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ABSTRACT 
In this paper we defined pg**- neighbourhood, pg**closure, pg**interior and pg**-boundary by means of pg**-
closed and pg**-open sets and studied their properties. Furtherpg**-multiplicative and pg** - additive are also 
defined and implemented. 
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1. INTRODUCTION  
 
Levine [3] introduced the class of g-closed sets in 1970. Veerakumar [7] introduced g*-closed sets. P M Helen [5] 
introduced g**-closed sets. A.S.Mashhour, M.E Abd El. Monsef and S.N.EI. Deeb [4] introduced a new class of pre-
open sets in 1982. We have already introduced pg**-closed sets [6] and investigated their properties. The purpose of 
this paper is to introduce pg**- multiplicative, pg**- additive, pg**- neighbourhood, pg**closure, pg**interior, pg**- 
boundary and analyse their properties. 
 
2. PRELIMINARIES 
 
Definition 2.1: A subset 𝐴𝐴 of a topological space(𝑋𝑋, 𝜏𝜏) is called a pre-open set [4] if 𝐴𝐴 ⊆ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝐴𝐴) and a pre-closed 
set if  𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) ⊆ 𝐴𝐴. 
 
Definition 2.2: A subset 𝐴𝐴 of topological space (𝑋𝑋, 𝜏𝜏) is called 

1. generalized closed set (g-closed) [3] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open in (𝑋𝑋, 𝜏𝜏).         
2. g*-closed set [7] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g-open in (𝑋𝑋, 𝜏𝜏). 
3. g**-closed set [5] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g*-open in(𝑋𝑋, 𝜏𝜏). 
4. pg**- closed set[6] if 𝑝𝑝𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g*-open in(𝑋𝑋, 𝜏𝜏). 

 
3. Essential concepts of pg**- closed sets 
 
If 𝐴𝐴 and 𝐵𝐵 are pg**- closed subsets of (X, τ), then 𝐴𝐴 ∪ 𝐵𝐵 is also a pg**- closed set[6]and hence the finite union of 
pg**- closed sets is pg**- closed. Equivalently finite intersection of pg**- open sets is open. But arbitrary union of 
pg**- open sets need not be pg**- open. Hence 𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋, 𝜏𝜏) is not a topology. To make it a topology, we need the 
following definition. 
 
Definition 3.1: A topological space (X, τ) is said to be pg**-multiplicative (resp. pg**-finitely multiplicative, pg**-
countably multiplicative) if arbitrary (resp. finite, countable) intersection of pg**- closed sets is pg**- closed.  
Equivalently arbitrary (resp. finite, countable) union of pg**- open sets is pg**- open. 
 
Remark 3.2: In a pg**-multiplicative space 𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋, 𝜏𝜏) is a topology.For,  

1. 𝜑𝜑 and  X are pg**- open sets. 
2. Arbitrary union of pg**- open sets is pg**- open.  
3. Finite intersection of pg**- open sets is pg**-open.  
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Example 3.3: An infinite set with cofinite topology is pg**-multiplicative. 
 
Consider ℝ with infinite cofinite topology. In this space, Let {𝐹𝐹𝛼𝛼} be an arbitrary collection of pg**- closed sets. 
Therefore each 𝐹𝐹𝛼𝛼  is either finite or 𝜑𝜑 or is all of X. Then ∩ 𝐹𝐹𝛼𝛼  finite or 𝜑𝜑 or X and hence arbitrary intersection of pg**- 
closed sets is pg**- closed. Therefore ℝ with infinite cofinite topology is a pg**-multiplicative space. 
 
Definition 3.4: A topological space (X, τ) is said to be pg** - additive (resp. pg**-countably additive) if arbitrary (resp. 
countable) union of pg**- closed sets is pg**- closed.  Equivalently arbitrary (resp. countable) intersection of pg**- 
open sets is pg**- open. 
 
Example 3.5: Consider ℝ with cofinite topology is not pg**-countably additive and not pg**-additive. Let             
𝐴𝐴𝑖𝑖 = {−𝑖𝑖,−(𝑖𝑖 − 1), … , (𝑖𝑖 − 1),𝑖𝑖}  then 𝐴𝐴𝑖𝑖 ’s are pg**- closed but ∪ 𝐴𝐴𝑖𝑖 = 𝑍𝑍 is not pg**- closed. Therefore ℝ with 
infinite cofinite topology is not pg**-additive. 
 
Definition 3.6: A topological space (X, τ) is said to be pg**-discrete if every subset of 𝑋𝑋 is pg**-open. Equivalently 
every subset is pg**-closed. 
 
Example 3.7: All the discrete and indiscrete topological spaces are pg**-discrete. 
 
Example 3.8: ℝ with infinite cofinite topology is not pg**-discrete. 
 
