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ABSTRACT 
This outline is concerned with a mathematical model describing the interaction of two sociological species, termed as 
Criminals and Guards. Using 15 major crime data covering the period 1995 to 2011 from the Delhi crime statistics, a 
simplest model is developed. We propose a system of two nonlinear first order ordinary differential equations with 
some parameters. Using the data and parameters the graph of the population fluctuation of the year of the criminals 
and Guards are drawn. The results suggest that if the Guards population rises, the criminals’ population falls rapidly. 
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INTRODUCTION  
 
Crime is a major social concern. All crimes have negative impact on societies. These negative impacts range from lost 
of lives, lost of properties, national security threats and so on. To prevent these criminal activities the Guards 
communities are to be engaged in the societies. The Guards include the central and state police service, the Armed 
Forces, BSF, CBI, CID etc. Police launched many strategies to combat crime. Although criminal activities still are in 
the increasing level according to the “Crime in India” 2013 published by the National Crime Records Bureau. So there 
is the need to come out a model which will help the societies to analyze and reduce the criminal activities. 
 
ASSUMPTIONS FOR THE MODEL 
 
Let, the criminal prone society allows Guards to interact with criminals. Then we consider the following assumptions- 

1. If there are no Guards (predator), criminals (Prey), will grow exponentially at a rate proportional to their 
numbers. 

2. If there are no criminals, then the Guards will decline at a rate proportional to the Guards population. Because, 
in criminal free society owner will not bear the cost of Guards population. 

3. Criminals- Guards interaction is modeled by mass action terms proportional to the product of the two 
populations.  

 
DERIVATION OF MODEL 
 
Let ( )X t  be the number of criminals at time t  and ( )Y t  be the number of Guards at time t and N be the population 
at time t  in the society. 
 
From assumption (1), if ( ) 0Y t = , then  

( ( )) ( ),d X t AX t
dt

= 0A >                                                                                                                             (1) 

 
Assumption (3) implies that an increase in Guards in a criminal’s prone society will reduce the criminals at rates 
proportional to their products i.e. 

( ( )) ( ) ( )d X t BX t Y t
dt

= − , 0B >                                                                                                                  (2) 
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From assumption (2) if ( ) 0X t = , then 

( ) ( )dY t CY t
dt

= − , 0C >                                                                                                                                (3)  

 
Again from the assumption (3), as the Guards population grows in number to prevent the rapid growth of criminals, the 
encounter rate between the Guards and criminals are also increases at the rate proportional to the product of both 
populations. 

( ) ( ) ( )dY t DX t Y t
dt

= , 0D >                                                                                                                          (4)  

 
Equations (1) & (2)  

⇒ ( ( )) ( ) ( ) ( )d X t AX t BX t Y t
dt

= −                                                                                                               (5)   

 
Equations (3) & (4) 

⇒ ( ( )) ( ) ( ) ( )d Y t CY t DX t Y t
dt

= − +                                                                                                             (6)  

 
Table-3.1: parameters, their meanings and values (Using Crimes and Guards data) 

 
parameter Parameter definition values 

A  Growth rate coefficient of criminals 0.12  
B  Constant of proportionality that measures the probability that a Guards-criminals encounter 

removes one of the criminals. 
 

0.002  

C  the decline rate of Guards populations 0.05  

D  growth rate coefficient that measure the efficiency of Guards populations to increase the 
encounter for reducing criminals 
 

0.0007  

0X  Initial number of criminals 60  

0Y  Initial number of Guards 40  

0N  Initial population 100  

 

If we put 
AB
L

= , 

(5) 1dX YAX
dt L

 ⇒ = − 
 

 , constant 0L >                                                                                                 (7a)     

 

Putting
CD
V

= , 

 (6) 1dY XCY
dt V

 ⇒ = − − 
 

, constant 0V >                                                                                             (7b) 

 
The equations (7) represents a system of non-linear ordinary differential equations, known as Lotka-Volterra system. 
 
DERIVATION OF FIXED POINTS  
 
Thus for the fixed point ( , )X Y∗ ∗  for systems (7), we have  

   0 1dX YAX
dt L

∗
∗  

= = − 
 

 and  0 1dY XCY
dt V

∗
∗  

= = − − 
 

 

Solving these, we have, ( , ) (0,0)X Y∗ ∗ = and ( , ) ( , )X Y V L∗ ∗ =  are two fixed points. 
Hence (0,0)  and ( , )V L  are two fixed points of the systems (7). 
 



