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ABSTRACT 
Let G = (V, E) be a graph with p vertices and q edges. A Total Homo-Cordial Labeling of a graph G with vertex set V 
is a bijection from V to {0, 1} such that each uv is assigned the label 1 if f(u)=f(v) or 0 if f(u)≠f(v) with the condition 
that |evf(0)−evf(1)|≤1 where evf(x) denotes the total number of vertices and edges labeled with x (x=0,1). The graph 
that admits a Total Homo-Cordial Labeling is called Total Homo-Cordial Graph. In this paper, we prove some graphs 
such as path, cycle, wheel, comp and fan are total homo- cordial labeling graphs. 
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1. INTRODUCTION 

 
All graphs considered here are finite, simple and undirected. Gallian [1] has given a dynamic survey of graph labeling.  
The origin of graph labelings can be attributed to Rosa [2]. A Path Related Homo-Cordial Graph was introduced by 
Dr.A. Nellai Murugan and A.Mathubala [3]. A Total Mean Cordial Labeling of Graphs was introduced by R. Ponraj, S. 
Sathish Narayanan and A. M. S Ramasamy [4].  This definition motivates us to define a Total Homo-Cordial Labeling 
of a graph and we prove some graphs such as path, cycle, wheel, comp and fan are Total Homo-Cordial. 
 
2. PRELIMINARIES 
 
Definition 2.1: A labeling f of G where N={0,1} and the induced edge labeling 𝑓𝑓 ̅ is given by 𝑓𝑓(̅u, v) = |f(u) − f(v)|,  
𝑁𝑁�={0, 1}. We call such a labeling cordial if the following condition is satisfied |vf(1)−vf(0)|≤1, |ef(1)−ef(0)|≤1, where 
vf(i) and ef(i), i={0,1},  is the number of vertices and edges of G respectively, with label i. A graph is cordial if it 
admits a cordial labeling. 
 
Definition 2.2: Let G = (V, E) be a graph with p vertices and q edges. A Homo-Cordial Labeling of a graph G with 
vertex set V is a bijection from V to {0,1} such that each uv is assigned the label 1 if f(u)=f(v) or 0 if f(u)≠f(v) with the 
condition that |vf(0)−vf(1)|≤1 and |ef(0)−ef(1)|≤1. The graph that admits a Homo-Cordial Labeling is called Homo-
Cordial Graph. 
 
3. MAIN RESULTS 
 
Definition 3.1: Let G = (V, E) be a graph with p vertices and q edges. A Total Homo-Cordial Labeling of a graph G 
with vertex set V is a bijection from V to {0,1} such that each uv is assigned the label 1 if f(u)=f(v) or 0 if f(u)≠f(v) 
with the condition that |evf(0)−evf(1)|≤1, where evf(x) denotes the total number of vertices and edges labeled with          
x (x = 0, 1). The graph that admits a Total Homo-Cordial Labeling is called Total Homo-Cordial Graph. 
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Theorem 3.2: Path Pn is Total Homo-Cordial Graph. 
 
Proof: Let V(Pn) = {ui : 1 ≤ i ≤ n} and  E(Pn)={(uiui+1): 1 ≤ i ≤ n − 1}. 
             
Define f: V(Pn)→{0,1}. 
 
The vertex labeling are, 

f(ui) =




≡
≡

4mod1,00
4mod3,21

i
i

        1 ≤ i ≤ n 

 
The induced edge labeling are, 

f*[(uiui+1)] =




≡
≡

2mod10
2mod01

i
i

           1 ≤ i ≤ n-1 

 
Here,      evf(1) = evf(0) + 1 for  3mod 4n ≡  and 

evf(0) = evf(1) + 1 for  0,1, 2mod4n ≡ . 
 
Therefore, the path Pn satisfies the condition |evf(0)−evf(1)| ≤ 1. 
 
Hence, the path Pn is Total Homo-Cordial Graph. 
 
Example 3.3: Consider the following graph P7, 
 

 
 
Here, evf(1) = 7 and  evf(0) = 6. 
 
Therefore, the path P7 satisfies the condition |evf(0)−evf(1)| ≤ 1. 
 
Hence, the graph P7 is Total Homo-Cordial Graph. 
 