Definition 3.9: Let(X, τ)be a topological space and 𝑥𝑥 ∈ 𝑋𝑋. Every pg**- open set containing 𝑥𝑥 is said to be a pg**-
neighbourhood of 𝑥𝑥. Differently a set 𝑈𝑈 in 𝑋𝑋 is said to be apg**-neighbourhood of 𝑥𝑥 if 𝑥𝑥 ∈ 𝑃𝑃 ⊆ 𝑈𝑈 for some pg**- 
open set 𝑃𝑃 in 𝑋𝑋.The collection 𝑁𝑁𝑥𝑥  of allpg**- neighbourhoods of 𝑥𝑥 is called the pg**- neighbourhood system of 𝑥𝑥. 
 
Theorem 3.10: Let 𝐴𝐴 be a subset of a pg**-multiplicative space(X, τ). Then A is pg**- open if and only if 𝐴𝐴 contains a 
pg**-neighbourhood of each of its points.  
 
Proof: Let 𝐴𝐴 be a pg**- open set in (X, τ) and 𝑥𝑥 ∈ 𝐴𝐴. Then 𝐴𝐴 is a pg**- open set containing 𝑥𝑥 and hence 𝐴𝐴 is a pg**-
neighbourhood of 𝑥𝑥, contained in 𝐴𝐴.Conversely suppose 𝐴𝐴 contains apg**-neighbourhood of each of its points. For 
every 𝑥𝑥 ∈ 𝐴𝐴, there exists a pg**-neighbourhood 𝑃𝑃𝑥𝑥  of  𝑥𝑥 such that 𝑥𝑥 ∈ 𝑃𝑃𝑥𝑥 ⊆ 𝐴𝐴 and hence U

x𝑃𝑃𝑥𝑥 ⊆ 𝐴𝐴. Let 𝑥𝑥 ∈ 𝐴𝐴, then 
there exists apg**-neighbourhood 𝑃𝑃𝑥𝑥  such that 𝑥𝑥 ∈ 𝑃𝑃𝑥𝑥 . Therefore 𝑥𝑥 ∈ U

x𝑃𝑃𝑥𝑥 . Hence 𝐴𝐴 = U
x𝑃𝑃𝑥𝑥 . Since (X, τ) is a pg**-

multiplicative space U
x𝑃𝑃𝑥𝑥  is pg**- open, and hence 𝐴𝐴 is pg**- open. 

 
Theorem 3.11: Let (X, τ)be a pg**-multiplicative space. If F is a pg**-closed subset of 𝑋𝑋 and 𝑥𝑥 ∈ 𝐹𝐹𝑐𝑐 , then there exists 
a pg**- neighbourhood 𝑈𝑈 of 𝑥𝑥 such that 𝑈𝑈 ∩ 𝐹𝐹 = 𝜑𝜑. 
 
Proof: Let 𝐹𝐹 be pg**-closed subset of 𝑋𝑋 and 𝑥𝑥 ∈ 𝐹𝐹𝑐𝑐 . Then 𝐹𝐹𝑐𝑐  is pg**- open set of X. Then by theorem (3.7) 𝐹𝐹𝑐𝑐  
contains a pg**-neighbourhood of each of its points. Hence there exists apg**- neighbourhood 𝑈𝑈 of 𝑥𝑥 such that  
𝑈𝑈 ⊂ 𝐹𝐹𝑐𝑐 . Therefore 𝑈𝑈 ∩ 𝐹𝐹 = 𝜑𝜑. 
 
Theorem 3.12: Every neighbourhood 𝑈𝑈 of 𝑥𝑥 ∈ 𝑋𝑋 is pg**-neighbourhood of  𝑥𝑥. 
 
Proof: Follows from every open set is pg**- open. 
 
Remark 3.13: In general a pg**-neighbourhood 𝑈𝑈 of 𝑥𝑥 ∈ 𝑋𝑋 need not be a neighbourhood of 𝑥𝑥, as seen from the 
following example. 
 
Example 3.14: Let (𝑋𝑋, 𝜏𝜏), where 𝑋𝑋 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}} be a topological space.  
 
Here ∗∗ 𝑂𝑂(𝑋𝑋, 𝜏𝜏)  =  {𝜑𝜑,𝑋𝑋, {𝑏𝑏}, {𝑐𝑐}, {𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}}. The set {𝑎𝑎, 𝑏𝑏} is a pg**-neighbourhood of the point 𝑏𝑏 ∈ 𝑋𝑋. However, 
the set {𝑎𝑎, 𝑏𝑏} is not a neighbourhood of the point 𝑏𝑏. 
 
Definition 3.15: Let 𝐴𝐴 be a subset of (X, τ). A point 𝑥𝑥 ∈ 𝑋𝑋 is said to be pg**-limit point or pg**-cluster point or pg**-
accumulation point of 𝐴𝐴 if every pg**-neighborhood of 𝑥𝑥 contains a point of 𝐴𝐴 other than 𝑥𝑥. Said differently, 𝑥𝑥 is a 
pg**-limit point of A if it belongs to the pg**-closure of 𝐴𝐴 − {𝑥𝑥}. The set of all pg**-limit point of 𝐴𝐴is called pg**-
derived set of 𝐴𝐴 and is denoted by the symbol 𝐴𝐴′ . 
 
