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ABSTRACT 
In this paper, we introduce a new class of sets namely (sg)*- closed sets and a new class of generalized functions 
namely (sg)* - continuous maps, (sg)*- irresolute maps.  Further the separation axioms namely𝑇𝑇𝑆𝑆*-space and * 𝑇𝑇𝑆𝑆*-
space are introduced and its basic properties are discussed. 
 
Keywords:  (sg)*- closed set, (sg)* - continuous maps, (sg)*- irresolute map,𝑇𝑇𝑆𝑆*-space and *𝑇𝑇𝑆𝑆*-space. 
 
 
1. INTRODUCTION 
 
Levine [7] introduced the class of generalized closed sets in 1970. Andrijevic [1] defined semi-pre- open sets in 1986. 
Balachandran, Sundaram and Maki [2] introduced on generalized continuous maps in topological spaces in 1991. Devi 
[3], Maki and Balachandran introduced Semi-generalized closed maps and generalized closed maps in 1993. 
Veerakumar [16] defined g* closed sets which lies between closed sets and g-closed sets in 1996. Levine [8], and 
Njasted [11] introduced semi-open sets, pre-open sets, 𝛼𝛼-closed sets. Pauline Mary Helen, Ponnuthai Selvarani and 
Veronica Vijayan [13], introduced g**-closed sets in topological spaces in 2012. M.Pauline Mary Helen, Monika.P 
[14] introduced sg** -closed sets in topological spaces in 2013.  
 
In this paper we introduce and study the concept of (sg)*- closed set, (sg)* - continuous maps, (sg)*- irresolute maps, 
𝑇𝑇𝑆𝑆*-space and *𝑇𝑇𝑆𝑆*-space. 
 
2. PRELIMINARIES 
 
Throughout this paper (X,𝜏𝜏), (Y,𝜎𝜎), (Z,Ƞ) represent non-empty topological spaces on which no separation axioms are 
assumed unless otherwise mentioned. For a subset A of space (X,𝜏𝜏), cl(A) and int(A) denote the closure and interior of 
A respectively.  
 
Definition 2.1: A subset A of a topological space (X,𝜏𝜏) is called  

1) a semi – open set [8]  if A⊆cl(int(A)) and semi – closed set if int(cl(A))⊆A. 
2) a semi – pre open [1] set if  A⊆cl(int(cl(A))) and semi – pre  closed set if int(cl(int(A)))⊆A. 
3) an 𝛼𝛼 – open set [10]  if  A⊆ int(cl(int(cl(A))) and an 𝛼𝛼 – closedset if  cl(int(cl(A))) ⊆  A. 

 
Definition 2.2: A subset A of a topological space (X,𝜏𝜏) is called  

1) generalized closed set  (briefly g-closed) [7]  if  cl(A)⊆U whenever A⊆U and U is open in (X,𝜏𝜏). 
2) generalized* closed set  (briefly g*- closed) [16]  if  cl(A)⊆U whenever A⊆U and U is g - open in (X,𝜏𝜏). 
3) generalized** closed set (briefly g**-closed) [13]   if  cl(A)⊆U whenever A⊆U and U is g* - open in (X,𝜏𝜏). 
4) generalized semi-pre closed set (briefly gsp-closed) [8]  if  spcl(A)⊆U whenever A⊆U and U is open in (X,𝜏𝜏). 
5) generalized# semi- closed set (briefly 𝑔𝑔#𝑠𝑠 - closed) [12]  if  scl(A)⊆U whenever A⊆U and U is 𝛼𝛼𝑔𝑔 - open in 

(X,𝜏𝜏). 
6) generalized * semi closed set (briefly g*s-closed) [16]  if  scl(A)⊆U whenever A⊆U and U is gs - open in 

(X,𝜏𝜏). 
7) semi 𝛼𝛼 generalized* closed set (briefly s𝛼𝛼𝑔𝑔 ∗-closed)[9]  if  𝛼𝛼cl(A)⊆U whenever A⊆U and U is g*- open in 

(X,𝜏𝜏). 
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8) 𝛼𝛼g** - closed[15] if 𝛼𝛼cl(A)⊆U whenever A⊆U and U is g** - open 
9) sg** - closed[14] if scl(A)⊆U whenever A⊆U and U is g** - open 

