TOTAL HOMO-CORDIAL LABELING OF GRAPHS

S. MAHESWARI*1, V. THIRIPURASUNDARI ${ }^{\mathbf{2}}$
${ }^{1}$ M.Phil Scholar, PG and Research Department of Mathematics, Sri S. R. N. M. College, Sattur - 626 203, Tamil Nadu, India.
${ }^{2}$ Assistant Professor, PG and Research Department of Mathematics, Sri S. R. N. M. College, Sattur - 626 203, Tamil Nadu, India.

(Received On: 22-02-17; Revised \& Accepted On: 27-03-17)

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. A Total Homo-Cordial Labeling of a graph G with vertex set V is a bijection from V to $\{0,1\}$ such that each $u v$ is assigned the label 1 if $f(u)=f(v)$ or 0 if $f(u) \neq f(v)$ with the condition that $\left|e v_{f}(0)-e v_{f}(1)\right| \leq 1$ where $e v_{f}(x)$ denotes the total number of vertices and edges labeled with $x(x=0,1)$. The graph that admits a Total Homo-Cordial Labeling is called Total Homo-Cordial Graph. In this paper, we prove some graphs such as path, cycle, wheel, comp and fan are total homo- cordial labeling graphs.

Keywords: Cordial labeling, Homo-cordial labeling, Homo-cordial graph.

AMS Subject classification (2010): 05C78.

1. INTRODUCTION

All graphs considered here are finite, simple and undirected. Gallian [1] has given a dynamic survey of graph labeling. The origin of graph labelings can be attributed to Rosa [2]. A Path Related Homo-Cordial Graph was introduced by Dr.A. Nellai Murugan and A.Mathubala [3]. A Total Mean Cordial Labeling of Graphs was introduced by R. Ponraj, S. Sathish Narayanan and A. M. S Ramasamy [4]. This definition motivates us to define a Total Homo-Cordial Labeling of a graph and we prove some graphs such as path, cycle, wheel, comp and fan are Total Homo-Cordial.

2. PRELIMINARIES

Definition 2.1: A labeling f of G where $\mathrm{N}=\{0,1\}$ and the induced edge labeling \bar{f} is given by $\bar{f}(\mathrm{u}, \mathrm{v})=|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$, $\bar{N}=\{0,1\}$. We call such a labeling cordial if the following condition is satisfied $\left|\mathrm{v}_{\mathrm{f}}(1)-\mathrm{v}_{\mathrm{f}}(0)\right| \leq 1,\left|\mathrm{e}_{\mathrm{f}}(1)-\mathrm{e}_{\mathrm{f}}(0)\right| \leq 1$, where $\mathrm{v}_{\mathrm{f}}(\mathrm{i})$ and $\mathrm{e}_{\mathrm{f}}(\mathrm{i}), \mathrm{i}=\{0,1\}$, is the number of vertices and edges of G respectively, with label i . A graph is cordial if it admits a cordial labeling.

Definition 2.2: Let $G=(V, E)$ be a graph with p vertices and q edges. A Homo-Cordial Labeling of a graph G with vertex set V is a bijection from V to $\{0,1\}$ such that each uv is assigned the label 1 if $f(u)=f(v)$ or 0 if $f(u) \neq f(v)$ with the condition that $\left|\mathrm{v}_{\mathrm{f}}(0)-\mathrm{v}_{\mathrm{f}}(1)\right| \leq 1$ and $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$. The graph that admits a Homo-Cordial Labeling is called HomoCordial Graph.

3. MAIN RESULTS

Definition 3.1: Let $G=(V, E)$ be a graph with p vertices and q edges. A Total Homo-Cordial Labeling of a graph G with vertex set V is a bijection from V to $\{0,1\}$ such that each uv is assigned the label 1 if $f(u)=f(v)$ or 0 if $f(u) \neq f(v)$ with the condition that $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$, where $\mathrm{ev}_{\mathrm{f}}(\mathrm{x})$ denotes the total number of vertices and edges labeled with $\mathrm{x}(\mathrm{x}=0,1)$. The graph that admits a Total Homo-Cordial Labeling is called Total Homo-Cordial Graph.

Corresponding Author: S. Maheswari*1
${ }^{1}$ M.Phil Scholar, PG and Research Department of Mathematics, Sri S. R. N. M. College, Sattur - 626 203, Tamil Nadu, India.