Example 3.16: Consider ℝ with infinite cofinite topology and the subset ℚ.                                                      
𝑃𝑃𝑃𝑃 ∗∗ 𝑂𝑂(ℝ) = {𝜑𝜑,ℝ, 𝑎𝑎𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠}. Let 𝑥𝑥 ∈ ℝ be arbitrary and 𝑈𝑈, apg**-neighbourhood of 𝑥𝑥. Then 𝑈𝑈 is 
infinite and 𝑈𝑈 contains a point of ℚ other than 𝑥𝑥. Therefore 𝑥𝑥 is a pg**-limit point of ℚ.  
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Example 3.17: Consider ℝ with discrete topology. 𝑃𝑃𝑃𝑃 ∗∗ 𝑂𝑂(ℝ) = { 𝑎𝑎𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠}. 
 
The set of all rationals ℚ has no pg**-limit point. Since for any ∈ ℝ, {𝑥𝑥} is pg**-neighbourhood of 𝑥𝑥 which contains 
no point of ℚ other than 𝑥𝑥. In fact, in any set with discrete topology, no subset has a pg**-limit point. 
 
Theorem 3.18: If 𝐴𝐴 and 𝐵𝐵 are subsets of a space (X, τ), then  𝐴𝐴 ⊂ 𝐵𝐵 ⟹ 𝐴𝐴′ ⊂ 𝐵𝐵′ . 
 
Proof: Let 𝑥𝑥 ∈ 𝐴𝐴′ . Then every pg**-neighbourhood 𝑈𝑈 of 𝑥𝑥 contains a point 𝑦𝑦 of 𝐴𝐴 with 𝑦𝑦 ≠ 𝑥𝑥. Since 𝐴𝐴 ⊂ 𝐵𝐵, 𝑦𝑦 ∈ 𝐵𝐵. 
Hence every pg**-neighbourhood 𝑈𝑈 of 𝑥𝑥 contains a point 𝑦𝑦 of 𝐵𝐵 with 𝑦𝑦 ≠ 𝑥𝑥. Hence 𝑥𝑥 ∈ 𝐵𝐵′ . Therefore, 𝐴𝐴′ ⊂ 𝐵𝐵′ . 
 
Definition 3.19: Let 𝐴𝐴 be a subset of a topological space(X, τ). 𝐴𝐴 is said to be pg**-perfect if 𝐴𝐴 is pg**-closed and 
every point of 𝐴𝐴 is a pg**-limit point of 𝐴𝐴. 
 
Definition 3.20: Let 𝐴𝐴 be a subset of a topological space(X, τ). 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) is defined to be the intersection of all 
pg**-closed sets containing 𝐴𝐴. 
 
Note: 

(i) Since intersection of pg**-closed sets need not be pg**-closed,  𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) need not be pg**-closed. If 𝐴𝐴 is 
pg**-closed then 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴. But 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴 need not imply 𝐴𝐴 is pg**-closed. 

(ii) If (X, τ) is pg**-multiplicative then 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴 if and only if 𝐴𝐴 is pg**-closed. 
 
Theorem 3.21: If 𝐴𝐴 is a subset of a topological space(X, τ), then 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊂ 𝑐𝑐𝑐𝑐(𝐴𝐴). 
 
Proof: Let 𝐴𝐴 be a subset of a topological space(X, τ). 𝑐𝑐𝑐𝑐(𝐴𝐴) = ∩ {𝐹𝐹 ⊂ 𝑋𝑋 ∶  𝐴𝐴 ⊂ 𝐹𝐹 ∈ 𝐶𝐶(𝑋𝑋)}. Since every closed set is 
pg**-closed𝐴𝐴 ⊂ 𝐹𝐹 ∈ 𝐶𝐶(𝑋𝑋), implies𝐴𝐴 ⊂ 𝐹𝐹 ∈  𝑃𝑃𝑃𝑃 ∗∗ 𝐶𝐶(𝑋𝑋). That is 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊂  𝐹𝐹. Therefore 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊂ ∩ {𝐹𝐹 ⊂
𝑋𝑋 ∶  𝐴𝐴 ⊂ 𝐹𝐹 ∈ 𝐶𝐶(𝑋𝑋)} =  𝑐𝑐𝑐𝑐(𝐴𝐴). Hence 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊂ 𝑐𝑐𝑐𝑐(𝐴𝐴).The converse of the above Theorem need not be true in 
general as seen in the following example. 
 
Example 3.22: Let 𝑋𝑋 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} with topology 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}}. Let 𝐴𝐴 =  {𝑎𝑎} where 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) = {𝑎𝑎, 𝑐𝑐} 
and 𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝑋𝑋. Hence 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) ≠  𝑐𝑐𝑐𝑐(𝐴𝐴). 
 