Ruhul Amin* / Mathematical model of Criminals and Guards / IJMA- 8(3), March-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                     133  

 
Stability Analysis: The stability is determined by linearization of (7) with the help of Jacobian corresponding to the 
fixed points (0,0)  and  ( , )V L  
 
The system (7) can be written as  

(1 ) ( , ),dX YAX f X Y say
dt L

= − =  

(1 ) ( , ),saydY XCY g X Y
dt V

= − − =  

 
The Jacobian matrix of the above systems at the fixed point ( , )X Y∗ ∗  is given by    

 

( , )

J( , )

X Y

f f
X YX Y
g g
X Y ∗ ∗

∗ ∗

∂ ∂ 
 ∂ ∂=  
∂ ∂ 

 ∂ ∂ 

 

 
The Jacobian corresponding to the fixed point (0,0) is 

(0,0)

(1 )
J J(0,0)

(1 )

Y AXA
L L

CY XC
V V

∗

 − − 
= =  

 − −  

 

0
J(0,0)

0
A

J
C∗

 
⇒ = =  − 

 

 

Now,
0

0
A

J I
C

λ
λ

λ∗

− 
− =  − − 

, where λ  is an eigen value of  J∗  

 

The characteristic equation is, 0J Iλ∗ − =
0

det 0
0
A

C
λ

λ
− 

⇒ = − − 
 

 
Hence the eigenvalues are 1 0.12Aλ = = and 2 0.05Cλ = − = −  
 
Since two eigenvalues are of opposite signs, so the fixed point (0,0) is unstable. 
 
Again, the Jacobian matrix corresponding to the fixed point ( , )V L is 

( , )

1
( , )

1
V L

Y AXA
L L

J J V L
CY XC
V V

∗

  − −    = =
  − −  

  

 

                                       
0

0

AV
L

CL
V

 − 
=  
 
  

                                                                                                                       (8) 

 
det( ) 0J Iλ∗ − =  
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0
det 0

0

AV
L

CL
V

λ

λ

  − −  
 ⇒ = 
  −    

 

2 0ACλ⇒ + = ACλ⇒ = ± − i ACλ⇒ = ±  
 

This gives 1,2 0.0060iλ = ± 1,2 0.08iλ⇒ = ±                                                                                                         (9) 
 
This shows that the real parts of eigenvalues of the Jacobian matrix are zero for the fixed point ( , )V L .So the fixed 
point ( , )V L is a neutrally stable centre. This analysis suggest that the criminals depends on the parameter connected 
with the Guards Y L=  Similarly Guards depends on the parameter associated with criminals X V= . 
 
This effect is due to the particular coupling of variables. The presence of 0Y ≠ , means that available criminals has to 

be just enough to make growth rate due to encounter,
CX
V

 equal Guards rate C  for a steady criminals to persists. 

Similarly, when 0X ≠ , Guards can only keep them under control when criminals growth rate A and encounter 

rate
A
L

 are equal. 

 
COMPONENT GRAPH 
 
Using the data and parameters we can draw the graph of the population fluctuation of the year of criminals and Guards 
as shown in the figure below. 

 
Figure-3.1: Criminal-Guards component graph 

 
NUMERICAL SOLUTIONS OF THE MODEL 
 
The numbers of criminals ( )X t  and Guards ( )Y t  to be determined from the ordinary differential equation (ODE) 
(7a) and (7b) by Runge-Kutta’s numerical solution methods. A function ( )X t  and ( )Y t  for all t  in an interval is 

called a solution of ODE (7a) and (7b) respectively. The value 0X of ( )X t  and 0Y of ( )Y t  at some 0t  can be 
estimated, and must surely be a critical factor in predicting later values of ( )X t  and ( )Y t . The condition 

0 0( )X t X=  and 0 0( )Y t Y=  are respectively called an initial condition of (7a) and (7b). 
 
Measuring time forward from the time 0t , we have created a problem whose solution ( )X t  and ( )Y t  are predicted 
number of criminals and Guards at future times- 
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In (7a), for the given constants A  and L , and the value 0t  and 0X , we find a function ( )X t  for which  

1 YX AX
L

 ′ = − 
 

, 0 0( )X t X=                                           (10) 

on some t -interval containing 0t . The ODE and the initial condition in (10) form an initial value problem (IVP) for 

( )X t . 
 
Similarly we have the IVP for ( )Y t  of (7b) as  

1 XY CY
V

 ′ = − − 
 

, 0 0( )Y t Y=                                            (11) 

 
We can write the IVP (10) and (11) as below- 

( ) 0 0, , , ( )X f t X Y X t X′ = =                                         (12a) 

( ) 0 0, , , ( )Y g t X Y Y t Y′ = =                                         (12b) 

where  ( , , ) 1 Yf t X Y AX
L

 = − 
 

 

and  ( ), , 1 Xg t X Y CY
V

 = − − 
 

 

 
The IVP of the system (12) has a unique solution on an interval containing 0t  if the rate functions ( , , )f t X Y and 

( , , )g t X Y  are well enough behaved. 
 
We discuss basic numerical procedures called Runge-Kutta method for finding approximate values for the solutions 

( )X t and ( )Y t  of the IVP (12) at a discrete set of times near 0t . 
 
RUNGE-KUTTA (RK4) METHOD 
 
Let us consider to approximate the value of the solution of IVP (12) at some future timeT . Let 0T t t> >  and take 

increasing sequence 1 2, ,..., Nt t t  with Nt T=  and 1 0t t>  and define the step function 1n n nh t t −= −  at step n  for 
1,2,...,n N= . 

