\(\theta\omega \)-CLOSED SETS IN TOPOLOGICAL SPACES

S. Ganesan, O. Ravi* and R. Latha

1Department of Mathematics, N. M. S. S. V. N College, Nagamalai, Madurai, Tamil Nadu, India

E-mail: sgsgsgsgsg77@yahoo.com

2Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India

E-mail: siingam@yahoo.com

3Department of Mathematics, Prince SVP Engineering College, Ponmar, Chennai-48, Tamil Nadu, India

E-mail: ar.latha@gmail.com

(Received on: 07-07-11; Accepted on: 11-08-11)

ABSTRACT

In this paper, we offer a new class of sets called \(\theta\omega \)-closed sets in topological spaces and we study some of its basic properties. The family of \(\theta\omega \)-closed sets of a topological space forms a topology and is denoted by \(\tau_{\theta\omega} \). Notice that this class of sets lies between the class of \(\theta \)-closed sets and the class of \(g\theta \)-closed sets. Using these sets, we obtain a decomposition of \(\theta \)-continuity and we introduce new spaces called \(T_{\theta\omega} \) and \(\mathcal{T}_{\theta\omega} \). Using these spaces we obtain another decomposition of \(T^{1/2} \)-spaces.

2000 Mathematics Subject Classification: 54C10, 54C08, 54C05

Key words and Phrases: Topological space, \(g\theta \)-closed set, \(\theta\omega \)-closed set, \(\omega \)-closed set, \(\theta \)-continuous function, \(\theta\omega \)lc*-continuous function, \(T_{\theta\omega} \)-space, \(\mathcal{T}_{\theta\omega} \)-space.

1. INTRODUCTION

In 1963 Levine [15] introduced the notion of semi-open sets. Velicko [25] introduced the notion of \(\theta \)-closed sets and it is well known that the collection of all \(\theta \)-closed sets of a topological space forms a topology and is denoted by \(\tau_{\theta} \). Levine [14] also introduced the notion of g-closed sets and investigated its fundamental properties. This notion was shown to be productive and very useful. Dontchev and Maki [10] introduced the notion of \(\theta \)-generalized closed sets.

After the advent of g-closed sets, Arya and Nour [4], Sheik John [21] and Dontchev [9] introduced gs-closed sets, \(\omega \)-closed sets and gsp-closed sets respectively.

In this paper, we introduce a new class of sets called \(\theta\omega \)-closed sets in topological spaces. This class lies between the class of \(\theta \)-closed sets and the class of \(\theta\gamma \)-closed sets. We study some of its basic properties and characterizations. Interestingly it turns out that the family of \(\theta\omega \)-closed sets of a topological space forms a topology. This collection is denoted by \(\tau_{\theta\omega} \). From the definitions, it follows immediately that \(\tau_{\theta} \subseteq \tau_{\theta\omega} \subseteq \tau \). Using these sets, we obtain a decomposition of \(\theta \)-continuity and we introduce new type of spaces called \(T_{\theta\omega} \)-spaces and \(\mathcal{T}_{\theta\omega} \)-spaces. Using these spaces, we obtain another decomposition of \(T^{1/2} \)-spaces.

2. PRELIMINARIES

Throughout this paper \((X, \tau)\) and \((Y, \sigma)\) (or \(X\) and \(Y\)) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset \(A \) of a space \((X, \tau)\), \(\text{cl}(A) \), \(\text{int}(A) \) and \(A^c \) or \(X \setminus A \) denote the closure of \(A \), the interior of \(A \) and the complement of \(A \) respectively.

Corresponding author: O. Ravi, E-mail: siingam@yahoo.com
We recall the following definitions which are useful in the sequel.

Definition: 2.1 A subset A of a space (X, τ) is called:
(i) semi-open set [15] if $A \subseteq \text{cl}(\text{int}(A))$;
(ii) preopen set [17] if $A \subseteq \text{int}(\text{cl}(A))$;
(iii) α-open set [18] if $A \subseteq \text{int}(\text{cl}(A))$;
(iv) β-open set [1] if $A \subseteq \text{cl}(\text{int}(A))$;
(v) regular open set [22] if $A = \text{int}(\text{cl}(A))$.

The complements of the above mentioned open sets are called their respective closed sets.

