SMAAvailable online through www.ijma.info ISSN 2229-5046

$\boldsymbol{p} \boldsymbol{g}^{* *}$ Separation axioms

Dr. A. PUNITHATHARANI
Associate Professor, St. Mary's College, Thoothukudi-628001, Tamil Nadu, India.
Mrs. G. PRISCILLA PACIFICA*
Assistant Professor, St. Mary's College, Thoothukudi-628001, Tamil Nadu, India.

(Received On: 01-03-17; Revised \& Accepted On: 27-03-17)

Abstract

In this paper the separation axioms via pg**-open sets are analysed in topological and ideal topological spaces. Key words: $p g^{* *} T_{0}$ space, $p g^{* *} T_{0}$ modulo I space, $p g^{* *} T_{1}$ space, $p g^{* *} T_{1}$ modulo I space, $p g^{* *} T_{2}$ space, $p g^{* *} T_{2}$ modulo I space, $p g^{* *}$ regular space, $p g^{* *}$ normal space.

1. INTRODUCTION

Levine [3] introduced the class of g-closed sets in 1970. Veerakumar[7] introduced g*-closed sets. A.S.Mashhour, M.E Abd El. Monsef [4] introduced a new class of pre-open sets in 1982. Ideal topological spaces have been first introduced by K.Kuratowski [2] in 1930. In this paper we generalize the conventional separation axioms through pg**-open sets.

2. PRELIMINARIES

Definition 2.1: A subset A of a topological space (X, τ) is called a pre-open set [4] if $A \subseteq \operatorname{int}(c l(A)$ and a pre-closed set if $c l(\operatorname{int}(A)) \subseteq A$.

Definition 2.2: A subset A of topological space (X, τ) is called

1. generalized closed set (g-closed) [3] if $c l(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
2. \quad g*-closed set [7] if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ).
3. $\quad \mathrm{pg}^{* *}$ - closed set[6] if $\operatorname{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^{*}-open in (X, τ).

Definition 2.3: A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called

1. pg**-irresolute[6] if $f^{-1}(V)$ is a pg**-closed set of (X, τ) for every pg**-closed set V of (Y, σ).
2. pg**-continuous[6] if $f^{-1}(V)$ is a pg**-closed set of (X, τ) for every closed set V of (Y, σ).
3. pg**-resolute[6] if $f(U)$ is pg**- open in Y whenever U is pg**- open in X.

Definition 2.4: An ideal [2] I on a nonempty set X is a collection of subsets of X which satisfies the following properties. (i) $A \in I, \mathrm{~B} \in I \Rightarrow A \cup B \in I(i i) A \in I, B \subset A \Rightarrow B \in I$. A topological space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by (X, τ, I).

3. $\boldsymbol{p} \boldsymbol{g}^{* *} \boldsymbol{T}_{\mathbf{0}}$ Space

Definition 3.1: The points $x, y \in X$ is said to be $p g^{* *}$ - indistinguishable if $x \in p g^{* *} c l(y)$ and $y \in p g^{* *} c l(x)$
Note: $\mathrm{pg}^{* *}$-indistinguishability is an equivalence relation.
Definition 3.2: A topological space (X, τ) is said to be $p g^{* *} T_{0}$ space if no two distinct points are pg**indistinguishable. Equivalently a topological space X is called $p g^{* *} T_{0}$ space if given any two distinct points x and y there is either a pg**- open set U such that $x \in U, y \notin U$ or $y \in U, x \notin U$.

Corresponding Author: Mrs. G. Priscilla Pacifica*
Assistant Professor, St. Mary's College, Thoothukudi-628001, Tamil Nadu, India.

Dr. A. PunithaTharani, Mrs. G. Priscilla Pacifica* / pg*Separation axioms / IJMA- 8(3), March-2017.

Example 3.3: Let (X, τ) be an indiscrete topological space has more than one point. Then X is $p g^{* *} T_{0}$ space, since every subset of X is $\mathrm{pg}^{* *}$-open.

Theorem 3.4: Every T_{0} space is $p g^{* *} T_{0}$ space but not conversely
Proof: Obvious since every open set is $\mathrm{pg}^{* *}$ - open.
Example 3.5: The space in example (3.3) is $p g^{* *} T_{0}$ but not T_{0}. Consider \mathbb{R} with trivial topology, take two arbitrary points $x, y \in \mathbb{R}$ such that $x \neq y$. Here $U=\{x\}$ and $V=\{y\}$ are $\mathrm{pg}^{* *}$ - open sets, therefore \mathbb{R} with trivial topology is $p g^{* *} T_{0}$ space. But this space is not T_{0}, since the only open sets are φ and \mathbb{R}.

Theorem 3.6: Let (X, τ) be a pg**- multiplicative space, then X is $p g^{* *} T_{0}$ space if and only if $\mathrm{pg}^{* *}$-closures of distinct points are distinct. (i.e) if $x \neq y \in X, p g^{* *} c l(\{x\}) \neq p g^{* *} c l(\{y\})$.

Proof: Let (X, τ) be a $p g^{* *} T_{0}$ space and x and y be two distinct points of X. Then there is a pg**-open set U such that $x \in U, y \notin U$ and $y \in U^{c}, x \notin U^{c} . p g^{* *} c l(\{y\}) \subseteq U^{c}$ since U^{c} is $p g^{* *}$-closed in X. Thus $p g^{* *} c l(\{x\}) \neq p g^{* *} c l(\{y\})$.

Conversely suppose for any pair of distinct points x and y in $p g^{* *} c l(\{x\}) \neq p g^{* *} c l(\{y\})$. Then we can choose $z \in X$ such that $z \in p g^{* *} c l(\{x\})$ but $z \notin p g^{* *} c l(\{y\})$. If $x \in p g^{* *} c l(\{y\})$, then $p g^{* *} c l(\{x\}) \subseteq p g^{* *} c l(\{y\})$, this implies $z \in p g^{* *} c l(\{y\})$ which is a contradiction. Hence $x \notin p g^{* *} c l(\{y\})$ this implies $x \in\left(p g^{* *} c l(\{y\})\right)^{c}$ which is pg**-open in X containing x but not y. Hence X is $p g^{* *} T_{0}$ space.

Theorem 3.7: Let (X, τ) and (Y, σ) be two topological spaces and $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a bijection. Then,

1. f is pg**- continuous and Y is a T_{0} space $\Rightarrow X$ is a $p g^{* *} T_{0}$ space.
2. f is continuous and Y is a T_{0} space $\Rightarrow X$ is a $p g^{* *} T_{0}$ space.
3. f is $\mathrm{pg}^{* *}$-irresolute and Y is $p g^{* *} T_{0}$ space $\Rightarrow X$ is $p g^{* *} T_{0}$ space.
4. f is $\mathrm{pg}^{* *}$-resolute and X is $p g^{* *} T_{0}$ space $\Rightarrow Y$ is $p g^{* *} T_{0}$ space.
5. f is $\mathrm{pg}^{* *}$ - open and X is a T_{0} space $\Longrightarrow Y$ is $p g^{* *} T_{0}$ space.
6. $\quad f$ is strongly pg**- continuous and Y is $p g^{* *} T_{0}$ space $\Rightarrow X$ is a T_{0} space.

Proof: (1) Let x and y be two distinct points of X, then $f(x)$ and $f(y)$ are distinct points of Y. Then there is a pg**open set U in Y such that $f(x) \in U, f(y) \notin U$ or $f(y) \in U, f(x) \notin U$. Then $f^{-1}(U)$ is a pg**-open set in X such that $x \in f^{-1}(U), y \notin f^{-1}(U)$ or $y \in f^{-1}(U), x \notin f^{-1}(U)$. Therefore X is a $p g^{* *} T_{0}$ space.

Proofs for (2) to (6) are similar to the above.
Remark 3.8: The property of being $p g^{* *} T_{0}$ space, is a pg**-topological property. This follows from (3) and (4) of the above theorem.

Theorem 3.9: Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an injective map and Y is $p g^{* *} T_{0}$ space. If f is $\mathrm{pg}^{* *}$ - totally continuous then X is ultra-Hausdorff.