Theorem 3.2: Path P_{n} is Total Homo-Cordial Graph.
Proof: Let $V\left(P_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n}\right)=\left\{\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right\}$.
Define f: $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right) \rightarrow\{0,1\}$.
The vertex labeling are,

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}
1 & i \equiv 2,3 \bmod 4 \\
0 & i \equiv 0,1 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
$$

The induced edge labeling are,

$$
\mathrm{f}^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=\left\{\begin{array}{ll}
1 & i \equiv 0 \bmod 2 \\
0 & i \equiv 1 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right.
$$

Here, $\quad \mathrm{ev}_{\mathrm{f}}(1)=\mathrm{ev}_{\mathrm{f}}(0)+1$ for $n \equiv 3 \bmod 4$ and

$$
\mathrm{ev}_{\mathrm{f}}(0)=\mathrm{ev}_{\mathrm{f}}(1)+1 \text { for } n \equiv 0,1,2 \bmod 4
$$

Therefore, the path P_{n} satisfies the condition $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the path P_{n} is Total Homo-Cordial Graph.
Example 3.3: Consider the following graph P_{7},

Figure 3.1
Here, $\mathrm{ev}_{\mathrm{f}}(1)=7$ and $\mathrm{ev}_{\mathrm{f}}(0)=6$.
Therefore, the path P_{7} satisfies the condition $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the graph P_{7} is Total Homo-Cordial Graph.
Theorem 3.4: Cycle $C_{n}(n \equiv 0 \bmod 4)$ is Total Homo-Cordial Graph.
Proof: Let $V\left(C_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E\left(C_{n}\right)=\left\{\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right\} \cup\left\{\left(u_{1} u_{n}\right)\right\}$.
Define f: $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right) \rightarrow\{0,1\}$.
The vertex labeling are,

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}
1 & i \equiv 0,1 \bmod 4 \\
0 & i \equiv 2,3 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
$$

The induced edge labeling are,

$$
\begin{aligned}
& \mathrm{f}^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=\left\{\begin{array}{ll}
1 & i \equiv 0 \bmod 2 \\
0 & i \equiv 1 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right. \\
& \mathrm{f}^{*}\left[\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{n}}\right)\right]=1
\end{aligned}
$$

Here, $\mathrm{ev}_{\mathrm{f}}(1)=\mathrm{ev}_{\mathrm{f}}(0)$ for $n \equiv 0 \bmod 4$.
Therefore, the cycle $\mathrm{C}_{\mathrm{n}}(n \equiv 0 \bmod 4)$ satisfies the condition $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the cycle $\mathrm{C}_{\mathrm{n}}(n \equiv 0 \bmod 4)$ is Total Homo-Cordial Graph.

S. Maheswari*́ㄹ, V. Thiripurasundari ${ }^{2}$ / Total Homo-Cordial Labeling of Graphs / IJMA- 8(3), March-2017.

Example 3.5: Consider the following graph C_{4},

Figure 3.2

Here, $\mathrm{ev}_{\mathrm{f}}(1)=4$ and $\mathrm{ev}_{\mathrm{f}}(0)=4$.
Therefore, the cycle C_{4} satisfies the condition $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the cycle C_{4} is Total Homo-Cordial Graph.
Theorem 3.6: Cycle C_{n} is not Total Homo-Cordial Graph.
Proof: Let $V\left(C_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E\left(C_{n}\right)=\left\{\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right\} \cup\left\{\left(u_{1} u_{n}\right)\right\}$.
Define $\mathrm{f}: \mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right) \rightarrow\{0,1\}$.
The vertex labeling are,

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}
1 & i \equiv 0,1 \bmod 4 \\
0 & i \equiv 2,3 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
$$

The induced edge labeling are,

$$
\begin{aligned}
& \mathrm{f}^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i} 1}\right)\right]=\left\{\begin{array}{ll}
1 & i \equiv 0 \bmod 2 \\
0 & i \equiv 1 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right. \\
& \mathrm{f}^{*}\left[\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{n}}\right)\right]= \begin{cases}1 & n \equiv 1 \bmod 4 \\
0 & n \equiv 2,3 \bmod 4\end{cases}
\end{aligned}
$$

Here, $\quad \mathrm{ev}_{\mathrm{f}}(0)=\mathrm{ev}_{\mathrm{f}}(1)+2$ for $n \equiv 2,3 \bmod 4$ and
$\mathrm{ev}_{\mathrm{f}}(1)=\mathrm{ev}_{\mathrm{f}}(0)+2$ for $n \equiv 1 \bmod 4$.
Therefore, the cycle C_{n} does not satisfies the condition $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the cycle C_{n} is not Total Homo-Cordial Graph.
Example 3.7: Consider the following graph C_{5},

Figure 3.3
Here, $\mathrm{ev}_{\mathrm{f}}(1)=6$ and $\mathrm{ev}_{\mathrm{f}}(0)=4$.
Therefore, the cycle C_{5} does not satisfy the condition $\left|\operatorname{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the graph C_{5} is not Total Homo-Cordial Graph.