Theorem 3.23: For any 𝑥𝑥 ∈ 𝑋𝑋, 𝑥𝑥 ∈ 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) if and only if 𝐴𝐴 ∩ 𝑈𝑈 ≠ 𝜑𝜑 for every pg**-open set 𝑈𝑈 containing 𝑥𝑥. 
 
Proof: Let 𝑥𝑥 ∈  𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴). Suppose there exists a pg**-open set 𝑈𝑈 containing 𝑥𝑥 such that𝐴𝐴 ∩ 𝑈𝑈 = 𝜑𝜑. Then            
𝐴𝐴 ⊆ 𝑋𝑋 − 𝑈𝑈. Since 𝑋𝑋 − 𝑈𝑈 is pg**-closed, 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆  𝑋𝑋 − 𝑈𝑈. This implies 𝑥𝑥 ∉  𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) which is a 
contradiction. Hence 𝐴𝐴 ∩ 𝑈𝑈 ≠ 𝜑𝜑 for every pg**-open set 𝑈𝑈 containing 𝑥𝑥.  Conversely, let 𝐴𝐴 ∩ 𝑈𝑈 ≠ 𝜑𝜑 for every pg**-
open set 𝑈𝑈 containing 𝑥𝑥. Suppose 𝑥𝑥 ∉  𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴), then there exists a pg**-closed set 𝐹𝐹 containing A such that 𝑥𝑥 ∉ 𝐹𝐹. 
Then 𝑥𝑥 ∈ 𝑋𝑋 − 𝐹𝐹 and 𝑋𝑋 − 𝐹𝐹 ispg**-open. Also (𝑋𝑋 − 𝐹𝐹) ∩ 𝐴𝐴 = 𝜑𝜑this is a contradiction to the hypothesis.                
Hence 𝑥𝑥 ∈  𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴). 
 
Theorem 3.24: 𝐿𝐿𝑖𝑖𝑖𝑖 𝐴𝐴 be a subset of a topological space(X, τ). Then 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴 ∪ 𝐴𝐴′ . 
 
Proof: Clearly 𝐴𝐴 ⊆ 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴). Let 𝑥𝑥 ∈ 𝐴𝐴′  and suppose 𝑥𝑥 ∉ 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴), then there exists a pg**-closed set 𝐹𝐹 
containing A such that 𝑥𝑥 ∉ 𝐹𝐹. Then 𝑥𝑥 ∈ 𝑋𝑋 − 𝐹𝐹 and 𝑋𝑋 − 𝐹𝐹 is pg**-open. Also (𝑋𝑋 − 𝐹𝐹) ∩ (𝐴𝐴 − {𝑥𝑥}) = 𝜑𝜑 which is not 
true. Therefore 𝑥𝑥 ∈ 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴). Therefore𝐴𝐴 ∪ 𝐴𝐴′ ⊆ 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴). Let  𝑥𝑥 ∈ 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) and 𝑥𝑥 ∉ 𝐴𝐴. Suppose 𝑥𝑥 ∉ 𝐴𝐴′  
then there exists apg**-neighbourhood 𝑈𝑈 of 𝑥𝑥 such that 𝐴𝐴 ∩ 𝑈𝑈 = 𝜑𝜑. Therefore 𝐴𝐴 ⊆  𝑋𝑋 − 𝑈𝑈 which is pg**-closed 
containing A and 𝑥𝑥 ∉ 𝑋𝑋 − 𝑈𝑈. which is a contradiction. Therefore 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝐴𝐴 ∪ 𝐴𝐴′ . Hence 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴 ∪ 𝐴𝐴′ . 
 
Theorem 3.25: The subset 𝐴𝐴 of pg**-multiplicative space(𝑋𝑋, 𝜏𝜏) is pg**-closed if and only if 𝐴𝐴′ ⊆ 𝐴𝐴. 
 
Proof: By theorem (3.21) 𝐴𝐴 is pg**-closed if and only if 𝐴𝐴 = 𝐴𝐴 ∪ 𝐴𝐴′ ⇔ 𝐴𝐴′ ⊆  𝐴𝐴. 
 
Definition 3.26: Let 𝐴𝐴 be a subset of a topological space(X, τ). Then 𝐴𝐴 is pg**-dense in X if every point of X is a pg**-
limit point of 𝐴𝐴 or a point of 𝐴𝐴. 
 
Definition 3.27: Atopological space having countable pg**-dense subset is said to be pg**-separable. 
 
Example 3.28: In ℝ with cofinite topology ℚ is pg**-dense in ℝ. Also ℝ is pg**-separable. 
 
Definition 3.29: Let 𝐴𝐴 be a subset of a topological space (X, τ). A point 𝑥𝑥 ∈ 𝐴𝐴 is said to bepg**-interior point of 𝐴𝐴 if 
there exists a pg**-open set 𝑈𝑈 such that 𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝐴𝐴. 
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Definition 3.30: Let 𝐴𝐴 be a subset of a topological space(𝑋𝑋, τ). pg**int(A) is defined to be the union of all pg**-open 
sets contained in 𝐴𝐴. 