Proof: Let x and y be any two distinct points in X. Since f is injective, $f(x)$ and $f(y)$ are distinct points in Y. Since Y is $p g^{* *} T_{0}$ space there exists an pg**- open set U in Y containing $f(x)$ but not $f(y)$. Then $\in f^{-1}(U), y \notin f^{-1}(U)$ and $x \in f^{-1}(U), y \in\left(f^{-1}(U)\right)^{c}$ also $f^{-1}(U)$ is clopen in X. This implies every pair of distinct points of X can be separated by disjoint clopen sets. Therefore X is ultra-Hausdorff.

4. $p g^{* *} T_{0}$ modulo I space

Definition 4.1: An ideal topological space (X, τ, I) is said to be $p g^{* *} T_{0}$ modulo if for every pair of points $x, y \in X$ and $x \neq y$ there exists pg**- open set U such that $x \in U, U \cap\{y\} \in I$ or $y \in U, U \cap\{x\} \in I$.

Example 4.2: An ideal topological space (X, τ, I) where $I=\mathfrak{p}(X)$ is a $p g^{* *} T_{0}$ modulo I space.
For, if $x, y \in X$ and $x \neq y$, for any pg**- open sets U_{x}, U_{y} containing x, y respectively, then $U_{x} \cap\{y\}, U_{y} \cap\{x\} \in I$.
Theorem 4.3: Every pg**- T_{0} space is $p g^{* *} T_{0}$ modulo I space for every ideal I.
Proof: Let x and y be any two distinct points in X. Since X is $p g^{* *} T_{0}$ spacethere exists disjoint pg**- open sets U_{x}, U_{y} containing x, y respectively, then $U_{x} \cap U_{y}=\varphi \in I$. Hence X is $p g^{* *} T_{0}$ modulo I space.

Remark 4.4: If $I=\{\varphi\}$ then both $p g^{* *} T_{0}$ space and $p g^{* *} T_{0}$ modulo I space coincide.

Theorem 4.5: Let I, J be ideals of X and if $I \subseteq J$, then (X, τ, I) is $p g^{* *} T_{0}$ modulo I implies (X, τ, J) is $p g^{* *} T_{0}$ modulo J.
If $x, y \in X$ and $x \neq y$, then there exists disjoint $\mathrm{pg}^{* *}$-open sets U_{x}, U_{y} containing x, y respectively such that $U_{x} \cap U_{y}=\varphi \in I \subseteq J$. Therefore (X, τ, J) is a $p g^{* *} T_{0}$ modulo J space.

Theorem 4.6: Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces and $f:(\mathrm{X}, \tau, I) \rightarrow(\mathrm{Y}, \sigma, J)$ be a bijection where $J=f(I)$ is an ideal in Y then,

1. $\quad f$ is $\mathrm{pg}^{* *}$-resolute and X is $p g^{* *} T_{0}$ modulo I space $\Longrightarrow Y$ is $p g^{* *} T_{0}$ modulo J space.
2. $\quad f$ is pg**-continuous and Y is a T_{0} modulo J space $\Rightarrow X$ is a $p g^{* *} T_{0}$ modulo I space.
3. f is continuous and Y is a T_{0} modulo J space $\Longrightarrow X$ is a $p g^{* *} T_{0}$ modulo I space.
4. f is $\mathrm{pg}^{* *}$-irresolute and Y is T_{0} modulo J space $\Rightarrow X$ is $p g^{* *} T_{0}$ modulo I space.
5. f is pg**-open and X is a T_{0} space $\Rightarrow Y$ is $p g^{* *} T_{0}$ modulo J space.
6. f is open and X is a T_{0} space $\Rightarrow Y$ is $p g^{* *} T_{0}$ modulo J space.

Proof: (1) Let $y_{1} \neq y_{2} \in Y$. Since f is a bijection there exists $x_{1} \neq x_{2} \in X$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Also there exists pg**-open set U in X such that $x_{1} \in U, U \cap\left\{x_{2}\right\} \in I$ or $x_{2} \in U, U \cap\left\{x_{1}\right\} \in I$ since X is $p g^{* *} T_{0}$ modulo I space, which implies $y_{1} \in f(U), f(U) \cap\left\{y_{2}\right\} \in J$ or $y_{2} \in f(U), f(U) \cap\left\{y_{1}\right\} \in J$ where $f(U)$ is pg**-open in Y. Therefore (Y, σ, J) is a $p g^{* *} T_{0}$ modulo J space.

Proofs for (2) to (6) are similar to (1).

5. $\boldsymbol{p} \boldsymbol{g}^{* *} \boldsymbol{T}_{1}$ Space

Definition 5.1: A topological space (X, τ) is said to be $p g^{* *} T_{1}$ space if $x, y \in X$ and $x \neq y$, there exists $\mathrm{pg}^{* *}$ - open sets U_{x}, U_{y} containing x, y respectively, such that $y \notin U_{x}$ and $x \notin U_{y}$.

Example 5.2: An indiscrete topological space (X, τ) has more than one point is $p g^{* *} T_{1}$ space, since all the subsets of X is pg**- open.

Example 5.3: Consider an infinite set X with cofinite topology, if $x \neq y \in X$, then $U_{x}=X-\{y\}$ and $U_{y}=X-\{x\}$ are pg**- open sets such that $y \notin U_{x}$ and $x \notin U_{y}$. Therefore X is $p g^{* *} T_{1}$ space.

Example 5.4: The one point space is $p g^{* *} T_{1}$, because the definition of $p g^{* *} T_{1}$ space is vacuously satisfied.
Example 5.5: Let $X=\{a, b, c\}, \tau=\{\varphi, X,\{a\},\{c\},\{a, c\}\}$. Then $P G^{* *} O(X)=\{\varphi, X,\{a\},\{c\},\{a, c\}\}$. This space is not $p g^{* *} T_{1}$ space.

Theorem 5.6: Every T_{1} space is $p g^{* *} T_{1}$ space.
Proof follows from the fact that every open set is $\mathrm{pg}^{* *}$-open.
Remark 5.7: The converse of the above theorem is not true from the following example.
Example 5.8: An indiscrete topological space (X, τ) has more than one point is $p g^{* *} T_{1}$ but not T_{1} space.
Theorem 5.9: Every $p g^{* *} T_{1}$ space is $p g^{* *} T_{0}$ space but not conversely.
Proof follows from the definitions.
Example 5.10: The space in example (5.5) is $p g^{* *} T_{0}$ but not $p g^{* *} T_{1}$ spaces.
Hence the set of $p g^{* *} T_{1}$ topological spaces is a proper subset of all $p g^{* *} T_{0}$ topological spaces.
Theorem 5.11: A topological space (X, τ) is a $p g^{* *} T_{1}$ space if and only if every singleton set is $\mathrm{pg}^{* *}$-closed.
Proof: Let (X, τ) be $p g^{* *} T_{1}$ space and $x \in X$. Let $x \neq y$ be an arbitrary element in X. Subsequently there exists pg**open sets U_{x}, U_{y} containing x, y respectively, such that $y \notin U_{x}$ and $x \notin U_{y}$.

Now U_{x} is a pg**- open set containing x not intersecting $\{y\}$. Therefore x is not a $\mathrm{pg}^{* *}$ - limit point of $\{y\}$. Thus $\{y\}$ is pg**- closed. Conversely let every singleton set is $\mathrm{pg}^{* *}$ - closed in X. If x and y are distinct points of X, then $U_{x}=X-\{y\}$ and $U_{y}=X-\{x\}$ are pg**- open sets such that $y \notin U_{x}$ and $x \notin U_{y}$. Therefore X is $p g^{* *} T_{1}$ space.

Theorem 5.12: If (X, τ) is a $p g^{* *} T_{1}$ space then every finite subset of X is $\mathrm{pg}^{* *}$ - closed.
Proof: Let A be a finite subset of X, then $A=\bigcup_{x \in A}\{x\}$ is $\mathrm{pg}^{* *}$ - closed being finite union of $\mathrm{pg}^{* *}$ - closed sets.
Theorem 5.13: In a topological space (X, τ) the following statements are equivalent:

1. (X, τ) is a $p g^{* *} T_{1}$ space.
2. Every singleton set of (X, τ) is $\mathrm{pg}^{* *}$ - closed.
3. Every finite subset of X is pg**- closed.
4. Every point $x \in X$ equals the intersection of all pg**-neighbourhoods of x.