Theorem 3.8: Wheel W_{n} is Total Homo-Cordial Graph.
Proof: Let $V\left(W_{n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(W_{n}\right)=\left\{\left(u_{i}\right): 1 \leq i \leq n\right\} \cup\left\{\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right\} \cup\left\{\left(u_{1} u_{n}\right)\right\}$.
Define f: $V\left(W_{n}\right) \rightarrow\{0,1\}$.
Case-1: When $n \equiv 1 \bmod 4$.
The vertex labeling are,

$$
\begin{aligned}
& \mathrm{f}(\mathrm{u})=0 \\
& \mathrm{f}(\mathrm{u})=\left\{\begin{array}{ll}
1 & i \equiv 0,1 \bmod 4 \\
0 & i \equiv 2,3 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
\end{aligned}
$$

The induced edge labeling are,

$$
\begin{aligned}
& \mathrm{f}^{*}\left[\left(\mathrm{uu}_{\mathrm{i}}\right)\right]=\left\{\begin{array}{lll}
1 & i \equiv 2,3 \bmod 4 \\
0 & i \equiv 0,1 \bmod 4
\end{array} \quad 1 \leq i \leq \mathrm{n}\right. \\
& \mathrm{f}^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=\left\{\begin{array}{lll}
1 & i \equiv 0 \bmod 2 \\
0 & i \equiv 1 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right.
\end{aligned} \mathrm{f}^{*}\left[\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{n}}\right)\right]=182
$$

Here, $\quad \mathrm{ev}_{\mathrm{f}}(0)=\mathrm{ev}_{\mathrm{f}}(1)$ for all n .
Case-2: When n is even.
The vertex labeling are,

$$
\begin{aligned}
& \mathrm{f}(\mathrm{u})=0 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}
1 & i \equiv 1,2 \bmod 4 \\
0 & i \equiv 0,3 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
\end{aligned}
$$

The induced edge labeling are,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{uu}_{\mathrm{i}}\right)=\left\{\begin{array}{lll}
1 & i \equiv 0,3 \bmod 4 \\
0 & i \equiv 1,2 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right. \\
& \mathrm{f}^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=\left\{\begin{array}{ll}
1 & i \equiv 1 \bmod 2 \\
0 & i \equiv 0 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right. \\
& \mathrm{f}^{*}\left[\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{n}}\right)\right]= \begin{cases}1 & n \equiv 2 \bmod 4 \\
0 & n \equiv 0 \bmod 4\end{cases}
\end{aligned}
$$

Here, $\quad e v_{f}(1)=\operatorname{ev}_{\mathrm{f}}(0)+1$ for $n \equiv 2 \bmod 4$ and

$$
\mathrm{ev}_{\mathrm{f}}(0)=\mathrm{ev}_{\mathrm{f}}(1)+1 \text { for } n \equiv 0 \bmod 4
$$

Therefore, the wheel W_{n} is satisfies the conditions $\left|\operatorname{ev}_{f}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the wheel W_{n} is Total Homo-Cordial Graph.
Example 3.6: Consider the following graph W_{5},

Figure 3.4

Here, $\mathrm{ev}_{\mathrm{f}}(1)=8$ and $\mathrm{ev}_{\mathrm{f}}(0)=8$.
Therefore, the wheel W_{5} satisfies the condition $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the graph W_{5} is Total Homo-Cordial Graph.
Theorem 3.9: Comp $P_{n} \odot K_{1}$ is Total Homo-Cordial Graph.
Proof: Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=\left\{\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Define f: $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \rightarrow\{0,1\}$.
The vertex labeling are,

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=0 & 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=1 & 1 \leq \mathrm{i} \leq \mathrm{n}
\end{array}
$$

The induced edge labeling are,

$$
\begin{array}{ll}
\mathrm{f}^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right]=1\right. & 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right]=0\right. & 1 \leq \mathrm{i} \leq \mathrm{n}
\end{array}
$$

Here, $\mathrm{ev}_{\mathrm{f}}(0)=\mathrm{ev}_{\mathrm{f}}(1)+1$ for all n .
Therefore, the comp $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ satisfies the conditions $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, comp $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is Total Homo-Cordial Graph.
Example 3.10: Consider the following graph $\mathrm{P}_{5} \odot \mathrm{~K}_{1}$,