 
Definition 2.3: A function f: (X,𝜏𝜏) → (Y,𝜎𝜎) is called 

1) Continuous [18] if the inverse image of every closed set in (Y,𝜎𝜎) is closed in (X,𝜏𝜏). 
2) gsp – continuous [5] if the inverse image of every closed set in (Y,𝜎𝜎) is gsp - closed in (X,𝜏𝜏). 
3) s𝛼𝛼g* - continuous [9] if the inverse image of every closed set in (Y,𝜎𝜎) is s𝛼𝛼g* - closed in (X,𝜏𝜏). 
4) g#s – continuous [12] if the inverse image of every closed set in (Y,𝜎𝜎) is g#s - closed in (X,𝜏𝜏). 
5) g*s – continuous [16] if the inverse image of every closed set in (Y,𝜎𝜎) is g*s - closed in (X,𝜏𝜏). 
6) 𝛼𝛼g** - continuous [15] if the inverse image of every closed set in (Y,𝜎𝜎) is 𝛼𝛼g**- closed in (X,𝜏𝜏). 
7) sg** - continuous [14] if the inverse image of every closed set in (Y,𝜎𝜎) is sg**-  closed in (X,𝜏𝜏). 

 
Definition 2.4: A map f: (X,𝜏𝜏) → (Y,𝜎𝜎) is called a g* - irresolute [13] if the inverse image of every g* - closed set in 
(Y,𝜎𝜎) is g*- closed in (X,𝜏𝜏). 
 
Definition 2.5: A topological space (X,𝜏𝜏) is said to be  

1) a  𝑇𝑇1/2* - space [13]  if every g*-closed set in (X,𝜏𝜏) is closed in (X,𝜏𝜏). 
2) a  𝑇𝑇𝛼𝛼 ∗∗ - space [15] if every 𝛼𝛼g**-closed set in (X,𝜏𝜏) is closed in (X,𝜏𝜏). 
3) a ∗ 𝑇𝑇𝛼𝛼 ∗ - space [15] if every 𝛼𝛼g**-closed set in (X,𝜏𝜏) is g* - closed in (X,𝜏𝜏). 

 
3. BASIC PROPERTIES OF (sg)*- CLOSED SETS 
 
We now introduce the following definition 
 
Definition 3.1: A subset A of a topological space (X,𝜏𝜏) is said to be (sg)*- closed set if scl(A)⊆A, whenever A⊆U and 
U is g*- open in X. 
 
Theorem 3.2: Every closed set is (sg)* closed set. 
 
Proof follows from the definition. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.3:  Let X={a, b, c} 𝜏𝜏={X, ∅,{a},{a, b}}. Let A={b} then A is (sg)* but it is not closed set in (X, 𝜏𝜏).  
 
Theorem 3.4:  Every (sg)* - closed set is gsp - closed set. 
 
Let A be a (sg)* - closed set. Let A⊆U and U is open. Then U is g*-open. Since A is (sg)*-closed, then 
spcl(A)⊆scl(A)⊆U. Hence A is gsp closed.  
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.5: Let X={a, b, c} 𝜏𝜏={X,∅,{b, c}}. Let A={b}, then A is gsp but it is not (sg)* -  closed set in (X, 𝜏𝜏). 
 
Theorem 3.6: Every g#s closed set is (sg)* - closed set. 
 
Let A be   𝑔𝑔#s - closed set. Let A⊆U and U is g* - open. Then U is 𝛼𝛼𝑔𝑔 - open. Since A is 𝑔𝑔#s – closed, scl (A) ⊆U 
Hence A is (sg)* - closed. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.7: Let X={a, b, c} 𝜏𝜏={X,∅, {a},{a,b}}. Let A={a, c}, then A is (sg)*, but it is not g#s - closed in (X, 𝜏𝜏). 
 
Theorem 3.8: Every g*s closed set is (sg)* - closed set. 
 
Proof follows from the definition. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.9: Let X={a, b, c} 𝜏𝜏={X,∅, {a},{a, c}}. Let A={a, b}, then A is (sg)*  - closed, but it is not g*s -  closed in 
(X, 𝜏𝜏). 
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Theorem 3.10: Every g* - closed set is (sg)* - closed set. 
 
Proof follows from the definition. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.1: Let X={a, b, c} 𝜏𝜏={X,∅, {a},{a, b}}. Let A={b}, then A is (sg)*- closed, but it is not g* - closed set in 
(X, 𝜏𝜏). 
 