Proof: The proof for (1) $\Leftrightarrow(2) \Leftrightarrow$ (3) follows from theorem (5.11).
$\mathbf{(1)} \Rightarrow \mathbf{(4)}$: Let N_{x} be the intersection of all pg**-neighbourhoods of x in X. Let $x \neq y$ be an arbitrary element in X. Since X is $p g^{* *} T_{1}$ there exists pg**- open set U_{x} containing x, such that $x \in U_{x}$ and $y \notin U_{x}$. Therefore $y \notin N_{x}$ and hence $N_{x}=\{x\}$.
$\mathbf{(4)} \Rightarrow \mathbf{(1)}$: Let x, y be two distinct points in X and N_{x} be the intersection of all pg**-neighborhoods of x, then $N_{x}=\{x\}$. Therefore $y \notin N_{x}$. Therefore there is atleast one pg**- open set U_{x} containing x and notcontaining y. Correspondingly we can get a pg**- open set U_{y} containing yand notcontaining x. Thus (X, τ) is a $p g^{* *} T_{1}$ space.

Theorem 5.14: A topological space (X, τ) is a $p g^{* *} T_{1}$ space if and only if $P G^{* *} O(X, \tau)$ is finer than co finite topology on X.

Proof: Let X be a $p g^{* *} T_{1}$ space. Let τ^{*} denote the co finite topology on X. To prove that $\tau^{*} \subseteq P G^{* *} O(X, \tau)$.Let $U \in \tau^{*}$, then $X-U$ is a finite set. Since X is a $p g^{* *} T_{1}$ space $X-U$ is $\mathrm{pg}^{* *}$-closed in X. Hence U is $\mathrm{pg}^{* *}$-open. Therefore $\tau^{*} \subseteq P G^{* *} O(X, \tau)$. Conversely presume $\tau^{*} \subseteq P G^{* *} O(X, \tau)$. Choose $x \in X$. Then $X-\{x\} \in \tau^{*} \Rightarrow X-\{x\} \in$ $P G^{* *} O(X, \tau)$. This implies $\{x\}$ is $\mathrm{pg}^{* *}$-closed in X. Then by theorem (5.11)(X, $\left.\tau\right)$ is a $p g^{* *} T_{1}$ space.

Theorem 5.15: Every finite $p g^{* *} T_{1}$ space is a pg**-discrete space.
Proof: Let (X, τ) be a finite $p g^{* *} T_{1}$ space, then all the subsets of X is finite and hence $\mathrm{pg}^{* *}$-closed. Therefore X is pg**-discrete.

Theorem 5.16: In a $p g^{* *} T_{1}$ space (X, τ) every $\mathrm{pg}^{* *}$-connected set containing more than one point is infinite.
Proof: Let A be a pg**-connected subset of X has more than one point. Presume that A is finite and let $A=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, then A is pg**-discrete. Therefore $\left\{x_{1}\right\}$ and $A-\left\{x_{1}\right\}$ are both pg**-clopen. Thus A can be written as the union of two non-empty disjoint $\mathrm{pg}^{* *}$-open sets. Which is a contradiction to A is $\mathrm{pg}^{* *}$-connected. Therefore A must be infinite.

Theorem 5.17: Let (X, τ) be pg**-additive and $p g^{* *} T_{1}$ space. Then X is a $\mathrm{pg}^{* *}$-discrete space.
Proof: Let A be a subset of X. Then $A=\underset{x \in A}{\cup}\{x\}$ and each $\{x\}$ is pg**- closed. Since X is pg**-additive A is pg**closed. Therefore X is pg**-discrete.

Theorem 5.18: Let (X, τ) be a $p g^{* *} T_{1}$ space and A be a subset of X. Then a point $x \in X$ is a pg**-limit point of A if and only if every pg**-open set containing x contains infinitely many points of A. Consequently in a $p g^{* *} T_{1}$ space no finite set has a pg**-limit point.

Proof: Let x be a pg**-limit point of A and U be a pg**-open set containing x. Suppose U intersects A in only finitely many points. Then U also intersects $A-\{x\}$ in finitely many points. Let $E=U \cap A-\{x\}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Then E is pg**-closed, since X is pg**- T_{1} space. Therefore $E^{c} \cap U$ is pg**-open set containing x. $\left(E^{c} \cap U\right) \cap(A-\{x\})=E^{c} \cap$ $E=\varphi$, which is a contradiction to x is a pg**-limit point of A. Therefore U intersects A ininfinitely many points of A. Conversely if every $\mathrm{pg}^{* *}$-open set containing x contains infinitely many points of A, it certainly intersects A in some point other than x itself, so that x is a $\mathrm{pg}^{* *}$-limit point of A.

Corollary 5.19: Any finite subset of $p g^{* *} T_{1}$ space has no $\mathrm{pg}^{* *}$-limit point.
Proof follows from theorem (5.18).

Theorem 5.20: In a $p g^{* *} T_{1}$ space X, if every infinite subset has a $\mathrm{pg}^{* *}$-limit point then X is $\mathrm{pg}^{* *}$-countably compact.
Proof: Let every infinite subset has apg**-limit point. We need to prove X is $\mathrm{pg}^{* *}$-countably compact. Suppose not, then there exists a countable pg**-open cover $\left\{U_{n}\right\}$ has no finite subcover.

In view of the fact that $U_{1} \neq X$, then there exists $x_{1} \notin U_{1}$ also $X \neq U_{1} \cup U_{2}$, then there exists $x_{2} \notin U_{1} \cup U_{2}$. Proceeding like this there exists $x_{n} \notin U_{1} \cup U_{2} \cup \ldots \cup U_{n}$ for all n. Now $A=\left\{x_{n}\right\}$ is an infinite set. If $x \in X$ then $x \in U_{n}$ for some n. But $x_{m} \notin U_{n}, \forall m \geq n$. Since X is $p g^{* *} T_{1}$ space $U_{n}-\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ is a pg**-open set containing x which does not have a point of A other than x. Contradicting the fact that every infinite subset of X has a pg**-limit point. Therefore X is $\mathrm{pg}^{* *}$-countably compact.

Remark 5.21: A sequence in a $p g^{* *} T_{1}$ spaceis $\mathrm{pg}^{* *}$-congregates to more than one $\mathrm{pg}^{* *}$-limit. In fact a sequence can pg**-congregates to every point of the space. Consider the following example.

Let (X, τ) be an infinite topological space with co finite topology, $\left\langle x_{n}\right\rangle$ be any sequence in X and $x \in X$. To prove $\left\langle x_{n}\right\rangle \xrightarrow{p g^{* *}} x$. Let $U \in \tau$ such that $x \in U . U \in$ implies $U \in P G^{* *} O(X, \tau)$ and $X-U$ is a finite. Find the largest $n_{0} \in \mathbb{N}$ such that $x_{n_{0}} \in X-U$. Therefore $x_{n} \in U \forall n \geq n_{0}$. This shows that $\left\langle x_{n}\right\rangle \xrightarrow{p g^{* *}} x$ in X. Since $x \in X$ is arbitrary, we get any sequence in (X, τ) pg**-congregates to every point of the space.

Theorem 5.22: If X is infinite $\mathrm{pg}^{* *}$-additive $p g^{* *} T_{1}$ space then it is not $\mathrm{pg}^{* *}$-compact.
Proof: In a $p g^{* *} T_{1}$ space $\{x\}$ is $\mathrm{pg}^{* *}$-closed for all $x \in X$. Therefore every subset of X is pg**-clopen. Therefore $\{\{x\} / x \in X\}$ is a pg**-open cover for X which has no finite subcover.

Theorem 5.23: Let (X, τ) and (Y, σ) be two topological spaces and $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a bijection. Then,

1. f is pg**-continuous and Y is a T_{1} space $\Longrightarrow X$ is a $p g^{* *} T_{1}$ space.
2. f is continuous and Y is a T_{1} space $\Rightarrow X$ is a $p g^{* *} T_{1}$ space.
3. f is pg**-irresolute and Y is $p g^{* *} T_{1}$ space $\Longrightarrow X$ is $p g^{* *} T_{1}$ space.
4. f is $\mathrm{pg}^{* *}$ - resolute and X is $p g^{* *} T_{1}$ space $\Longrightarrow Y$ is $p g^{* *} T_{1}$ space.
5. f is $\mathrm{pg}^{* *}$-open and X is a T_{1} space $\Rightarrow Y$ is $p g^{* *} T_{1}$ space.
6. f is strongly $\mathrm{pg}^{* *}$-continuous and Y is $p g^{* *} T_{1}$ space $\Rightarrow X$ is a T_{1} space.