Figure 3.5
Here, $\mathrm{ev}_{\mathrm{f}}(1)=9$ and $\mathrm{ev}_{\mathrm{f}}(0)=10$.
Therefore, the comp $\mathrm{P}_{5} \odot \mathrm{~K}_{1}$ satisfies the condition $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the graph $\mathrm{P}_{5} \odot \mathrm{~K}_{1}$ is Total Homo-Cordial Graph.
Theorem 3.11: Fan $P_{n}+K_{1}$ is Total Homo-Cordial Graph.
Proof: Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right)=\left\{\mathrm{u}, \mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right)=\left\{\left(\mathrm{uu}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$.
Define f: $V\left(P_{n}+K_{1}\right) \rightarrow\{0,1\}$.
Case-1: When n is odd
The vertex labeling are,

$$
f(u)=0
$$

$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}1 & i \equiv 1,2 \bmod 4 \\ 0 & i \equiv 0,3 \bmod 4\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.$
The induced edge labeling are,

$$
\begin{aligned}
& \mathrm{f}^{*}\left[\left(\mathrm{uu}_{\mathrm{i}}\right)\right]=\left\{\begin{array}{lll}
1 & i \equiv 0,3 \bmod 4 \\
0 & i \equiv 1,2 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right. \\
& \mathrm{f}^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=\left\{\begin{array}{lll}
1 & i \equiv 1 \bmod 2 \\
0 & i \equiv 0 \bmod 2
\end{array}\right. \\
& 1 \leq \mathrm{i} \leq \mathrm{n}-1
\end{aligned}
$$

Here, $\mathrm{ev}_{\mathrm{f}}(0)=\mathrm{ev}_{\mathrm{f}}(1)+1$ for all n .
Case-2: When n is even.
The vertex labeling are,

$$
\begin{aligned}
& \mathrm{f}(\mathrm{u})=1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}
1 & i \equiv 2,3 \bmod 4 \\
0 & i \equiv 0,1 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
\end{aligned}
$$

The induced edge labeling are,

$$
\begin{aligned}
& \mathrm{f}^{*}\left[\left(\mathrm{uu}_{\mathrm{i}}\right)\right]=\left\{\begin{array}{lll}
1 & i \equiv 2,3 \bmod 4 \\
0 & i \equiv 0,1 \bmod 4 & 1 \leq \mathrm{i} \leq \mathrm{n}
\end{array}\right. \\
& \mathrm{f}^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=\left\{\begin{array}{lll}
1 & i \equiv 0 \bmod 2 \\
0 & i \equiv 1 \bmod 2 & 1 \leq \mathrm{i} \leq \mathrm{n}-1
\end{array}\right.
\end{aligned}
$$

Here, $\mathrm{ev}_{\mathrm{f}}(0)=\mathrm{ev}_{\mathrm{f}}(1)$ for all n .
Therefore, the fan $\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}$ satisfies the condition $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the fan $\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}$ is Total Homo-Cordial Graph.
Example 3.12: Consider the following graph $\mathrm{P}_{5}+\mathrm{K}_{1}$,

Figure 3.6

Here, $\mathrm{ev}_{\mathrm{f}}(1)=7$ and $\mathrm{ev}_{\mathrm{f}}(0)=8$.
Therefore, the fan $\mathrm{P}_{5}+\mathrm{K}_{1}$ satisfies the conditions $\left|\mathrm{ev}_{\mathrm{f}}(0)-\mathrm{ev}_{\mathrm{f}}(1)\right| \leq 1$.
Hence, the graph $\mathrm{P}_{5}+\mathrm{K}_{1}$ is Total Homo-Cordial Graph.

REFERENCES

1. J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 18,\#DS6, 2011.
2. A. Rosa, On Certain Valuations of the vertices of a Graph, In: Theory of Graphs, (International Symposium, Rome, July 1966), Gordan and Breach, N. Y. and Dunod Paris, 349 - 355.
3. Dr.A. Nellai Murugan and A.Mathubala, Path Related Homo Cordial Graph, International Journal of Innovative Science Engineering and Technology, Vol.2, Issue 8, August 2015.
4. R. Ponraj, S. Sathish Narayanan and A. M. S Ramasamy, Total Mean Cordial Labeling of Graphs, International Journal of Mathematical Combinatorics, Vol. 4(2014), 56-58.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