The preclosure [19] (resp. semi-closure [7], α-closure [18], semi-pre-closure [2]) of a subset A of X, denoted by $\text{pcl}(A)$ (resp. $\text{scl}(A)$, $\text{cl}(A)$, $\text{spcl}(A)$), is defined to be the intersection of all preclosed (resp. semi-closed, α-closed, semi-preclosed) sets of (X, τ) containing A. It is known that $\text{pcl}(A)$ (resp. $\text{scl}(A)$, $\text{cl}(A)$, $\text{spcl}(A)$) is a preclosed (resp. semi-closed, α-closed, semi-preclosed) set.

Definition: 2.2 [25] A point x of a space X is called a θ-adherent point of a subset A of X if $\text{cl}(U) \cap A \neq \emptyset$, for every open set U containing x. The set of all θ-adherent points of A is called the θ-closure of A and is denoted by $\text{cl}_\theta(A)$. A subset A of a space X is called θ-closed if and only if $A = \text{cl}_\theta(A)$. The complement of a θ-closed set is called θ-open. Similarly, the θ-interior of a set A in X, written $\text{int}_\theta(A)$, consists of those points x of A such that for some open set U containing x, $\text{cl}(U) \subseteq A$. A set A is θ-open if and only if $A = \text{int}_\theta(A)$, or equivalently, $X \setminus A$ is θ-closed.

A point x of a space X is called a δ-adherent point of a subset A of X if $\text{int}(\text{cl}(U)) \cap A \neq \emptyset$, for every open set U containing x. The set of all δ-adherent points of A is called the δ-closure of A and is denoted by $\text{cl}_\delta(A)$. A subset A of a space X is called δ-closed if and only if $A = \text{cl}_\delta(A)$. The complement of a δ-closed set is called δ-open. Similarly, the δ-interior of a set A in X, written $\text{int}_\delta(A)$, consists of those points x of A such that for some regularly open set U containing x, $U \subseteq A$. A set A is δ-open if and only if $A = \text{int}_\delta(A)$, or equivalently, $X \setminus A$ is δ-closed.

The family of all θ-open (resp. δ-open) subsets of (X, τ) forms a topology on X and is denoted by τ_θ (resp. τ_δ).

From the definitions it follows immediately that $\tau_\theta \subseteq \tau_\delta \subseteq \tau$ [6].

Definition: 2.3 A point $x \in X$ is called a semi-θ-cluster [8] point of A if $A \cap \text{scl}(U) \neq \emptyset$ for each semi-open set U containing x.

The set of all semi-θ-cluster points of A is called the semi-θ-cluster of A and is denoted by $\text{scl}(A)$. Hence, a subset A is called semi-θ-closed if $\text{scl}(A) = A$. The complement of a semi-θ-closed set is called semi-θ-open set.

Recall that a subset A of a space (X, τ) is said to be δ-semi-open [20] if $A \subseteq \text{cl}(\text{int} \delta(A))$.

Definition: 2.4 A subset A of a space (X, τ) is called:
(i) a generalized closed (briefly g-closed) set [14] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(ii) a generalized semi-closed (briefly gs-closed) set [4] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(iii) an α-generalized closed (briefly α g-closed) set [16] if $\alpha \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(iv) a generalized semi-preclosed (briefly gsp-closed) set [9] if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(v) a generalized preclosed (briefly gp-closed) set [19] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
(vi) a \tilde{g}-closed set [23] (= ω-closed set [21]) if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ).
(vii) a θ-generalized closed set (briefly θg-closed) [10] if $\text{cl}_\theta(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).

© 2011, IJMA. All Rights Reserved
Remark: 2.5 The collection of all θg-closed (resp. ω-closed, g-closed, θ-closed, α-closed, semi-closed) sets of X is denoted by $\theta G C(X)$ (resp. $\omega C(X)$, $G C(X)$, $\theta C(X)$, $\alpha C(X)$, $S C(X)$).

We denote the power set of X by $P(X)$.

Remark: 2.6 [5] We have the following diagram in which the converses of the implications need not be true.

 Remark: 2.7 [21]

(1) Every θ-closed set is θg-closed.
(2) θg-closed sets and ω-closed sets are independent.

Remark: 2.8 [6] (X, τ) is regular if and only if $\theta \tau = \tau$.

Remark: 2.9 [21] A space X is called $\tau \omega$ if ω-closed set in X is closed.

Definition 2.10 A topological space (X, τ) is called a R_1-space [11] if every two different points with distinct closures have disjoint neighborhoods.