Proof: (1) Let x and y be two distinct points of X, then $f(x)$ and $f(y)$ are distinct points of Y. Then there exists pg**open sets U_{x} and U_{y} in Y such that $f(x) \in U_{x}, f(y) \notin U_{x}$ and $f(y) \in U_{y}, f(x) \notin U_{y}$. Then $f^{-1}\left(U_{x}\right)$ and $f^{-1}\left(U_{y}\right)$ are pg**- open sets in X such that $x \in f^{-1}\left(U_{x}\right), y \notin f^{-1}\left(U_{x}\right)$ or $y \in f^{-1}\left(U_{y}\right), x \notin f^{-1}\left(U_{y}\right)$. Therefore X is a $p g^{* *} T_{1}$ space.

Proofs for (2) to (6) are similar to the above.
Remark 5.24: The property of being $p g^{* *} T_{1}$ space, is a pg**- topological property. This follows from (3) and (4) of the above theorem.

6. $\boldsymbol{p} g^{* *} T_{1}$ modulo I space

Definition 6.1: An ideal topological space (X, τ, I) is said to be $p g^{* *} T_{1}$ modulo I if for every pair of points $x, y \in X$ and $x \neq y$ there exists pg**-open set U_{x}, U_{y} containing x, y respectively, such that $U_{x} \cap\{y\} \in I, U_{y} \cap\{x\} \in I$.

Example 6.2: An ideal topological space (X, τ, I) where $I=\mathcal{p}(X)$ is a $p g^{* *} T_{1}$ modulo I space.
Example 6.3: Let $X=\{a, b, c\}, \tau=\{\varphi, X,\{a\},\{c\},\{a, c\}\}$ and $I=\varphi$, then (X, τ, φ) is not $p g^{* *} T_{1}$ modulo Ispace.
Theorem 6.4: Every $p g^{* *} T_{1}$ space is $p g^{* *} T_{1}$ modulo I space for every ideal I.
Proof is obvious since $\varphi \in I$.
Remark 6.5: If $I=\{\varphi\}$ then both $p g^{* *} T_{1}$ space and $p g^{* *} T_{1}$ modulo I space happen together.
Theorem 6.6: Every ideal topological space which is $p g^{* *} T_{1}$ modulo I is $p g^{* *} T_{0}$ modulo I space.
Proof follows from the definitions.

Remark 6.7: The converse of the above theorem is not true as seen in the following example.
Example 6.8: $\operatorname{Let} X=\{a, b, c\}, \tau=\{\varphi, X,\{a\},\{c\},\{a, c\}\}$ and $I=\{\varphi,\{b\}\}$, then (X, τ, I) is $p g^{* *} T_{0}$ modulo I but not $p g^{* *} T_{1}$ modulo I space.

Theorem 6.9: Let I, J be ideals of X and if $I \subseteq J$, then (X, τ, I) is $p g^{* *} T_{1}$ modulo I implies (X, τ, J) is $p g^{* *} T_{1}$ modulo J.
Proof: If $x, y \in X$ and $x \neq y$, then there exists disjoint pg**-open sets U_{x}, U_{y} containing x, y respectively such that $U_{x} \cap U_{y}=\varphi \in I \subseteq J$. Therefore (X, τ, J) is a $p g^{* *} T_{1}$ moduloJ space.

Theorem 6.10: Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces and $f:(\mathrm{X}, \tau, I) \rightarrow(\mathrm{Y}, \sigma, J)$ be a bijection where $J=f(I)$ is an ideal in Y then,

1. $\quad f$ is pg**-resolute and X is $p g^{* *} T_{1}$ modulo I space $\Rightarrow Y$ is $p g^{* *} T_{1}$ modulo J space.
2. $\quad f$ is pg**-continuous and Y is a T_{1} modulo J space $\Rightarrow X$ is a $p g^{* *} T_{1}$ modulo I space.
3. f is continuous and Y is a T_{1} modulo J space $\Rightarrow X$ is a $p g^{* *} T_{1}$ modulo I space.
4. $\quad f$ is pg**-irresolute and Y is T_{1} modulo J space $\Longrightarrow X$ is $p g^{* *} T_{1}$ modulo I space.
5. $\quad f$ is pg**-open and X is a T_{1} space $\Rightarrow Y$ is $p g^{* *} T_{1}$ modulo J space.
6. f is open and X is a T_{1} space $\Longrightarrow Y$ is $p g^{* *} T_{1}$ modulo J space.

Proof: (1) Let $y_{1} \neq y_{2} \in Y$. Since f is a bijection there exists $x_{1} \neq x_{2} \in X$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Since X is $p g^{* *} T_{1}$ modulo I space there exists pg**- open sets U and V in X such that $x_{1} \in U, U \cap\left\{x_{2}\right\} \in I$ and $x_{2} \in V, V \cap\left\{x_{1}\right\} \in I$ this implies $y_{1} \in f(U), f(U) \cap\left\{y_{2}\right\} \in J$ and $y_{2} \in f(V), f(V) \cap\left\{y_{1}\right\} \in J$ where $f(U)$ and $f(V)$ are pg**- open in Y. Therefore (Y, σ, J) is a $p g^{* *} T_{1}$ modulo J space.

Proofs for (2) to (6) are similar to (1).

7. $\boldsymbol{p} \boldsymbol{g}^{* *} \boldsymbol{T}_{2}$ Space

Definition 7.1: A topological space (X, τ) is said to be $p g^{* *} T_{2}$ space if $x, y \in X$ and $x \neq y$, there exists disjoint pg**open sets U_{x}, U_{y} containing x, y respectively.

Example 7.2: Every discrete and indiscrete topological space is $p g^{* *} T_{2}$ space, since every subset is pg**-open. For, if $x \neq y$ in $X, U=\{x\}$ and $V=\{y\}$ are disjoint $\mathrm{pg}^{* *}$-open sets.

Example 7.3: An infinite set with cofinite topology is not $p g^{* *} T_{2}$, since it is impossible to find two disjoint $\mathrm{pg}^{* *}$-open sets.

Theorem 7.4: Every T_{2} space is $p g^{* *} T_{2}$ space but not conversely.
Proof is obvious since every open set is $\mathrm{pg}^{* *}$-open set.
Example 7.5: An indiscrete topological space (X, τ) has more than one point is $p g^{* *} T_{2}$ but not a T_{2} space.

Remark 7.6:

(i) The properties $p g^{* *} T_{0}, p g^{* *} T_{1}$ and $p g^{* *} T_{2}$ are separation properties through $\mathrm{pg}^{* *}$-open sets in increasing order of strictness. That is, we have $p g^{* *} T_{2} \Rightarrow p g^{* *} T_{1} \Rightarrow p g^{* *} T_{0}$.
(ii) If (X, τ) is a $p g^{* *} T_{2}$ space and $\tau^{*} \supseteq \tau$, then $\left(X, \tau^{*}\right)$ is also $p g^{* *} T_{2}$ space.

Theorem 7.7: If X is $p g^{* *} T_{2}$ space then for $x \neq y \in X$ there exists a $\mathrm{pg}^{* *}$-open set U such that $x \in U$ and $y \notin p g^{* *} c l(U)$.

Proof: Let x, y be distinct points of X. Since X is $p g^{* *} T_{2}$ there exists disjoint pg**-open sets U and V in X such that $x \in U$ and $y \in V$. Therefore V^{c} is pg**-closed set such that $p g^{* *} c l(U) \subseteq V^{c}$. Since $y \in V$, we have $y \notin V^{c}$. Thus $y \notin p g^{* *} c l(U)$.

Theorem 7.8: Let (X, τ) and (Y, σ) be two topological spaces and f and g be pg**-irresolute functions from X to Y. If Y is a $p g^{* *} T_{2}$ space then the set $A=\{x \in X / f(x)=g(x)\}$ is pg**-closed in X.