Equivalently 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) =∪ { 𝑈𝑈:𝑈𝑈 ⊆ 𝐴𝐴,𝑈𝑈 ∈ 𝑃𝑃𝑃𝑃 ∗∗ 𝑂𝑂(𝑋𝑋)}. 
 
Example 3.31:  

(1) Consider ℝ with discrete topology. Then ℚ is pg**-open and hence every point in ℚ is a pg**-interior point. 
(2) Consider ℝ with cofinite topology, the subset ℚ and 𝑥𝑥 ∈  ℚ be arbitrary. Suppose 𝑥𝑥 is a pg**-interior point of 

ℚ, then there exists a pg**-neighbourhood 𝑈𝑈 of 𝑥𝑥 such that 𝑥𝑥 ∈ 𝑈𝑈 ⊂  ℚ. This implies ℚ𝑐𝑐  must be finite which 
is not true. Therefore 𝑥𝑥 is not apg**-interior point of ℚ. Since 𝑥𝑥 is arbitrary ℚ has no pg**-interior point.  

 
Note Any subset of ℝ with cofinite topology whose complement is not finite has no pg**-interior point. 
 
Note: 

(1) Obviously 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)is the set of all pg**-interior point of 𝐴𝐴.  
(2) 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)need not be pg**-open but if 𝐴𝐴 is pg**-open then 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) = 𝐴𝐴. 
(3) If (X, τ) is pg**-multiplicative space then 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) = 𝐴𝐴 if and only if 𝐴𝐴 is pg**-open. 

 
Theorem 3.32: For any two subsets 𝐴𝐴 and 𝐵𝐵 of (X, τ). Then, 

1. 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) ⊆ 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) ⊆ 𝐴𝐴. 
2. If 𝐴𝐴 ⊆ 𝐵𝐵, then 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) ⊆ 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐵𝐵). 
3. 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴 ∪ 𝐵𝐵) ⊇  𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) ∪  𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐵𝐵). 
4. 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴 ∩ 𝐵𝐵) =  𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) ∩  𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐵𝐵). 

 
Proof: follows from the definition. 
 
Remark 3.33: For a subset 𝐴𝐴 of 𝑋𝑋𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) ≠  𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) as seen from the following example. 
 
Example 3.34: Let 𝑋𝑋 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}} Let 𝐴𝐴 =  {𝑎𝑎, 𝑐𝑐} where 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) = {𝑎𝑎, 𝑐𝑐} and 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) =
{𝑎𝑎}. Hence 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) ≠  𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴). 
 
Remark 3.35: 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) = 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐵𝐵) does not imply that 𝐴𝐴 = 𝐵𝐵. This is revealed by the following example. 
 
Example 3.36: Let (𝑋𝑋, 𝜏𝜏), where 𝑋𝑋 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}} be a topological space. Here 𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋, 𝜏𝜏)  =
{𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}}. Let 𝐴𝐴 = {𝑎𝑎, 𝑏𝑏} and 𝐵𝐵 = {𝑎𝑎}, then 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) = 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐵𝐵) but 𝐴𝐴 ≠ 𝐵𝐵. 
 
Theorem 3.37: Let 𝐴𝐴 be a subset of (𝑋𝑋, 𝜏𝜏), then the following are true. 

(1) (𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴))𝑐𝑐 = 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴𝑐𝑐).  
(2) 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) = (𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴𝑐𝑐))𝑐𝑐 . 
(3) 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴) =  (𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴𝑐𝑐))𝑐𝑐 . 

 
Proof:  

(1) Let 𝑥𝑥 ∈ (𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴))𝑐𝑐 . Then 𝑥𝑥 ∉ 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴). That is every pg**-open set 𝑈𝑈 containing 𝑥𝑥 is such that 𝑈𝑈 is 
not a proper subset of 𝐴𝐴. Thus 𝑈𝑈 ∩ 𝐴𝐴𝑐𝑐 ≠ 𝜑𝜑 for every pg**-open set 𝑈𝑈 containing 𝑥𝑥. Thus 𝑥𝑥 ∈ 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴𝑐𝑐). 
Conversely, suppose 𝑥𝑥 ∈ 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴𝑐𝑐), then for every pg**-open set 𝑈𝑈 containing 𝑥𝑥,  𝑈𝑈 ∩ 𝐴𝐴𝑐𝑐 ≠ 𝜑𝜑. Then by 
the definition of pg**int(𝐴𝐴), 𝑥𝑥 ∉ 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴), hence 𝑥𝑥 ∈  (𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴))𝑐𝑐 .  
Therefore (𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴))𝑐𝑐 = 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴𝑐𝑐). 

(2) Follows by taking complements in (1).  
(3) Follows by replacing 𝐴𝐴 by 𝐴𝐴𝑐𝑐  in (1). 