Proposition 2.11 [6] Let (X, τ) be a space. Then,
(i) if $A \subseteq X$ is preopen then $cl(A) = \alpha cl(A)$.
(ii) (X, τ) is R_1 if and only if $cl(\{x\}) = \delta cl(\{x\})$ for each $x \in X$.

Proposition 2.12 [11, 12] Let (X, τ) be a space. If $A \subseteq X$ is preopen then $cl(A) = \alpha cl(A) = \delta cl(A)$.

Definition 2.13 [14] A space (X, τ) is called $T_{1/2}$-space if every g-closed set is closed.

3. $\theta \omega$-CLOSED SETS

We introduce the following definition.

Definition: 3.1 A subset A of X is called a $\theta \omega$-closed set if $cl_\theta(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ). The complement of $\theta \omega$-closed set is called $\theta \omega$-open set.

The collection of all $\theta \omega$-closed sets of X is denoted by $\theta \omega C(X)$.

Proposition: 3.2 Every θ-closed set is $\theta \omega$-closed.

Proof: Let A be an θ-closed set and G be any semi-open set containing A in (X, τ). Since A is θ-closed, $cl_\theta(A) = A$ for every subset A of X. Therefore $cl_\theta(A) \subseteq G$ and hence A is $\theta \omega$-closed set.

The converse of Proposition 3.2 need not be true as seen from the following example.

Example: 3.3 Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $\theta \omega C(X) = \{\phi, \{b, c\}, X\}$ and $\theta C(X) = \{\phi, X\}$. Here, $A = \{b, c\}$ is $\theta \omega$-closed but not θ-closed set in (X, τ).

Proposition: 3.4 Every $\theta \omega$-closed set is g-closed.
Proof: Let A be an $\theta\omega$-closed set and G be any open set containing A in (X, τ). Since every open set is semi-open and A is $\theta\omega$-closed, $cl_G(A) \subseteq G$. Since $cl(A) \subseteq cl_G(A) \subseteq G$, $cl(A) \subseteq G$ and hence A is g-closed.

The converse of Proposition 3.4 need not be true as seen from the following example.

Example: 3.5 Let X and τ be as in the Example 3.3. Then $\theta\omega C(X) = \{\emptyset, [b, c], X\}$ and $G C(X) = \{\emptyset, [b], [c], [a, b], [a, c], [b, c], X\}$. Here, $A = \{a, b\}$ is g-closed but not $\theta\omega$-closed set in (X, τ).

Proposition: 3.6 Every $\theta\omega$-closed set is ω-closed.

Proof: Let A be an $\theta\omega$-closed subset of (X, τ) and G be any semi-open set containing A. Since $cl(A) \subseteq cl_G(A) \subseteq G$ and hence A is ω-closed.

The converse of Proposition 3.6 need not be true as seen from the following example.

Example: 3.7 Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, [a], [a, b], X\}$. Then $\theta\omega C(X) = \{\emptyset, [b, c], X\}$ and $\omega C(X) = \{\emptyset, [c], [b, c], X\}$. Here, $A = \{c\}$ is ω-closed but not $\theta\omega$-closed set in (X, τ).

Proposition: 3.8 Every $g\theta$-closed set is g-closed.

Proof: Let A be an $g\theta$-closed subset of (X, τ) and G be any open set containing A. Since $cl(A) \subseteq cl_G(A) \subseteq G$ and hence A is g-closed.

The converse of Proposition 3.8 need not be true as seen from the following example.

Example: 3.9 Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, [a], [a, b], [a, c], X\}$. Then $G\theta C(X) = \{\emptyset, [b, c], X\}$ and $G C(X) = \{\emptyset, [b], [c], [b, c], X\}$. Here, $A = \{b\}$ is g-closed but not $G\theta$-closed set in (X, τ).

Proposition: 3.10 Every $\theta\omega$-closed set is $G\theta$-closed.

Proof: Let A be an $\theta\omega$-closed set and G be any open set containing A in (X, τ). Since every open set is semi-open and A is $\theta\omega$-closed, $cl_G(A) \subseteq G$. Therefore $cl(A) \subseteq G$ and G is open. Hence A is $G\theta$-closed.

The converse of Proposition 3.10 need not be true as seen from the following example.

Example: 3.11 Let X and τ be as in the Example 3.3. Then $\theta\omega C(X) = \{\emptyset, [b, c], X\}$ and $G\theta C(X) = \{\emptyset, [b], [c], [a, b], [a, c], [b, c], X\}$. Here, $A = \{a, c\}$ is $G\theta$-closed but not $\theta\omega$-closed set in (X, τ).