Proof: If $y \in X-A$, then $f(y) \neq g(y)$. Since Y is a $p g^{* *} T_{2}$ space there exists pg**-open sets U and V such that $f(y) \in U, g(y) \in V$ and $U \cap V=\varphi$, this implies $y \in f^{-1}(U) \cap g^{-1}(V)=G$ ispg**-open in X. Consequently G is a pg**-neighbourhood of $y \in X-A$ and hence $X-A$ is pg**-open. Therefore A is pg**-closed in X.

Theorem 7.9: Let (X, τ) and (Y, σ) be two topological spaces and f and g be pg**-continuous functions from X to Y. If Y is a T_{2} space then the set $A=\{x \in X / f(x)=g(x)\}$ is pg**-closed in X.

Proof is similar to the above theorem.
Theorem 7.10: Let $f:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an injective map and Y is $p g^{* *} T_{2}$ space. If f is $\mathrm{pg}^{* *}$-totally continuous then X is ultra-Hausdorff.

Proof: Let x and y be any two distinct points in X. Since f is injective, $f(x)$ and $f(y)$ are distinct points in Y. Since Y is $p g^{* *} T_{2}$ space there exists pg**- open sets U_{x}, U_{y} such that $f(x) \in U_{x}, f(y) \in U_{y}$ and $U_{x} \cap U_{y}=\varphi$. Then $x \in$ $f^{-1}\left(U_{x}\right)$ and $y \in f^{-1}\left(U_{y}\right)$. Since f is $\mathrm{pg}^{* *}$ - totally continuous $f^{-1}\left(U_{x}\right)$ and $f^{-1}\left(U_{y}\right)$ are clopen in X. Also $f^{-1}\left(U_{x}\right) \cap$ $f^{-1}\left(U_{y}\right)=\varphi$. This implies every pair of distinct points of X can be separated by disjointclopen sets. Therefore X is ultra-Hausdorff.

Theorem 7.11: If (X, τ) is a $p g^{* *} T_{2}$ space then a sequence of points of $X \mathrm{pg}^{* *}$-congregates to atmost a point of X.
Proof: Let $x, y \in X$ and $x \neq y$, suppose $\left\langle x_{n}\right\rangle \xrightarrow{p g^{* *}} x$ and $\left\langle x_{n}\right\rangle \xrightarrow{p g^{* *}} y$. Since X is a $p g^{* *} T_{2}$ space there exists disjointpg**-open sets U and V such that $x \in U$ and $y \in V$. Since $\left\langle x_{n}\right\rangle \xrightarrow{p g^{* *}} x$ there exists a positive integer N such that $x_{n} \in U, \forall n \geq N$. Hence V can contain only finitely many points of the sequence $\left\langle x_{n}\right\rangle$. Therefore $\left\langle x_{n}\right\rangle$ does not pg**-congregates to y.

Definition 7.12: If $f: X \rightarrow X$ is a function then define Fix $(f)=\{x \in X / f(x)=x\}$.
Theorem 7.13: If (X, τ) is a $p g^{* *} T_{2}$ space and f is pg**-irresolute function of X into itself then $F i x(f)$ is pg**-closed.
Proof: Let $\operatorname{Fix}(f)=A$. To prove $X-A$ is pg**-open, suppose $X-A$ is empty then it is pg**-open. Presume that $X-A \neq \varphi$, then there exists $y \in X-A$. Therefore $f(y) \neq y$. Since X is $p g^{* *} T_{2}$, there exists disjoint pg**-open sets U and V such that $y \in U$ and $f(y) \in V$. Therefore $U \cap f^{-1}(V)$ is a pg**-open set containing y. Suppose if $x \in U \cap f^{-1}(V)$, then $f(x) \neq x$ which implies $x \notin A$. Therefore $U \cap f^{-1}(V) \subseteq X-A$. Therefore $X-A$ is pg**-open.

Theorem 7.14: If (X, τ) is a T_{2} space and f is pg**-continuous function of X into itself then $F i x(f)$ is pg**-closed.
Proof is similar to the above.
Theorem 7.15: Product of two $p g^{* *} T_{2}$ space is $p g^{* *} T_{2}$ space.
Proof: Let $X \times Y$ be the product of two topological spaces X and Y. Let x and y be any two distinct points in X and $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be any two distinct points of $X \times Y$. Then either $x_{1} \neq x_{2}$ or $y_{1} \neq y_{2}$. If $x_{1} \neq x_{2}$ and since X is $p g^{* *} T_{2}$ space there exists pg**- open sets U_{x}, U_{y} containing x, y respectively. Consequently $U_{x} \times Y$ and $U_{y} \times Y$ are pg**- open sets containing $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively such that $\left(U_{x} \times Y\right) \cap\left(U_{y} \times Y\right)=\left(U_{x} \cap U_{y}\right) \times Y=\varphi$. Therefore $X \times Y$ is a $p g^{* *} T_{2}$ space.

8. $\boldsymbol{p} \boldsymbol{g}^{* *} \boldsymbol{T}_{2}$ Spaces and $\boldsymbol{p} \boldsymbol{g}^{* *}$ Compact spaces

Theorem 8.1: Let (X, τ) be a $p g^{* *} T_{2}$ space, then every pg**-compact subset of X is pg**-closed.
Proof: Let Y be a pg**-compact subset of X and $x \in X-Y$. Then for every $y \in Y$ there exists disjointpg**-open sets U_{x} and V_{y} containing x and y respectively. Now $\left\{V_{y} / y \in Y\right\}$ forms a pg**-open cover for Y, then there exists $\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right\} \in Y$ such that $Y \subseteq \bigcup_{i=1}^{n} V_{y_{i}}=V$. Let $U=\bigcap_{i=1}^{n} U_{x_{i}}$, then U is pg**-open.

Obviously $U \cap Y=\varphi$. Therefore U is a pg**-neighbourhood of x contained in $X-Y$. Therefore $X-Y$ is pg**-open and hence Y is pg**-closed.

Remark 8.2: In theorem (8.1) $p g^{* *} T_{2}$ property is essential. An infinite cofinite topological space is pg**multiplicative but not $p g^{* *} T_{2}$ space, in this space every subset is pg**-compact but only finite sets are pg**-closed.

Theorem 8.3: If $\left\{X_{\alpha}\right\}$ is a collection of $\mathrm{pg}^{* *}$-compact subsets of a pg**-multiplicative $\mathrm{pg}^{* *} T_{2}$ space (X, τ) such that the intersection of every finite subcollection of $\left\{X_{\alpha}\right\}$ is nonempty, then $\cap X_{\alpha}$ is nonempty.

Proof: Fix a member X_{1} of $\left\{X_{\alpha}\right\}$ and put $U_{\alpha}=X_{\alpha}^{c}$. Assume that no point of X_{1} belongs to every X_{α}. Then the sets U_{α} form an $\mathrm{pg}^{* *}$ - open cover of X_{1}, and since X_{1} is $\mathrm{pg} * *$-compact, there are finitely many indices $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$ such that $X_{1} \subset U_{\alpha_{1}} \cup U_{\alpha_{2}} \cup \ldots \cup U_{\alpha_{n}}$. But this implies $X_{1} \cap X_{\alpha_{1}} \cap X_{\alpha_{2}} \cap \ldots \cap X_{\alpha_{n}}$ is empty, contradiction to our hypothesis. Therefore $\cap X_{\alpha}$ is nonempty.