 
Theorem 3.38: For any 𝐴𝐴 ⊆ 𝑋𝑋, (𝑋𝑋 − 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) = 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝑋𝑋 − 𝐴𝐴). 
 
Proof: Let 𝑥𝑥 ∈ 𝑋𝑋 − 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴). Then 𝑥𝑥 ∉ 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴), that is every pg**-open set 𝑃𝑃 containing 𝑥𝑥 is such that 
𝑃𝑃 ⊈ 𝐴𝐴. Therefore every pg**-open set 𝑃𝑃 containing 𝑥𝑥 intersects 𝑋𝑋 − 𝐴𝐴. That is 𝑃𝑃 ∩ 𝑋𝑋 − 𝐴𝐴 ≠ 𝜑𝜑 and hence                  
𝑥𝑥 ∈  𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝑋𝑋 − 𝐴𝐴). Conversely let 𝑥𝑥 ∈  𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝑋𝑋 − 𝐴𝐴). Then every pg**-open set 𝑃𝑃 containing 𝑥𝑥 intersects  
𝑋𝑋 − 𝐴𝐴, that is 𝑃𝑃 ∩ 𝑋𝑋 − 𝐴𝐴 ≠ 𝜑𝜑. To be precise every pg**-open set 𝑃𝑃 containing 𝑥𝑥 is such that 𝑃𝑃 ⊈ 𝐴𝐴. This implies 
𝑥𝑥 ∉ 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴). Therefore 𝑥𝑥 ∈ 𝑋𝑋 − 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) and hence (𝑋𝑋 − 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) = 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝑋𝑋 − 𝐴𝐴). 
 
Remark 3.39: For any 𝐴𝐴 ⊆ 𝑋𝑋, we have  

(i) (𝑋𝑋 − 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝑋𝑋 − 𝐴𝐴)) = 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴). 
(ii) (𝑋𝑋 − 𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑋𝑋 − 𝐴𝐴)) = 𝑝𝑝𝑝𝑝 ∗∗ 𝑐𝑐𝑐𝑐(𝐴𝐴). Taking complement in the above theorem and by replacing 𝐴𝐴  by 

𝑋𝑋 − 𝐴𝐴  in theorem (3.38) the results (i) and (ii) follow. 
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Definition 3.40: A subset 𝐴𝐴 of a topological space(𝑋𝑋, 𝜏𝜏) is called pg**-clopen if it is both pg**- open and pg**- closed 
in 𝑋𝑋. 
 
Example 3.41: Consider ℝ with usual topology ℚ and ℚ𝑐𝑐  are pg**-clopen. 
 
Definition 3.42: A point 𝑥𝑥 ∈ 𝑋𝑋 is said to be a pg**-boundary point of A if every pg**- open set containing 𝑥𝑥 intersects 
both A and 𝑋𝑋 − 𝐴𝐴.  
 
Definition 3.43: Let A be any subset of a topological space (𝑋𝑋, 𝜏𝜏). Then the pg**-boundary of A is defined as 
pg**𝐵𝐵𝐵𝐵(A) = pg ∗∗ cl(A) ∩ pg ∗∗ cl(Ac). 
 
Example 3.44: Consider ℝ with discrete topology and ℚ, the set of rationals. Let 𝑟𝑟 ∈ ℝ  be arbitrary, then {𝑟𝑟} is a 
pg**- open set containing 𝑟𝑟 which cannot intersect both ℚ and ℚ𝑐𝑐 . Therefore ℚ has no pg**-boundary point.   
 
Example 3.45: Consider ℝ with finite complement topology and ℚ, the set of rationals. Let 𝑟𝑟 ∈ ℝ  be arbitrary and 𝑈𝑈 
be a pg**-neighbourhood of  𝑟𝑟, then 𝑈𝑈 is infinite and hence contains atleast one point of ℚ. Therefore 𝑈𝑈 intersects both 
both ℚ and ℚ𝑐𝑐 . Therefore every real number is a pg**-boundary point of ℚ .   
 
Infact, any infinite subset A of ℝ whose complement is also infinite has every real number as its pg**-boundary point.  
 
Definition 3.46:  If (𝑋𝑋, 𝜏𝜏) is a topological space, a point 𝑥𝑥 ∈ X is said to be a  pg**- isolated point of X if the one-point 
set {𝑥𝑥} is pg**- open in X.  
 
Definition 3.47: Let (𝑋𝑋, 𝜏𝜏) be a topological space and A be a subset of X. A point 𝑥𝑥 in A is called a pg**- isolated point 
of A if it has a pg**- neighborhood of 𝑥𝑥 which contains no other point of A.  
 
Definition 3.48: Let  (𝑋𝑋, 𝜏𝜏) be a topological space and 𝐴𝐴 ⊆ 𝑋𝑋. Then the pg**-border of A is defined as 
𝑏𝑏pg ∗∗ (A) = A −  pg ∗∗ int(A). 
 