Theorem 3.12: Every 𝑠𝑠𝛼𝛼g* closed set is (sg)* - closed set. 
 
Let A be 𝑠𝑠𝛼𝛼g* - closed set. Let A⊆U where U is g* - open. Since A is 𝑠𝑠𝛼𝛼g* - closed, 𝛼𝛼cl(A) ⊆  U whenever A⊆U and 
U is  g* - open.  Therefore, scl(A) ⊆𝛼𝛼cl(A) ⊆U. Hence A is (sg)* - closed. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.13: Let X={a, b, c} 𝜏𝜏={X,∅, {a},{b},{a,b}}. Let A={a}, then A is (sg)* - closed, but it is not s𝛼𝛼g* - closed 
set in (X, 𝜏𝜏). 
 
Theorem 3.14: Every 𝛼𝛼g** closed set is (sg)* - closed set. 
 
Let A be 𝛼𝛼g** - closed set. Let A⊆U where U is g* - open, then U is g** - open. Since A is 𝛼𝛼g** - closed, 
 scl(A) ⊆𝛼𝛼cl(A) ⊆U. Hence A is (sg)* - closed. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.15: Let X={a, b, c} 𝜏𝜏={X,∅, {a}}. Let A={a}, then A is (sg)* -closed, but it is not 𝛼𝛼g**-closed set in (X,𝜏𝜏). 
 
Theorem 3.16: Every sg** closed set is (sg)* - closed set. 
 
Proof follows from the definition. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.17: Let X={a, b, c} 𝜏𝜏={X,∅, {a}}, Let A={a,b}, then A is (sg)* - closed, but not sg** - closed set in (X, 𝜏𝜏). 
 
Theorem 3.18: If A is (sg)*- closed set of (X,𝜏𝜏) such that A ⊆  B ⊆ scl(A), then B is (sg)*- closed set of (X, 𝜏𝜏). 
 
Proof: It is given that A is (sg)* - closed set in X. Let U be g*- open set of X, such that B⊆U. Since A is (sg)*- closed 
and scl(A)⊆U.But B ⊆ scl(A),now scl(B)⊆ scl(scl(A)) ⊆ scl(A) ⊆U. Therefore scl(B) ⊆U.  Hence B is (sg)* - closed 
in X. 
 
Theorem 3.19: If A is both g*- open and (sg)* - closed, then A is semi closed. 
 
Proof: Let A be both g*-open and (sg)*-closed. Let A⊆A, where A is g*-open.Then scl(A) ⊆ A as A is (sg)*-closed in 
(X,𝜏𝜏). But A ⊆ scl(A) is always true. Therefore A = scl(A). Hence A is semi closed set in (X,𝜏𝜏). 
 
Theorem 3.20: A is an (sg)* - closed set of (X,𝜏𝜏) then scl(A)\A does not contain any non – empty g* - closed set. 
 
Proof: Let F be a g* - closed set of (X,𝜏𝜏) such that F⊆scl(A)\A ,then A⊆X\F. Since A is (sg)* - closed and X\F is g* - 
open, scl(A) ⊆ X\F. This implies F⊆X\scl(A) so F⊆( X\scl(A)) 
 
The above results can be represented in the following diagram. 
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Where A  B represents A implies B and A                  B represents A does not imply B. 
 
4. (sg)*- CONTINUOUS and (sg)*-IRRESOLUTE MAPS 
 
We now introduce the following definitions 
 
Definition 4.1: A function f:(X,𝜏𝜏) → (Y,𝜎𝜎) is called (sg)*- continuous if 𝑓𝑓−1(V) is  (sg)*- closed set of (X,𝜏𝜏)  for every 
closed set V of (Y,𝜎𝜎). 
 
Theorem 4.2: Every continuous map is (sg)*- continuous. 
 
Proof: Let f:(X,𝜏𝜏) → (Y,𝜎𝜎) be continuous. Let V be a closed set in (Y,𝜎𝜎).Then 𝑓𝑓−1(V) is closed in (X, 𝜏𝜏).Since every 
closed set is (sg)* - closed, 𝑓𝑓−1(V) is (sg)* -closed in (X, 𝜏𝜏). Therefore f is (sg)* - continuous. 
 
The following example supports that the converse of the above theorem is not true. 
 