Theorem 8.4: A pg**multiplicative space (X, τ) is $p g^{* *} T_{2}$ if and only if two disjoint $\mathrm{pg}^{* *}$-compact subsets of X can be separated by disjoint $\mathrm{pg}^{* *}$-open sets

Proof: Let (X, τ) be a $p g^{* *} T_{2}$ space and A, B be disjointpg**-compact subsets of X. Choose $x \in A$, then for every $y \in B$ we have $x \neq y$, since X is $p g^{* *} T_{2}$ there exists disjointpg**-open sets U_{x} and V_{y} containing x and y respectively.Now $B=\underset{y \in B}{\cup}\{y\} \subseteq \cup_{y \in B} V_{y}$, we get $\left\{V_{y} / y \in B\right\}$ forms a $\mathrm{pg}^{* *}$-open cover for B, then there exists $\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right\} \in Y$ such that $B \subseteq \bigcup_{i=1}^{n} V_{y_{i}}=V$. Define $U_{a}=\bigcap_{i=1}^{n} U_{x_{i}}$, then U_{n} is pg**-open. $x \in U_{n}$ and $U_{a} \cap V=\varphi$. Seeing as $A=\cup_{x \in A}\{x\} \subseteq \bigcup_{x \in A} U_{n}$, we get $\left\{U_{a} / a \in A\right\}$ forms a pg**-open cover for A. Since A is pg**-compact $A \subseteq \bigcup_{i=1}^{m} U_{a_{i}}=U$ (say). Since X is pg**multiplicative U is pg**-open. Since $U_{a} \cap V=\varphi$ for every $a \in A$, we get $U \cap V=\varphi$. Therefore the $\mathrm{pg}^{* *}$-open sets U and V are disjoint $\mathrm{pg}^{* *}$-open sets containing A, B respectively. Conversely assume that any two disjoint pg**-compact subsets of X can be separated by disjoint $\mathrm{pg}^{* *}$-open sets. Let $x \neq y \in X$ then $\{x\}$ and $\{y\}$ are disjoint $\mathrm{pg}^{* *}$-compact subsets of X. By hypothesis there exists disjoint pg**-open sets U and V such that $\{x\} \subseteq U,\{y\} \subseteq V$. Therefore X is a $p g^{* *} T_{2}$ space.

Theorem 8.5: If a nonempty pg**multiplicative $\mathrm{pg}^{* *}$-compact $p g^{* *} T_{2}$ space X has no $\mathrm{pg}^{* *}$-isolated points then X is uncountable.

Proof: Let $x_{1} \in X$. Since X has no isolated points we can choose $y \in X$ such that $x_{1} \neq y$. Since X is $p g^{* *} T_{2}$ there exists disjointpg**-open sets U_{1} and V_{1} containing x_{1} and y respectively. Therefore V_{1} is a pg**-open set and $x_{1} \notin$ $p g^{* *} c l\left(V_{1}\right)$. Repeating the same process with $V_{1}=X$ and $x_{1} \neq x$, then we get a pg**-open set V_{2} and $x_{1} \notin p g^{* *} c l\left(V_{2}\right)$.

In general for a nonempty pg**-open set V_{n-1}, we get $\mathrm{pg}^{* *}$-open set V_{n} such that $V_{n} \subseteq V_{n-1}$ and $x_{n} \notin p g^{* *} c l\left(V_{n}\right)$. Thus we get a nested sequence of pg**-closed sets such that $p g^{* *} c l\left(V_{n}\right) \supseteq p g^{* *} c l\left(V_{n+1}\right) \supseteq \cdots$, since X is pg**-compact there exists $x \in \cap p g^{* *} c l\left(V_{n}\right)$. Define $f: \mathbb{N} \rightarrow X$ such that $f(n)=x_{n}$. We show that there exists $x \in X-f(\mathbb{N})$. $x \in \cap p g^{* *} c l\left(V_{n}\right)$ but $x_{n} \notin p g^{* *} c l\left(V_{n}\right)$ this implies $x \neq x_{n}$ for every n. Therefore $x \in X-f(\mathbb{N}) . f: \mathbb{N} \rightarrow X$ is not onto and hence X is uncountable.

Theorem 8.6: Let (X, τ) be a pg**multiplicative $p g^{* *} T_{2}$ space. Then X is pg**-locally compact if and only if each of its points is a pg**-interior point of some pg**-compact subset of X.

Proof: Let X be pg**-locally compact and $x \in X$. Thenthere is some pg**-compact subset C of X that contains a pg**neighbourhood N of x. Conversely let every point $x \in X$ be a pg**-interior point of some pg**-compact subset C of X. Then C is a pg**-neighbourhood x. Since C is $\mathrm{pg}^{* *}$-compact it is pg**-closed. Therefore X is pg**-locally compact.

Theorem 8.7: Every $\mathrm{pg}^{* *}$ - irresolute mapping of a pg**-compact space into a $\mathrm{pg}^{* *} T_{2}$ space is $\mathrm{pg}^{* *}$ - resolve.
Proof: Let (X, τ) be pg**-compact space and (Y, σ) be a $p g^{* *} T_{2}$ space. Let $f: X \rightarrow Y$ be a pg**- irresolute map and F be pg**-closed in X. To prove $f(F)$ is $\mathrm{pg}^{* *}$-closed in Y. Since F is a pg**-closed subset of a pg**-compact space X, F is pg**-compact. Also $f: X \rightarrow Y$ is pg**- irresolute and F is pg**-compact implies $f(F)$ is pg**-compact subset of Y. Since $f(F)$ is $\mathrm{pg}^{* *}$-compact subset of a $p g^{* *} T_{2}$ space $f(F)$ is $\mathrm{pg}^{* *}$-closed. Therefore f is $\mathrm{pg}^{* *}$-resolve.

Theorem 8.8: A one-one pg**-irresolute mapping of a pg**-compact space onto apg**multiplicative ${p g^{* *}}^{*} T_{2}$ space is a $\mathrm{pg}^{* *}$-homeomorphism.

Proof: Let X be pg**-compact, Y pg**multiplicative $p g^{* *} T_{2}$ space and f a one-one $\mathrm{pg}^{* *}$-irresolute mapping onto Y. In order to show that f is a pg**-homeomorphism, it is only necessary to show that it carries pg**-open sets into $\mathrm{pg}^{* *}$ open sets or unvaryingly pg**-closed sets into pg**-closed sets. But if E is a pg**-closed subset of X, then E is $\mathrm{pg}^{* *}$ compact. Since f is pg**-irresolute $f(E)$ is pg**-compact. Therefore by theorem (8.1) $f(E)$ is pg**-closed.

Theorem 8.9: Let (X, τ) be a pg**multiplicative $p g^{* *} T_{2}$ space. If E and F are subsets of X and if E is pg**-closed and F is $\mathrm{pg}^{* *}$-compact, then $E \cap F$ is $\mathrm{pg}^{* *}$-compact.

Proof: Since X is a $\mathrm{pg}^{* *}$ multiplicative $p g^{* *} T_{2}$ space $E \cap F$ is $\mathrm{pg}^{* *}$-closed. Also $E \cap F$ is a pg**-closed subset of a pg**-compact space F. Therefore $E \cap F$ is pg**-compact.

9. $\boldsymbol{p} \boldsymbol{g}^{* *} \boldsymbol{T}_{2}$ modulo I space

Definition 9.1: An ideal topological space (X, τ, I) is said to be $p g^{* *} T_{2}$ modulo I if for every pair of points $x, y \in X$ and $x \neq y$ there exists pg**-open set U, V such that $x \in U-V, y \in V-U$ and $U \cap V \in I$.

Example 9.2: For any ideal I an indiscrete topological space (X, τ, I) is $p g^{* *} T_{2}$ modulo I space.
Example 9.3: Let (X, τ, I) be an infinite co finite ideal topological space with $I=\{\varphi\}$. It is not possible to find two disjoint pg**-open sets of X such that $x \in U-V, y \in V-U$ and $U \cap V \in I$. Therefore X is not $p g^{* *} T_{2}$ modulo I space.

Theorem 9.4: Every $p g^{* *} T_{2}$ space is $p g^{* *} T_{2}$ modulo I space for every ideal I but not conversely.
Proof is obvious since $\varphi \in I$.
Example 9.5: Let X be an infinite ideal topological space with cofinite topology and $I=p(X)$, then the space is not $p g^{* *} T_{2}$ but it is $p g^{* *} T_{2}$ modulo I space.

Remark 9.6: If $I=\{\varphi\}$ then both $p g^{* *} T_{2}$ space and $p g^{* *} T_{2}$ modulo I space coincide.
Theorem 9.7: Let (X, τ, I) be $p g^{* *} T_{2}$ modulo I and J be an ideal of X with $I \subseteq J$, then (X, τ, J) is $p g^{* *} T_{2}$ modulo J.
Proof is obvious.
Theorem 9.8: Every ideal topological space which is $p g^{* *} T_{2}$ modulo I is $p g^{* *} T_{1}$ modulo I space.
Proof follows from the definitions.
Remark 9.9: The converse of the above theorem need not be true as seen in the following example.
Example 9.10: Let $X=\{a, b, c\}, \tau=\{\varphi, X,\{a\},\{c\},\{a, c\}\}, P G^{* *} O(X)=\{\varphi, X,\{a\},\{c\},\{a, c\}\}$ and $I=p(X)$ then (X, τ, I) is $p g^{* *} T_{1}$ modulo I but not $p g^{* *} T_{2}$ modulo I space.