Remark: 3.12 The following examples show that $\theta\omega$-closedness is independent of closedness, semi-closedness and α-closedness.

Example: 3.13 Let X and τ be as in the Example 3.3. Then $\theta\omega C(X) = \{\emptyset, [b, c], X\}$ and $\alpha C(X) = \{\emptyset, [b], [c], [a, b], [a, c], [b, c], X\}$. Here, $A = \{b\}$ is α-closed as well as semi-closed in (X, τ) but it is not $\theta\omega$-closed in (X, τ).

Example: 3.14 Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, [a, b], X\}$. Then $\theta\omega C(X) = \{\emptyset, [c], [a, c], [b, c], X\}$ and $\alpha C(X) = \{\emptyset, [c], X\}$. Here, $A = \{a, c\}$ is $\theta\omega$-closed but it is neither α-closed nor semi-closed in (X, τ).

Example: 3.15 In Example 3.7, $\{c\}$ is closed set but not $\theta\omega$-closed.

In Example 3.14, $\{b, c\}$ is $\theta\omega$-closed set but not closed.

Remark: 3.16 From the above discussions and known results in [9, 11, 21, 24], we obtain the following diagram, where $A \rightarrow B$ (resp. $A \leftrightarrow B$) represents A implies B but not conversely (resp. A and B are independent of each other).
None of the above implications is reversible as shown in the above examples and in the related papers [9, 11, 21, 24].

4. PROPERTIES OF $\theta\omega$-CLOSED SETS

Definition: 4.1 [21] The intersection of all semi-open subsets of (X, τ) containing A is called the semi-kernel of A and is denoted by s-ker (A).

Lemma: 4.2 A subset A of (X, τ) is $\theta\omega$-closed if and only if θcl (A) \subseteq s-ker (A).

Proof: Suppose that A is $\theta\omega$-closed. Then cl_θ (A) \subseteq U whenever $A \subseteq U$ and U is semi-open. Let $x \in cl_\theta$ (A). If $x \notin s$-ker (A), then there is a semi-open set U containing A such that $x \notin U$. Since U is a semi-open set containing A, we have $x \notin cl_\theta$ (A) and this is a contradiction.

Conversely, let cl_θ (A) \subseteq s-ker (A). If U is any semi-open set containing A, then cl_θ (A) \subseteq s-ker (A) \subseteq U. Therefore, A is $\theta\omega$-closed.

Remark: 4.3 The collection of all $\theta\omega$-closed sets of a topological space forms a topology and is denoted by $\tau_{\theta\omega}$.

Remark: 4.4 If A is a $\theta\omega$-closed set and F is a θ-closed set, then $A \cap F$ is a $\theta\omega$-closed set.

Proof: Since F is θ-closed, it is $\theta\omega$-closed. Therefore by Remark 4.3, $A \cap F$ is also a $\theta\omega$-closed set.

Proposition: 4.5 If a set A is $\theta\omega$-closed in (X, τ), then θcl (A) \cap A contains no nonempty semi-closed set in (X, τ).

Proof: Suppose that A is $\theta\omega$-closed. Let $A \subseteq Y \cap G$, where G is semi-open in (X, τ). Then $A \subseteq F$. Therefore cl_θ (A) $\subseteq F$. Consequently, $F \subseteq (cl_\theta$ (A))$. We already have $F \subseteq cl_\theta$ (A). Thus $F \subseteq cl_\theta$ (A) \cap (cl_θ (A)) and F is empty.

The converse of Proposition 4.5 need not be true as seen from the following example.

Example: 4.6 Let X and τ be as in the Example 3.14. Then $\theta\omega$C(X) = $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and SC(X) = $\{\phi, \{c\}, X\}$. If $A = \{c\}$, then cl_θ (A) \cap A = $\{a, b\}$ does not contain any nonempty semi-closed set. But A is not $\theta\omega$-closed in (X, τ).

Proposition: 4.7 Let $A \subseteq Y \subseteq X$ where Y is open and suppose that A is $\theta\omega$-closed in (X, τ). Then A is $\theta\omega$-closed relative to Y.

Proof: Let $A \subseteq Y \cap G$, where G is semi-open in (X, τ). Then $A \subseteq G$ and hence cl_θ (A) $\subseteq G$. This implies that $Y \cap cl_\theta$ (A) $\subseteq Y \cap G$. Thus A is $\theta\omega$-closed relative to Y since the intersection of open and semi-open is semi-open [6].
Proposition: 4.8 If A is a semi-open and $\theta\omega$-closed in (X, τ), then A is θ-closed in (X, τ).