Example 4.3: Let X=Y={a,b,c}, 𝜏𝜏 = {X,∅,{a},{a,b}},𝜎𝜎={Y,∅,{b}}  
 
Let  f: (X,𝜏𝜏)→(Y,𝜎𝜎) be defined by identity mapping f(a)=a, f(b)=b, f(c)=c. f is (sg)* - continuous but  not continuous. 
Since 𝑓𝑓−1{a, c}= {a, c} is (sg)* - closed set of  (X,𝜏𝜏). But not closed set of (X,𝜏𝜏). 
 
Theorem 4.4: Every (sg)* continuous map is gsp continuous. 
 
Proof: Let f: (X,𝜏𝜏)→(Y,𝜎𝜎) be  (sg)* - continuous map. Let V be a closed set in (Y,𝜎𝜎), then 𝑓𝑓−1(V) is (sg)* - closed in 
(X, 𝜏𝜏).Since every (sg)*-closed set is gsp - closed, 𝑓𝑓−1(V) is gsp – closed in (X, 𝜏𝜏).  Therefore f is gsp - continuous in 
(X, 𝜏𝜏). 
 
The following example supports that the converse of the above theorem is not true. 
 
Example 4.5: Let X=Y={a, b, c}, 𝜏𝜏 = {X,∅,{b, c}},𝜎𝜎={Y,∅,{a, c}}  
 
Let  f: (X,𝜏𝜏)→(Y,𝜎𝜎) be defined by identity mapping f(a)=a, f(b)=b,f(c)=c. f is (sg)* -continuous but  not gsp continuous. 
Since 𝑓𝑓−1{b}={b} is gsp - closed set of  (X,𝜏𝜏) but not (sg)*-closed set of (X,𝜏𝜏). 
 
Theorem 4.6: Every 𝑔𝑔#s - continuous map is (sg)* -  continuous. 
 
Proof: Let f: (X,𝜏𝜏)→(Y,𝜎𝜎) be 𝑔𝑔#s - continuous map. Let V be a closed set in (Y,𝜎𝜎), then 𝑓𝑓−1(V) is 𝑔𝑔#s - closed in 
(X, 𝜏𝜏).Since every 𝑔𝑔#s - closed set is (sg)* - closed, 𝑓𝑓−1(V) is (sg)*– closed in (X, 𝜏𝜏). Therefore f is (sg)* - continuous. 
 
The following example supports that the converse of the above theorem is not true. 
 
Example 4.7: Let X=Y={a, b, c}, 𝜏𝜏 = {X,∅,{a},{a,b}},𝜎𝜎={Y,∅,{b}}  
 
Let f: (X,𝜏𝜏)→(Y,𝜎𝜎) be defined by identity mapping f(a)=a, f(b)=b, f(c)=c. f is (sg)* - continuous but not  𝑔𝑔#s - 
continuous. Since 𝑓𝑓−1{a, c}= {a, c} is (sg)*-closed set of (X,𝜏𝜏) but not 𝑔𝑔#s - continuous. 
 

(sg)* - closed 

Closed 

 

s𝛼𝛼g* - closed 

  

g* - closed 

g*s  - closed 

sg** - closed 

𝛼𝛼g** - closed 

 

𝑔𝑔#s - closed 

 

gsp -closed 
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Theorem 4.8: Every g*s - continuous map is (sg)* - continuous. 
 
Proof: Let f: (X,𝜏𝜏)→(Y,𝜎𝜎) . Let V be a closed set in (Y,𝜎𝜎), then 𝑓𝑓−1(V) is g*s - closed in (X, 𝜏𝜏). Since, every g*s - 
closed set is  (sg)* - closed, 𝑓𝑓−1(V) is (sg)* - closed in (X,𝜏𝜏). Therefore f is (sg)* - continuous. 
 
The following example supports that the converse of the above theorem is not true. 
 
Example 4.9 : Let   X=Y={a, b, c}, 𝜏𝜏 = {X,∅,{a},{a,c}},𝜎𝜎={Y,∅,{c}}  
 
Let f: (X,𝜏𝜏)→(Y,𝜎𝜎) be defined by identity mapping f(a)=a, f(b)=b,f(c)=c.f is (sg)* -continuous but not g*s - continuous.  
Since 𝑓𝑓−1{a, b}= {a, b} is (sg)*-closed set of (X,𝜏𝜏) but not g*s - continuous. 
 