Theorem 9.11: Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces and $f:(\mathrm{X}, \tau, I) \rightarrow(\mathrm{Y}, \sigma, J)$ be a bijection where $J=f(I)$ is an ideal in Y then,

1. $\quad f$ is $\mathrm{pg}^{* *}$-resolute and X is $p g^{* *} T_{2}$ modulo I space $\Rightarrow Y$ is $p g^{* *} T_{2}$ modulo J space.
2. f is pg**-continuous and Y is a T_{2} modulo J space $\Longrightarrow X$ is a $p g^{* *} T_{2}$ modulo I space.
3. f is continuous and Y is a T_{2} modulo J space $\Rightarrow X$ is a $p g^{* *} T_{2}$ modulo I space.
4. f is pg**-irresolute and Y is T_{2} modulo J space $\Rightarrow X$ is $p g^{* *} T_{2}$ modulo I space.
5. f is $\mathrm{pg}^{* *}$-open and X is a T_{2} space $\Rightarrow Y$ is $p g^{* *} T_{2}$ modulo J space.
6. $\quad f$ is open and X is a T_{2} space $\Rightarrow Y$ is $p g^{* *} T_{2}$ modulo J space.

Proof: (1) Let $y_{1} \neq y_{2} \in Y$. Since f is a bijection there exists $x_{1} \neq x_{2} \in X$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Since X is $p g^{* *} T_{2}$ modulo I space there exists pg**- open sets U and V in X such that $x_{1} \in U-V, x_{2} \in V-U$ and $U \cap V \in I$.

This implies $y_{1} \in f(U)-f(V), f(V)-f(U)$ and $f(V) \cap f(V) \in J$ where $f(U)$ and $f(V)$ are pg**- open in Y. Therefore (Y, σ, J) is a $p g^{* *} T_{2}$ modulo J space.

Proofs for (2) to (6) are similar to (1).

10. pg**regular spaces

Definition 10.1: A $p g^{* *} T_{1}$ space (X, τ) is said to be $p g^{* *}$ regularif F is a pg**- closed set and $x \in X$ is a point such that $x \notin F$, there exists disjoint pg**- open sets U_{F}, U_{x} containing F and x respectively.

Example 10.2: Every indiscrete topological space is $p g^{* *}$ regular.
If F is a pg**-closed subset of X and $x \notin F$ then $\{x\}$ and F are disjoint pg**- open sets containing x and F respectively, Since every subset of a indiscrete topological space is pg**- open.

Example 10.3: Any infinite co finite topological space is not $p g^{* *}$ regular, since it is impossible to find disjoint pg**open sets.

Theorem 10.4: Every $p g^{* *}$ regular space is $p g^{* *} T_{2}$ space.
Proof: Follows from $\{x\}$ is $\mathrm{pg}^{* *}$ - closed for all $x \in X$.
Theorem 10.5: Let (X, τ) be a $p g^{* *}$ multiplicative $p g^{* *} T_{1}$ space, then the following are equivalent.
(i) X is $p g^{* *}$ regular.
(ii) For every $x \in X$ and for every pg**-neighbourhood U of x there exists a pg**-neighbourhood V of x such that $p g^{* *} c l(V) \subseteq U$.
(iii) For every $x \in X$ and for every pg**-closed set not containing x there exists pg**-neighbourhood V of x such that $p g^{* *} c l(V) \cap F=\varphi$.

Proof $(\boldsymbol{i}) \Rightarrow(i \boldsymbol{i})$: Let (X, τ) be $g^{* *}$ regular. Let $x \in X$ and U be a pg**-neighbourhood of x, then $F=X-U$ is pg**closed. Then there exists disjoint pg**- open sets V and W such that $x \in V$ and $F \subseteq W$. Let $y \in F=X-U$. Therefore $y \notin p g^{* *} c l(V)$. Therefore $x \in V \subseteq p g^{* *} c l(V) \subseteq U$.
$(\boldsymbol{i i}) \Rightarrow(\boldsymbol{i i i}):$ Let $x \in X$ and F be a pg**-closed set with $x \notin F$. Then $x \in X-F$ which is $\mathrm{pg}^{* *}$ - open. Then there exists

(iiii) $\Rightarrow(\boldsymbol{i})$: Let $x \in X$ and F be a pg**-closed set with $x \notin F$. Then by hypothesis there exists a pg**-neighbourhood V of x such that $p g^{* *} c l(V) \cap F=\varphi$. Therefore $F \subset X-p g^{* *} c l(V)=W$.

Now $V \cap\left(X-p g^{* *} c l(V)\right) \subset V \cap(X-V)=\varphi$. Therefore V and W are disjoint pg**- open sets containing x and F respectively.Therefore X is $p g^{* *}$ regular.

Theorem 10.6: Every pair of points in a $p g^{* *}$ regular space have $\mathrm{pg}^{* *}$-neighbourhoods whose $\mathrm{pg}^{* *}$-closures are disjoint.

Proof: Let x and y be distinct points in X. Then by the definition of $p g^{* *}$ regularity $\{y\}$ is $\mathrm{pg}^{* *}$-closed and there exists disjoint pg**- open sets U, V containing x and y respectively. Then by theorem (10.5) there exists a pg**neighbourhood U_{x} of x such that $x \in U_{x} \subseteq p g^{* *} c l\left(U_{x}\right) \subseteq U$. Similarly there exists a pg**-neighbourhood V_{x} of x such that $x \in V_{x} \subseteq p g^{* *} c l\left(V_{x}\right) \subseteq V$. Therefore U_{x} and V_{x} are $\mathrm{pg}^{* *}$-neighbourhoods of x and y whose pg**-closures are disjoint.

Theorem 10.7: Let A be a pg**-compact subset of a $p g^{* *}$ multiplicative $p g^{* *}$ regular space (X, τ) then for any pg**open set G containing A there exists a $\mathrm{pg}^{* *}$-closed set F such that $A \subseteq F \subseteq G$.

Proof: If $a \in A$ then $a \in G$. Since X is $p g^{* *}$ regular there exists a pg**-neighbourhood V_{a} of a such that $a \in V_{a} \subseteq p g^{* *} c l\left(V_{a}\right) \subseteq G$. Now $A=\underset{a \in A}{\cup}\{a\} \subseteq \underset{a \in A}{\cup} V_{a}$ and $\left\{V_{a}\right\}_{a \in A}$ forms a pg**-open cover for a pg**-compact set A. Hence $A \subseteq \bigcup_{i=1}^{n} V_{a_{i}}$. Now $p g^{* *} c l\left(V_{a_{i}}\right) \subseteq G$ for al $i, 1 \leq i \leq n$ implies $F=\underset{i=1}{\cup} p g^{* *} c l\left(V_{a_{i}}\right)$. Since X is $p g^{* *}$ multiplicative F is $\mathrm{pg}^{* *}$-closed such that $A \subseteq F \subseteq G$.

Theorem 10.8: Let (X, τ) be apg ${ }^{* *}$ finitely multiplicative $p g^{* *}$ regular space. Let A and B be disjoint subsets of X such that A is $\mathrm{pg}^{* *}$-closed and B is $\mathrm{pg}^{* *}$-compact in X. Then there exists disjoint $\mathrm{pg}^{* *}$-open sets in X containing A and B respectively.

Proof: If $b \in B$ then $b \notin A$. Since X is $p g^{* *}$ regularthere exists disjoint pg**-open sets V_{A}, U_{b} containing A and brespectively for each $b \in B$. Therefore ${ }_{b \in B}^{\cup}\{b\} \subseteq \underset{b \in B}{\cup} U_{b}$ and $\left\{U_{b}\right\}_{b \in B}$ forms a pg**-open cover for B. Since B is pg**-
 Define $V={ }_{i=1}^{n} V_{A_{i}}$ which is $\mathrm{pg}^{* *}$-open. Therefore there exists disjoint $\mathrm{pg}^{* *}$-open sets such that $A \subseteq V$ and $B \subseteq U$.