Proof: Since A is semi-open and $\theta\omega$-closed, $cl_\theta(A) \subseteq A$ and hence A is θ-closed in (X, τ).

Theorem: 4.9 Let A be a subset of a regular space (X, τ). Then,

(i) A is $\theta\omega$-closed if and only if A is ω-closed.

(ii) if (X, τ) is $\tau\omega$, then A is $\theta\omega$-closed if and only if A is closed.

Proof:
(i) It follows from Remark 2.8.
(ii) It follows from Remark 2.9.

Theorem: 4.10 Let A be a preopen subset of a topological space (X, τ). Then the following conditions are equivalent.
(i) A is $\theta\omega$-closed.
(ii) A is $g\theta$-closed (or ω-closed).
(iii) A is g-closed.
(iv) A is α g-closed.

Proof:
(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv). It is obvious from Remark 3.16.
(iv) \Rightarrow (i). It follows from Propositions 2.11 and 2.12.

Recall that a partition space [11] is a topological space where every open set is closed.

Corollary: 4.11 Let A be a subset of the partition space (X, τ). Then the following conditions are equivalent.
(i) A is $\theta\omega$-closed.
(ii) A is $g\theta$-closed (or ω-closed).
(iii) A is g-closed.
(iv) A is α g-closed.

Proof: A topological space is a partition space if and only if every subset is preopen. Then the claim follows straight from Theorem 4.10.

Theorem: 4.12 For a singleton subset A of an R_1 topological space (X, τ), the following conditions are equivalent.
(i) A is $\theta\omega$-closed.
(ii) A is ω-closed.

Proof:
(i) \Rightarrow (ii) is clear.
(ii) \Rightarrow (i). Note that in R_1-spaces, the concepts of closure and θ-closure coincide for singleton sets: see Proposition 2.11.

Theorem: 4.13 For a subset A of a topological space (X, τ), the following conditions are equivalent.
(i) A is clopen.
(ii) A is $\theta\omega$-closed, preopen and semi-closed.
(iii) A is $\theta\omega$-closed and (regular) open.
(iv) A is α g-closed and (regular) open.

Proof:
(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) are obvious.
(iv) \Rightarrow (i). It follows from Theorem 3.13 [11].

Lemma: 4.14 In any space, if a singleton is θ-open then it is regular open.

Proof: It follows from the fact that, in any space, a singleton is δ-open if and only if it is regular open [11].

Lemma: 4.15 In a regular space, singleton is θ-open if and only if it is regular open.
Lemma: 4.16 If A is both closed and preopen of a topological space X, then the following are equivalent.
(i) A is θ-closed.
(ii) A is δ-closed.
(iii) A is α-closed.

Proof: It is obvious from the fact that $A = \text{cl}(A) = \delta\text{cl}(A) = \theta\text{cl}(A) = \alpha\text{cl}(A)$ (see. Propositions 2.11 and 2.12)

Lemma: 4.17 If a subset A of a space (X, τ) is clopen, then the following are equivalent.
(i) A is θ-closed.
(ii) A is δ-closed.
(iii) A is α-closed.
(iv) A is regular closed.

Definition: 4.18 A space (X, τ) is called locally s-θ-indiscrete space if every semi-open set is θ-closed.

Theorem: 4.19 For a topological space (X, τ), the following conditions are equivalent.
(i) X is locally s-θ-indiscrete.
(ii) Every subset of X is $\theta\omega$-closed.

Proof:
(i) \Rightarrow (ii). Let $A \subseteq U$, where U is semi-open and A is an arbitrary subset of X. Since X is locally s-θ-indiscrete, then U is θ-closed. We have $\delta\text{cl}(A) \subseteq \delta\text{cl}(U) = U$. Thus A is $\theta\omega$-closed.

(ii) \Rightarrow (i). If $U \subseteq X$ is semi-open, then by (ii) $\delta\text{cl}(U) \subseteq U$ or equivalently U is θ-closed. Hence X is locally s-θ-indiscrete.

5. DECOMPOSITION OF θ-CONTINUITY

In this section, we obtain a decomposition of continuity called θ-continuity in topological spaces.