Theorem 4.10: Every g* - continuous map is (sg)* - continuous. 
 
Proof: Let f be a map from (X,𝜏𝜏) to (Y,𝜎𝜎). Let V be a closed set in (Y,𝜎𝜎), then 𝑓𝑓−1(V) is g* - closed in (X, 𝜏𝜏). Since 
every g* - closed set is (sg)* - closed. 𝑓𝑓−1(V) is (sg)* - closed in (X,𝜏𝜏). Therefore f is (sg)* - continuous. 
 
The following example supports that the converse of the above theorem is not true. 
 
Example 4.11: Let X=Y={a, b, c}, 𝜏𝜏 = {X, ∅, {a},{a, b}}, 𝜎𝜎 = {Y, ∅, {a, c}}  
 
Let f: (X,𝜏𝜏)→(Y,𝜎𝜎) be defined by identity mapping f(a)=a, f(b)=b, f(c)=c. f is (sg)* -continuous but not  g*- continuous. 
Since {b} is (sg)*-closed set of (X,𝜏𝜏) but not g* - continuous. 
 
Theorem 4.12: Every s𝛼𝛼g* - continuous map is (sg)* - continuous. 
 
Proof: Let f be a map from (X,𝜏𝜏) to (Y,𝜎𝜎). Let V be a closed set in (Y,𝜎𝜎) then 𝑓𝑓−1(V) is s𝛼𝛼g* - closed in (X, 𝜏𝜏). Since 
every s𝛼𝛼g* - closed set is (sg)* - closed, 𝑓𝑓−1(V) is (sg)* –closed in (X, 𝜏𝜏). Therefore f is (sg)* - continuous 
 
The following example supports that the converse of the above theorem is not true. 
 
Example 4.13: Let X=Y={a, b, c}, 𝜏𝜏 = {X, ∅, {a},{b},{a, b}}, 𝜎𝜎={Y, ∅, {b, c}}. 
 
Let f: (X,𝜏𝜏)→(Y,𝜎𝜎) be defined by identity mapping f(a) = a, f(b) = b, f(c) = c. f is (sg)*-continuous but not s𝛼𝛼g* - 
continuous. Since 𝑓𝑓−1{a}={a} is (sg)*-closed set of (X,𝜏𝜏) but not s𝛼𝛼g* - continuous. 
 
Theorem 4.14: Every 𝛼𝛼g** - continuous map is (sg)* - continuous. 
 
Proof: Let f be a map from (X,𝜏𝜏) to (Y,𝜎𝜎). Let V be a closed set in (Y,𝜎𝜎), then 𝑓𝑓−1(V) is 𝛼𝛼g** - closed in (X, 𝜏𝜏).Since 
every 𝛼𝛼g** - closed set is (sg)* - closed, 𝑓𝑓−1(V) is (sg)* –closed in (X, 𝜏𝜏). Therefore f is (sg)* - continuous in (X, 𝜏𝜏). 
 
The following example supports that the converse of the above theorem is not true. 
 
Example 4.15: Let X=Y={a, b, c}, 𝜏𝜏 = {X, ∅, {a}}, 𝜎𝜎={Y, ∅, {b, c}}  
 
Let f:(X,𝜏𝜏)→(Y,𝜎𝜎) be defined by identity mapping f(a) = a, f(b) =b, f(c) = c. f is (sg)*-continuous but not 𝛼𝛼g**-
continuous.  Since 𝑓𝑓−1{a}={a} is (sg)*-closed set of (X,𝜏𝜏) but not 𝛼𝛼g** - continuous. 
 
Theorem 4.16: Every sg** - continuous map is (sg)* - continuous. 
 
Let f be a map from (X,𝜏𝜏) to (Y,𝜎𝜎). Let V be a closed set in (Y,𝜎𝜎), then 𝑓𝑓−1(V) is sg** - closed in (X, 𝜏𝜏). Since every 
sg** - closed set is (sg)* - closed, which implies 𝑓𝑓−1(V) is (sg)* –closed in (X, 𝜏𝜏). Therefore f is (sg)* - continuous. 
 
The following example supports that the converse of the above theorem is not true. 
 
Example 4.17: Let X=Y={a, b, c}, 𝜏𝜏 = {X, ∅, {a}}, 𝜎𝜎={Y, ∅, {b, c}}. 
 
