐴𝐴) ∩ (𝑌𝑌 ∩ 𝐵𝐵) = 𝑌𝑌 ∩ (𝐴𝐴 ∩ 𝐵𝐵) ∈ I. If 
(𝑌𝑌 ∩ 𝐴𝐴) and (𝑌𝑌 ∩ 𝐵𝐵) are both non empty then  𝑌𝑌 = (𝑌𝑌 ∩ 𝐴𝐴) ∪ (𝑌𝑌 ∩ 𝐵𝐵)  is a pg**-separation of 𝑌𝑌 modulo I which is a 
contradiction. Therefore (𝑌𝑌 ∩ 𝐴𝐴) = 𝜑𝜑 or (𝑌𝑌 ∩ 𝐵𝐵)  = 𝜑𝜑 and hence 𝑌𝑌 lies entirely within either 𝐴𝐴 or 𝐵𝐵. 
 
Theorem 5.8: Let (𝑋𝑋, 𝜏𝜏, I) and (𝑌𝑌,𝜎𝜎, J) be two ideal topological spaces and 𝑓𝑓 ∶ (X, τ, 𝐼𝐼) → (Y, σ, 𝐽𝐽) be a bijection where 
J = 𝑓𝑓(𝐼𝐼), then 

1. 𝑓𝑓 is pg**- continuous and 𝑋𝑋 is pg**- connected modulo I⟹ 𝑌𝑌 is connected modulo J . 
2. 𝑓𝑓 is continuous and 𝑋𝑋 is pg**- connected modulo I⟹ 𝑌𝑌 is connected modulo J. 
3. 𝑓𝑓 is strongly pg**- continuous and 𝑋𝑋 is connected ⟹ 𝑌𝑌 is pg**- connected modulo J . 
4. 𝑓𝑓 is pg**-resolute then 𝑌𝑌 is pg**- connected modulo J⟹ 𝑋𝑋 is connected modulo I. 
5. 𝑓𝑓 is a bijection and open then 𝑌𝑌 is pg**- connected modulo J⟹ 𝑋𝑋 is connected modulo I  . 
6. 𝑓𝑓 is pg**- irresolute and 𝑋𝑋 is pg**- connected modulo I⟹ 𝑌𝑌 is pg**- connected modulo J. 
7. 𝑓𝑓 is pg**-resolute then 𝑌𝑌 is pg**- connected modulo J⟹ 𝑋𝑋 is pg**- connected modulo I  .    

 
Proof:  (1) Assume that 𝑌𝑌 is not connected modulo J. Let 𝑌𝑌 = 𝐴𝐴 ∪ 𝐵𝐵 be a pg**- separation modulo J. Therefore 𝐴𝐴 and 
𝐵𝐵  are nonempty pg**- open subsets of 𝑌𝑌  such that  𝐴𝐴 ∩ 𝐵𝐵 ∈ 𝐽𝐽 .  Then 𝑋𝑋 = 𝑓𝑓−1(𝐴𝐴) ∪ 𝑓𝑓−1(𝐵𝐵)  is a pg**- separation 
modulo I since 𝑓𝑓−1(𝐴𝐴) ∩ 𝑓𝑓−1(𝐵𝐵) = 𝑓𝑓−1(𝐴𝐴 ∩  𝐵𝐵) ∈ 𝐼𝐼 which is a contradiction.  Therefore 𝑌𝑌 is connected modulo J. 
 
Proofs for (2) to (7) are similar to the above proof. 
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