 
From a given 0X  and a given function ( , , , )f t X Y h , a one-step method computes an approximation nX to ( )nX t  
using the discretization scheme 

( )1 1 1 1, , ,n n n n n n nX X h f t X Y h− − − −= + , 1,2,...,n N= . 

Similarly, (for nY ), 

( )1 1 1 1, , ,n n n n n n nY Y h g t X Y h− − − −= + , 1,2,...,n N=  

To compute nX , nY , only the value of 
1nX −
 and 1nY −  is required, so it is called one-step method. This method uses the 

given value 
0X  to generate 1X , 1X  to generate 2X , and so on, until the process terminates   with the calculation of 

nX , which is an approximation of X(T). In this method, if the averages of the above slope function 

( )1 1 1, , ,n n n nf t X Y h− − −  at two or more points over the interval [ ]1,n nt t−
 are used to calculate nX  then this method is 

said to be Runge-Kutta Fourth Order Method (RK4). The RK4 method involves a weighted average of slopes at the 

midpoint 1 2n
ht − +  and at the end points 1nt −  and nt . For the IVP of the system (12) the RK4 is the one-step method 

is given by  

1n nt t h−= +  

( )1 1 2 3 42 2
6n n
hX X k k k k−= + + + +  
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( )1 1 2 3 42 2
6n n
hY Y p p p p−= + + + +  

Where h  is the fixed step size and  

( )1 1 1 1, ,n n nk f t X Y− − −=    

 ( )1 1 1 1, ,n n np g t X Y− − −=  

2 1 1 1 1 1, ,
2 2 2n n n
h h hk f t X k Y p− − −

 = + + + 
 

   

 2 1 1 1 1 1, ,
2 2 2n n n
h h hp g t X k Y p− − −

 = + + + 
 

   

 3 1 1 2 1 2, ,
2 2 2n n n
h h hk f t X k Y p− − −

 = + + + 
 

 

3 1 1 2 1 2, ,
2 2 2n n n
h h hp g t X k Y p− − −

 = + + + 
 

 

( )4 1 1 3 1 3, ,n n nk f t h X hk Y hp− − −= + + + ,   

 ( )4 1 1 3 1 3, ,n n np g t h X hk Y hp− − −= + + +  
 
Now, we have 

0 0( , , ), ( )X f t X Y X t X′ = =  

and  ( ) 0 0, , , ( )Y g t X Y Y t Y′ = =  

0 0, 0t t t= = >  

where  ( ) ( ), , ( ) 1 Y tf t X Y AX t
L

 = − 
 

 

and  ( ) ( ), , ( ) 1 X tg t X Y CY t
V

 = − − 
 

 

  
Let, initial population be 0(0) 60X X= = , 0(0) 40Y Y= = , 0 100N = , and 0.12A = , 0.05C = , 

56.2L = , 74.1V =  

( ) ( ) ( )1 1
1 1 1 1 1 1, , 1 n n

n n n n n

Y t
k f t X Y AX t

L
− −

− − − − −

 
= = − 

 
 

( ) ( )1 1
1 1 1 1 n n

n n

X t
p CY t

V
− −

− −

 
= − − 

 
 

2 1 1 1 1 1, ,
2 2 2n n n
h h hk f t X k Y p− − −

 = + + + 
 

, 

                    1 1 1 1 1 1
11

2 2 2 2n n n n
h h h hA X t k Y t p

L− − − −

       = + + − + +             
 

2 1 1 1 1 1 1
11

2 2 2 2n n n n
h h h hp C Y t p X t k

V− − − −

       = − + + − + +       
       

 

3 1 1 2 1 1 2
11

2 2 2 2n n n n
h h h hk A X t k Y t p

L− − − −

       = + + − + +        
       

 

3 1 1 2 1 1 2
11

2 2 2 2n n n n
h h h hp C Y t p X t k

V− − − −

       = − + + − + +       
       
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( ){ } ( ){ }4 1 1 3 1 1 3
11n n n nk A X t h hk Y t h hp
L− − − −

 = + + − + +  
 

( ){ } ( ){ }4 1 1 3 1 1 3
11n n n np C Y t h hp X t h hk
V− − − −

 = − + + − + +  
 

 
Thus the general RK4 method for the criminals is given by 

1n nt t h−= +  

( )1 1 2 3 42 2
6n n
hX X k k k k−= + + + + , 1, 2,...,n N=  

and the RK4 method for the Guards is given by 

1n nt t h−= +  

( )1 1 2 3 42 2
6n n
hY Y p p p p−= + + + + , 1, 2,...,n N=  

 
CONCLUSIONS 
 
From the Fig: 3.1, It is seen that as time progresses in years, Guards population and criminals population clearly 
fluctuate at a cyclic time interval. When the criminal population peaks, Guards population begins to rise rapidly. 
However, as the Guards population rises, the criminal population falls rapidly.  
 
The general RK4 method of Criminals and Guards equation are derived, which yields the numerical solutions of 
criminals and Guards. 
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