Let f: (X,𝜏𝜏)→(Y,𝜎𝜎) be defined by identity mapping f(a) = a, f(b) = b, f(c) = c. f is (sg)* -continuous but not sg** -
continuous. Since {a} is (sg)*-closed set of (X,𝜏𝜏) but not sg** - continuous. 
 
Definition 4.18: A function f:(X,𝜏𝜏) → (Y,𝜎𝜎) is called (sg)*- irresolute if 𝑓𝑓−1(V) is  (sg)*- closed set of (X,𝜏𝜏)  for every 
(sg)*- closed set V of (Y,𝜎𝜎) . 
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Theorem 4.19: Every g*- irresolute map is (sg)* - continuous 
 
Proof follows from the definition. 
 
Theorem 4.20: Let f: (X,𝜏𝜏) → (Y,𝜎𝜎) and g: (Y,𝜎𝜎) → (Z, η ) be any two functions then, 

(i) gof: (X,𝜏𝜏) → (Z, η ) is (sg)* - continuous if f is (sg)*-irresolute and g is (sg)*- continuous. 
(ii) gof: (X,𝜏𝜏) → (Z, η ) is (sg)* - irresolute  if f and g are (sg)*- irresolute. 
(iii) gof: (X,𝜏𝜏) → (Z, η ) is (sg)* - continuous if f is (sg)*- continuous and g is continuous. 

 
Proof follows from the definition 
 
The above theorems can be represented in the following diagram 
 

 

  

   

  

 

   

  

 

 
Where A  B represents A implies B and A                 B represents A does not imply B. 
 
5. APPLICATIONS OF (sg)* - CLOSED SETS IN TOPOLOGICAL SPACES 
 
Definition 5.1: A space (X, 𝜏𝜏) is said to be  𝑇𝑇𝑆𝑆* - space if every (sg)* - closed set in (X,𝜏𝜏) is closed in (X,𝜏𝜏). 
 
Theorem 5.2: Every 𝑇𝑇𝑆𝑆* - space is  𝑇𝑇1/2

∗  - space but not conversely. 
 
Proof follows from the definition 
 
Example 5.3:  Let X={a, b, c} 𝜏𝜏={ ∅, X,{a}}. g*- closed sets are ∅, X,{b,c}. Therefore (X,𝜏𝜏) is 𝑇𝑇1/2

∗  - space. (sg)* - 
closed sets are ∅, X, {a},{b},{c},{a,b},{a,c},{b,c} and closed sets are ∅, X,{b,c}. Let A={b} then A is not closed in 
(X,𝜏𝜏). Therefore (sg)*-closed set is not closed in (X,𝜏𝜏). Hence (X,𝜏𝜏) is not   𝑇𝑇𝑆𝑆* - space. 
 
Theorem 5.4: Every 𝑇𝑇𝑆𝑆* - space is  𝑇𝑇𝛼𝛼** - space but not conversely. 
 
Proof follows from the definition. 
 
Definition 5.5: A space (X,𝜏𝜏) is said to be * 𝑇𝑇𝑆𝑆* - space if every (sg)* - closed set in (X,𝜏𝜏) is g*- closed in (X,𝜏𝜏). 
 
Theorem 5.6: Every *𝑇𝑇𝑆𝑆* - space is *𝑇𝑇𝛼𝛼* - space but not conversely. 
 
Proof: Let (X,𝜏𝜏) be *𝑇𝑇𝑆𝑆* - space. Let A be 𝛼𝛼g** - closed in (X,𝜏𝜏). But by proposition, Every 𝛼𝛼g** - closed set is (sg)* 
- closed. Since (X,𝜏𝜏) is *𝑇𝑇𝑆𝑆* - space, A is g*-closed in (X,𝜏𝜏). It implies 𝛼𝛼g**- closed set in (X,𝜏𝜏) is g* - closed in (X,𝜏𝜏). 
Therefore (X,𝜏𝜏) is *𝑇𝑇𝛼𝛼* - space. 
 
 
 
 
 
 
 

(sg)* - continuous  

Continuous 

 

s𝛼𝛼g* - continuous 

  

g* - continuous 

g*s  - continuous 

sg** - continuous 

𝛼𝛼g** - continuous 

 

𝑔𝑔#s - continuous 

 

gsp -continuous 
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