Theorem 10.9: $p g^{* *}$ closure of a $\mathrm{pg}^{* *}$-compact subset of a $g^{* *}$ multiplicative $p g^{* *}$ regular space is pg **-compact.
Proof: Let (X, τ) be a $p g^{* *}$ regular space and A be a pg**-compact subset of X. Let $\left\{G_{\alpha}\right\}$ be a $\mathrm{pg}^{* *}$-open cover for $p g^{* *} c l(A)$. Then $\left\{G_{\alpha}\right\}$ is also a pg**-open cover for A. Since A is pg**-compact $A \subseteq \underset{i=1}{\cup} G_{\alpha_{i}}=G$ which is pg**-open. Then by theorem (10.7) there exist a pg**-closed set F such that $A \subseteq F \subseteq G$. Since X is $p g^{* *}$ multiplicative and F is pg**-closed, $p g^{* *} c l(A) \subseteq p g^{* *} c l(F)=F \subseteq G=\underset{i=1}{\cup} G_{\alpha_{i}}$. Therefore the open cover $\left\{G_{\alpha}\right\}$ of $p g^{* *} c l(A)$ has a finite subcover. Hence $p g^{* *} c l(A)$ is $\mathrm{pg}^{* *}$-compact.

11. $\mathrm{pg}^{* *}$ normal spaces

Definition 11.1: A $p g^{* *} T_{1}$ space (X, τ) is said to be $p g^{* *}$ normal if for each pair A and B of disjoint $\mathrm{pg}^{* *}$ - closed sets in X, there exist disjoint $\mathrm{pg}^{* *}$ - open sets U_{A}, U_{B} containing A and B respectively.

Example 11.2: Every indiscrete topological space is $p g^{* *}$ normal, since every subset of a indiscrete topological space ispg**-open.

Example 11.3: Any infinite co finite topological space is not $p g^{* *}$ normal, since it is impossible to find disjoint pg**open sets.

Theorem 11.4: Every $p g^{* *}$ normal space is $p g^{* *}$ regular space.
Proof: Follows from $\{x\}$ is $\mathrm{pg}^{* *}$-closed for all $x \in X$.
Theorem 11.5: Let (X, τ) be a $p g^{* *}$ multiplicative $p g^{* *} T_{1}$ space, then X is $p g^{* *}$ normal if and only if for every pg**closed set A and a pg ${ }^{* *}$-open set U containing A there exists a pg**-open set V containing A such that $p g^{* *} c l(V) \subseteq U$.

Proof: Let A be a pg**-closed set and U be a pg**-open set containing A. Then $B=X-A$ is pg**-closed and $A \cap B=\varphi$. Since X is $p g^{* *}$ normalthere exists disjoint pg**- open sets V, W containing A and B respectively. Now $A \subseteq V \subseteq p g^{* *} c l(V)$. Let $y \in X-U=B \subseteq W$ and $V \cap W=\varphi$. Therefore $y \notin p g^{* *} c l(V)$. Hence $p g^{* *} c l(V) \subseteq U$. Conversely let A and B be two pg**-closed subsets of X. Then $U=X-B$ is $\mathrm{pg}^{* *}$-open set containing A. By hypothesis there exists a $\mathrm{pg}^{* *}$-open set V containing A such that $A \subseteq V \subseteq p g^{* *} c l(V) \subseteq U$. Since X is $p g^{* *}$ multiplicative $p g^{* *} c l(V)$ is $\mathrm{pg}^{* *}$-closed. Therefore $X-p g^{* *} c l(V)=W$ is a $\mathrm{pg}^{* *}$-open set containing B and V is a pg**-open set containing A such that $V \cap W=\varphi$. Therefore (X, τ) is $p g^{* *}$ normal.

Theorem 11.6: A $p g^{* *}$ multiplicative space X in which every singleton set is a pg**-isolated point is $p g^{* *}$ normal.
Proof: follows from every subset is pg**-clopen.
Theorem 11.7: Every pg**-compact $p g^{* *}$ finitely multiplicative $p g^{* *} T_{2}$ space is $p g^{* *}$ normal.
Proof: Let X be a pg**-compact $p g^{* *}$ finitely multiplicative $p g^{* *} T_{2}$ space. Let A and B be two pg**-closed subsets of X. Since B is a pg**-closed subset of a $\mathrm{pg}^{* *}$-compact space B is $\mathrm{pg}^{* *}$-compact, also by theorem (8.1) for every $x \in B$ there exists disjoint pg**-open sets U_{x}, V_{x} such that $x \in U_{x}$ and $A \subseteq V_{x}$. Now $\left\{U_{x} / x \in B\right\}$ is a pg**-open cover for B.
 open sets containing A and B respectively. Also every $p g^{* *} T_{2}$ space is $p g^{* *} T_{1}$. Hence X is $p g^{* *}$ normal.

Theorem 11.8: Every metrizable space (X, τ) is $p g^{* *}$ normal.
Proof: Let (X, τ) be metrizable space with metric d. Let A and B be two pg**-closed subsets of X. For every $a \in A$, choose ε_{a} such that $B\left(a, \varepsilon_{a}\right) \cap B=\varphi$. Correspondingly for every $b \in B$, choose ε_{b} such that $B\left(b, \varepsilon_{b}\right) \cap A=\varphi$. Let $U=\underset{a \in A}{u} B\left(a, \frac{\varepsilon_{a}}{2}\right), V=\underset{b \in B}{\cup} B\left(b, \frac{\varepsilon_{b}}{2}\right) . U$ and V are pg**-open, since U and V are open in X. In $z \in U \cap V$ then $z \in B\left(a, \frac{\varepsilon_{a}}{2}\right) \cap B\left(b, \frac{\varepsilon_{b}}{2}\right)$ for some $a \in A$ and $b \in B$. Therefore $(a, b) \leq d(a, z)+d(z, b) \leq \frac{\varepsilon_{a}+\varepsilon_{b}}{2}$. Without loss of generality let $\varepsilon_{a} \leq \varepsilon_{b}$. Then $d(a, b)<\varepsilon_{b}$, this implies $a \in B\left(b, \varepsilon_{b}\right)$ which is a contradiction. Therefore $U \cap V=\varphi$. Since X is metrizable, every singleton set is closed and hence $\mathrm{pg}^{* *}$-closed. Hence X is $p g^{* *}$ normal.

Theorem 11.9: In a $\mathrm{pg}^{* *}$ normal space (X, τ) every pair of disjoint $\mathrm{pg}^{* *}$-closed sets have $\mathrm{pg}^{* *}$-neighbourhoods whose $p g^{* *}$ closures are disjoint.

Proof: Let A and B be disjoint pg**-closed subsets of X. Then by definition of $p g^{* *}$ normality there exist disjoint pg**- open sets U_{A}, U_{B} containing A and B respectively. Then there exists a pg**-open set V containing A such that $A \subseteq V \subseteq p g^{* *} c l(V) \subseteq U_{A}$. Likewise, there exists a pg**-open set W containing B such that $B \subseteq W \subseteq p g^{* *} c l(W) \subseteq$ U_{B}. Therefore V and W are the required $\mathrm{pg}^{* *}$-neighbourhoods.

REFERENCES

1. James R. Munkres, Topology, Ed.2, PHI Learning Pvt. Ltd. New Delhi, 2011.
2. K.Kuratowski, Topology I. Warrzawa 1933.
3. N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (1970), 89-96.
4. A.S.Mashhour, M.E.Abd EI-Monsef and S.N.EI-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. And Phys. Soc. Egypt, 53(1982), 47 - 53.
5. Pauline Mary Helen M, $\mathrm{g}^{* *}$-closed sets in Topological spaces, IJMA, 3(5), (2012), 1-15.
6. PunithaTharani. A, Priscilla Pacifica. G, pg**-closed sets in topological spaces, IJMA, 6(7), (2015), 128-137.
7. M.K.R.S. Veerakumar, Mem. Fac. Sci. Koch. Univ. Math., 21(2000), 1-19.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