Definition 3.49: Let A be any subset of a topological space (𝑋𝑋, 𝜏𝜏). Then the pg**-exterior of A is defined as 
𝑝𝑝𝑝𝑝 ∗∗ 𝐸𝐸𝑥𝑥𝑖𝑖(𝐴𝐴) =  𝑝𝑝𝑝𝑝 ∗∗ 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴𝑐𝑐). 
 
Theorem 3.50: Let A and B be any two sets of a topological space (𝑋𝑋, 𝜏𝜏), then the following conditions hold: 

(i) pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴)  = pg ∗∗ Bd(Ac) . 
(ii) pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴) ⊆  pg ∗∗ cl(Ac). 
(iii) If A is pg**-closed, then pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴) ⊆ 𝐴𝐴. 
(iv) If A is pg**-open, then pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴) ⊆ Ac . 
(v) Let 𝐴𝐴 ⊆ 𝐵𝐵 and 𝐵𝐵 ∈  pg ∗∗ Cl(𝑋𝑋, 𝜏𝜏)(resp. 𝐵𝐵 ∈ pg ∗∗ O(𝑋𝑋, 𝜏𝜏)). Then,   
(vi) pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴) ⊆ 𝐵𝐵 (resp. pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴) ⊆ Bc) where pg ∗∗ Cl(𝑋𝑋, 𝜏𝜏) denotes the class of  pg**-closed (resp. 

pg ∗∗ O(𝑋𝑋, 𝜏𝜏) denotes the class of pg**-open) sets in X. 
(vii) (pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴) )c =  pg ∗∗ int(A) ∪ pg ∗∗ int(Ac). 

 
Proof: (i) pg** 𝐵𝐵𝐵𝐵(𝐴𝐴) = pg ∗∗ cl(A) ∩ pg ∗∗ cl(Ac) = pg ∗∗ cl(𝐴𝐴𝑐𝑐)𝑐𝑐 ∩ pg ∗∗ cl(Ac) = pg ∗∗ Bd(Ac). 
           (ii) and (iii) Follows from Definition of pg**𝐵𝐵𝐵𝐵(𝐴𝐴). 
           (iv) pg ∗∗ Bd(A) ⊆  pg ∗∗ cl(A) = A. Hence pg ∗∗ Bd(A) ⊆  A. 
           (v) Suppose A is pg**-open then Ac is pg**-closed, also pg**𝐵𝐵𝐵𝐵(Ac) ⊆ Ac . Hence by (i) pg ∗∗ Bd(A) ⊆  A. 
           (vi) Since A ⊆ 𝐵𝐵, pg ∗∗ cl(A) ⊆ pg ∗∗ cl(B).  
                 Now pg**Bd(A) ⊆  pg ∗∗ cl(A) )  ⊆  pg ∗∗ cl(B) = 𝐵𝐵. Hence pg ∗∗ Bd(A) ⊆ 𝐵𝐵. 
           (vii) (pg ∗∗ Bd(A))c = (pg ∗∗ cl(A) ∩ pg ∗∗ cl(Ac))c = (pg ∗∗ cl(A))c ∪ (pg ∗∗ cl(Ac))c  
                                                 = pg ∗∗ int(Ac) ∪ pg ∗∗ int(𝐴𝐴𝑐𝑐)𝑐𝑐 =  pg ∗∗ int(Ac) ∪ pg ∗∗ int(𝐴𝐴). 
 
Theorem 3.51: Let A be a subset of a topological space (𝑋𝑋, 𝜏𝜏), then the following conditions hold: 

(i) pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴) ⊆ 𝐵𝐵𝐵𝐵(𝐴𝐴), where 𝐵𝐵𝐵𝐵(𝐴𝐴) denotes the boundary of A. 
(ii) pg ∗∗ cl(A) =  pg ∗∗ int(A) ∪ pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴) 
(iii) pg ∗∗ int(A) ∩  pg ∗∗ Bd(A) = φ. 
(iv) pg ∗∗ Bd�int(A)� ⊆  pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴). 
(v) pg ∗∗ Bd�cl(A)� ⊆  pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴). 
(vi) 𝑏𝑏pg ∗∗ (A) ⊆  pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴). 

 
Proof:  (i) pg**𝐵𝐵𝐵𝐵(𝐴𝐴) = pg ∗∗ cl(A) ∩ pg ∗∗ cl(Ac) ⊆ cl(A) ∩ cl(Ac) =  𝐵𝐵𝐵𝐵(𝐴𝐴). 
             (ii) pg ∗∗ int(A) ∪ pg ∗∗ Bd(A) = pg ∗∗ int(A) ∪ (pg ∗∗ cl(A) ∩ pg ∗∗ cl(Ac)) = pg ∗∗ cl(A). 