Theorem 3.4: Cycle Cn ( 4mod0≡n ) is Total Homo-Cordial Graph. 
 
Proof: Let V(Cn) = {ui: 1 ≤ i ≤ n} and  E(Cn)={(uiui+1): 1 ≤ i ≤ n − 1}∪{(u1un)}. 
              
Define f : V(Cn)→{0,1}. 
 
The vertex labeling are, 

f(ui) =




≡
≡

4mod3,20
4mod1,01

i
i

        1 ≤ i ≤ n 

 
The induced edge labeling are, 

f*[(uiui+1)] =




≡
≡

2mod10
2mod01

i
i

           1 ≤ i ≤ n-1 

f*[(u1un)] =1 
 
Here, evf(1) = evf(0)  for 4mod0≡n . 
 
Therefore, the cycle Cn ( 4mod0≡n ) satisfies the condition |evf(0)−evf(1)| ≤ 1. 
 
Hence, the cycle Cn ( 4mod0≡n ) is Total Homo-Cordial Graph. 
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Example 3.5: Consider the following graph C4, 

 
 
Here, evf(1) = 4 and  evf(0) = 4. 
 
Therefore, the cycle C4 satisfies the condition |evf(0)−evf(1)| ≤ 1. 
 
Hence, the cycle C4 is Total Homo-Cordial Graph. 
 
Theorem 3.6: Cycle Cn is not Total Homo-Cordial Graph. 
 
Proof: Let V(Cn) ={ui : 1 ≤ i ≤ n} and  E(Cn) = {(uiui+1): 1 ≤ i ≤ n − 1}∪{(u1un)}. 
              
Define f: V(Cn)→{0,1}. 
 
The vertex labeling are, 

f(ui) =




≡
≡

4mod3,20
4mod1,01

i
i

                   1 ≤ i ≤ n 

 
The induced edge labeling are, 

f*[(uiui+1)] =




≡
≡

2mod10
2mod01

i
i

           1 ≤ i ≤ n-1 

f*[(u1un)] =
 



≡
≡

4mod3,20
4mod11

n
n

 

 
Here,      evf(0)=evf(1)+2 for  4mod3,2≡n  and 

evf(1)=evf(0)+2 for  4mod1≡n . 
 
Therefore, the cycle Cn does not satisfies the condition |evf(0)−evf(1)| ≤ 1. 
 
Hence, the cycle Cn is not Total Homo-Cordial Graph. 
 
Example 3.7: Consider the following graph C5, 
 

 
Here, evf(1) = 6 and  evf(0) = 4. 
 
Therefore, the cycle C5 does not satisfy the condition |evf(0)−evf(1)| ≤ 1. 
 
Hence, the graph C5 is not Total Homo-Cordial Graph. 
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Theorem 3.8: Wheel Wn is Total Homo-Cordial Graph. 
 
Proof: Let V(Wn)={u, ui: 1 ≤ i ≤ n} and  E(Wn) = {(uui) : 1 ≤ i ≤ n}∪{(uiui+1): 1 ≤ i ≤ n−1}∪{(u1un)}. 
              
Define f: V(Wn)→{0,1}. 
 
Case-1: When 4mod1≡n . 
 
The vertex labeling are, 

f(u) = 0 
 

f(u)=
1 0,1mod 4
0 2,3mod4

i
i
≡

 ≡
           1 ≤ i ≤ n 

 
The induced edge labeling are, 

f*[(uui)] =




≡
≡

4mod1,00
4mod3,21

i
i

           1 ≤ 𝑖𝑖 ≤ n 

f*[(uiui+1)] =




≡
≡

2mod10
2mod01

i
i

           1 ≤ i ≤ n-1 

f*[(u1un)] = 1
   

Here,      evf(0) = evf(1)  for all n. 
 
Case-2: When n is even. 
The vertex labeling are, 

f(u) = 0 

f(ui) =




≡
≡

4mod3,00
4mod2,11

i
i

               1 ≤ i ≤ n 

The induced edge labeling are, 

f(uui) =




≡
≡

4mod2,10
4mod3,01

i
i

             1 ≤ i ≤ n 

f*[(uiui+1)] =




≡
≡

2mod00
2mod11

i
i

       1 ≤ i ≤ n-1 

f*[(u1un)] =
 



≡
≡

4mod00
4mod21

n
n

 

Here,      evf(1) = evf(0)+1  for 4mod2≡n  and 
               evf(0) = evf(1)+1 for  4mod0≡n . 
 