(ii) pg ∗∗ int(A) ∩  pg ∗∗ Bd(A) =  pg ∗∗ int(A) ∩ ( pg ∗∗ cl(A) ∩ pg ∗∗ cl(Ac)) = φ. 
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             (iv) pg ∗∗ Bd�int(A)� = (pg ∗∗ cl(int(A)) ∩ pg ∗∗ cl(int(A))c) 
              = (pg ∗∗ cl(int(A)) ∩ (pg ∗∗ int(int(A)))c ⊆ pg ∗∗ cl(A) ∩ (pg ∗∗ int(A))c  = pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴). 
             (v)  pg ∗∗ Bd�cl(A)�  = (pg ∗∗ cl(cl(A)) ∩ pg ∗∗ cl(cl(A))c) ⊆ pg ∗∗ cl(A) ∩ (pg ∗∗ int(A))c  = pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴). 
             (vi) 𝑏𝑏pg ∗∗ (A) = 𝐴𝐴 − pg ∗∗ int(A) ⊆  pg ∗∗ cl(A) ∩ (pg ∗∗ int(A))c =  pg ∗∗ 𝐵𝐵𝐵𝐵(𝐴𝐴). 
 
Theorem 3.52: Let A be a subset of a topological space (𝑋𝑋, 𝜏𝜏), then the following conditions hold: 

(i) 𝑏𝑏pg ∗∗ (A) ⊆ 𝑏𝑏(A), where 𝑏𝑏(A) denotes the border of A.  
(ii) A =  pg ∗∗ int(A)  ∪  𝑏𝑏pg ∗∗ (A). 
(iii) pg ∗∗ int(A)  ∩  𝑏𝑏pg ∗∗ (A) = φ. 
(iv) If A is pg ∗∗-open, then 𝑏𝑏pg ∗∗ (A) = φ. 
(v) 𝑏𝑏pg ∗∗ (A) =  A ∩  pg ∗∗ cl(Ac). 

 
Proof: (i) follows from definition ofpg**-𝑏𝑏𝑏𝑏𝑟𝑟𝐵𝐵𝑖𝑖𝑟𝑟 𝑏𝑏𝑖𝑖𝐴𝐴 and A −  pg ∗∗ int(A)  ⊆ A − int(A). 
            (ii) and (iii) follows from the definition of pg**-𝑏𝑏𝑏𝑏𝑟𝑟𝐵𝐵𝑖𝑖𝑟𝑟 𝑏𝑏𝑖𝑖𝐴𝐴. 
            (iv) If A is pg ∗∗-open, then  pg ∗∗ int(A)  =  A. Thus 𝑏𝑏pg ∗∗ (A) = φ. 
            (v) 𝑏𝑏pg ∗∗ (A) =  A −  pg ∗∗ int(A) = A − (pg ∗∗ cl(Ac))c =  A ∩  pg ∗∗ cl(Ac). 
 
Theorem 3.53: Let A be a subset of a topological space (𝑋𝑋, 𝜏𝜏), then the following conditions hold: 

(i) Ext(A) ⊆ pg ∗∗ Ext(A), where Ext(A) denotes the exterior of A. 
(ii) pg ∗∗ Ext(X) = φ. 
(iii) pg ∗∗ Ext(φ) = X. 
(iv) pg ∗∗ Ext(A) = (pg ∗∗ cl(A))c . 
(v) pg ∗∗ Ext�pg ∗∗ Ext(A)� =  pg ∗∗ int�pg ∗∗ cl(A)�. 
(vi) If 𝐴𝐴 ⊆ 𝐵𝐵 then pg ∗∗ Ext(A) ⊇ pg ∗∗ Ext(B).   
(vii) pg ∗∗ Ext(A ∪ B) ⊆  pg ∗∗ Ext(A) ∪ pg ∗∗ Ext(B). 
(viii) pg ∗∗ Ext(A ∩ B) ⊇  pg ∗∗ Ext(A) ∩ pg ∗∗ Ext(B). 
(ix) pg ∗∗ int(A) ⊆  pg ∗∗ Ext�pg ∗∗ Ext(A)�.  

 
Proof: (i) (ii) (iii) and (iv) follows from the definition of pg ∗∗ Ext(A). 
            (v) pg ∗∗ Ext�pg ∗∗ Ext(A)� = pg ∗∗ Ext(pg ∗∗ cl(A))c =  pg ∗∗ int�pg ∗∗ cl(A)�. 
            (vi) If 𝐴𝐴 ⊆ 𝐵𝐵 then Ac ⊇ Bc ⇒  pg ∗∗ int(Ac) ⊇ pg ∗∗ int(Bc) ⇒ pg ∗∗ Ext(A) ⊇ pg ∗∗ Ext(B). 
            (vii) and (viii) follows from (vi). 
            (ix) pg ∗∗ int(A) ⊆ pg ∗∗ int�pg ∗∗ cl(A)� = pg ∗∗ int�pg ∗∗ Ext(A)�c = pg ∗∗ Ext�pg ∗∗ Ext(A)�. 
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