Therefore, the wheel Wn is satisfies the conditions |evf(0)−evf(1)| ≤ 1. 
 
Hence, the wheel Wn is Total Homo-Cordial Graph. 
 
Example 3.6: Consider the following graph W5, 
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Here, evf(1) = 8 and  evf(0) = 8. 
 
Therefore, the wheel W5 satisfies the condition |evf(0)−evf(1)| ≤ 1. 
 
Hence, the graph W5 is Total Homo-Cordial Graph. 
 
Theorem 3.9: Comp PnʘK1 is Total Homo-Cordial Graph. 
 
Proof: Let V(PnʘK1) = {ui, vi: 1 ≤ i ≤ n} and  E(PnʘK1)={(uiui+1): 1 ≤ i ≤ n − 1}∪{(uivi) : 1 ≤ i ≤ n}. 
              
Define f: V(PnʘK1)→{0,1}. 
 
The vertex labeling are, 

f(ui) = 0     1 ≤ i ≤ n 
f(vi) = 1     1 ≤ i ≤ n 

 
The induced edge labeling are, 

f*[(uiui+1] = 1     1 ≤ i ≤ n − 1 
f*[(uivi] = 0     1 ≤ i ≤ n 

 
Here, evf(0) = evf(1) + 1  for all n. 
 
Therefore, the comp PnʘK1 satisfies the conditions |evf(0)−evf(1)| ≤ 1. 
 
Hence, comp PnʘK1 is Total Homo-Cordial Graph. 
 
Example 3.10: Consider the following graph P5ʘK1, 

 
Here, evf(1) = 9 and  evf(0) = 10. 
 
Therefore, the comp P5ʘK1 satisfies the condition |evf(0)−evf(1)| ≤ 1. 
 
Hence, the graph P5ʘK1 is Total Homo-Cordial Graph. 
 
Theorem 3.11: Fan Pn+K1 is Total Homo-Cordial Graph. 
 
Proof: Let V(Pn+K1) ={u, ui: 1 ≤ i ≤ n} and  E(Pn+K1) = {(uui): 1 ≤ i ≤ n}∪{(uiui+1): 1 ≤ i ≤ n − 1}. 
              
Define f: V(Pn+K1)→{0,1}. 
 
Case-1: When n is odd 
 
The vertex labeling are, 

f(u) = 0 

f(ui) =




≡
≡

4mod3,00
4mod2,11

i
i

                 1 ≤ i ≤ n 

 
The induced edge labeling are, 

f*[(uui)] =




≡
≡

4mod2,10
4mod3,01

i
i

        1 ≤ i ≤ n 

f*[(uiui+1)] =




≡
≡

2mod00
2mod11

i
i

        1 ≤ i ≤ n-1 
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Here, evf(0) = evf(1) +1  for all n. 
 
Case-2:  When n is even. 
 
The vertex labeling are, 

f(u) = 1 

f(ui) =




≡
≡

4mod1,00
4mod3,21

i
i

              1 ≤ i ≤ n 

 
The induced edge labeling are, 

f*[(uui)] =




≡
≡

4mod1,00
4mod3,21

i
i

        1 ≤ i ≤ n 

f*[(uiui+1)] =




≡
≡

2mod10
2mod01

i
i

        1 ≤ i ≤ n-1 

 
Here, evf(0) = evf(1)  for all n. 
 
Therefore, the fan Pn+K1 satisfies the condition |evf(0)−evf(1)| ≤ 1. 
 
Hence, the fan Pn+K1 is Total Homo-Cordial Graph. 
 
Example 3.12: Consider the following graph P5+K1, 
 

 
 
Here, evf(1) = 7 and  evf(0) = 8. 
 
Therefore, the fan P5+K1 satisfies the conditions |evf(0)−evf(1)| ≤ 1. 
 
Hence, the graph P5+K1 is Total Homo-Cordial Graph. 
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