To obtain a decomposition of θ-continuity, we first introduce the notion of $\theta\omega$lc*-continuous functions in topological spaces and by using $\theta\omega$-continuity, prove that a function is θ-continuous if and only if it is both $\theta\omega$-continuous and $\theta\omega$lc*-continuous.

We introduce the following definition.

Definition: 5.1 A subset A of a space (X, τ) is called $\theta\omega$lc*-set if $A = M \cap N$, where M is semi-open and N is θ-closed in (X, τ).

Example: 5.2 Let X and τ be as in the Example 3.3. Then $\{a, b\}$ is $\theta\omega$lc*-set in (X, τ).

Remark: 5.3 Every θ-closed set is $\theta\omega$lc*-set but not conversely.

Example: 5.4 Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{b\}, X\}$. Then $\{b, c\}$ is $\theta\omega$lc*-set but not θ-closed in (X, τ).

Remark: 5.5 $\theta\omega$-closed sets and $\theta\omega$lc*-sets are independent of each other.

Example: 5.6 Let X and τ be as in the Example 3.14. Then $\{a, c\}$ is an $\theta\omega$-closed set but not $\theta\omega$lc*-set in (X, τ).

Example: 5.7 Let X and τ be as in the Example 5.4. Then $\{a, b\}$ is an $\theta\omega$lc*-set but not $\theta\omega$-closed set in (X, τ).

Proposition: 5.8 Let (X, τ) be a topological space. Then a subset A of (X, τ) is θ-closed if and only if it is both $\theta\omega$-closed and $\theta\omega$lc*-set.

Proof: Necessity is trivial. To prove the sufficiency, assume that A is both $\theta\omega$-closed and $\theta\omega$lc*-set.
Then $A = M \cap N$, where M is semi-open and N is θ-closed in (X, τ). Therefore, $A \subseteq M$ and $A \subseteq N$ and so by hypothesis, $cl_{\theta}(A) \subseteq M$ and $cl_{\theta}(A) \subseteq N$. Thus $cl_{\theta}(A) \subseteq M \cap N = A$ and hence $cl_{\theta}(A) = A$ i.e., A is θ-closed in (X, τ).

We introduce the following definition

Definition: 5.9 A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be $\theta\omega$lc*-continuous if for each closed set V of (Y, σ), $f^{-1}(V)$ is a $\theta\omega$lc*-set in (X, τ).

Example: 5.10 Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is $\theta\omega$lc*-continuous function.

Definition: 5.11 A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called
(i) θ-continuous [3] if for each closed set V of Y, $f^{-1}(V)$ is θ-closed in X.
(ii) $\theta\omega$-continuous if for each closed set V of Y, $f^{-1}(V)$ is $\theta\omega$-closed in X.

Proposition: 5.12 Every θ-continuous function is $\theta\omega$-continuous but not conversely.

Proof: It follows from Proposition 3.2.

Example: 5.13 Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. We have $\theta C(X) = \{\phi, X\}$ and $\theta\omega C(X) = \{\phi, \{a\}, \{a, b\}, X\}$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is $\theta\omega$-continuous but not θ-continuous, since $f^{-1}(\{a\}) = \{a, c\}$ is not θ-closed in (X, τ).

Remark: 5.14 Every θ-continuous function is $\theta\omega$lc*-continuous but not conversely.

Example: 5.15 Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is $\theta\omega$lc*-continuous function but not θ-continuous since for the closed set $\{b\}$ in (Y, σ), $f^{-1}(\{b\}) = \{b\}$, which is not θ-closed in (X, τ).

Remark: 5.16 $\theta\omega$-continuity and $\theta\omega$lc*-continuity are independent of each other.

Example: 5.17 Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is $\theta\omega$-continuous but not $\theta\omega$lc*-continuous.

Example: 5.18 Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{b, c\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is $\theta\omega$lc*-continuous function but not $\theta\omega$-continuous.

We have the following decomposition for continuity.

Theorem: 5.19 A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is θ-continuous if and only if it is both $\theta\omega$-continuous and $\theta\omega$lc*-continuous.

Proof: Assume that f is θ-continuous. Then by Proposition 5.12 and Remark 5.14, f is both $\theta\omega$-continuous and $\theta\omega$lc*-continuous.

Conversely, assume that f is both $\theta\omega$-continuous and $\theta\omega$lc*-continuous. Let V be a closed subset of (Y, σ). Then $f^{-1}(V)$ is both $\theta\omega$-closed and $\theta\omega$lc*-set. By Proposition 5.8, $f^{-1}(V)$ is a θ-closed set in (X, τ) and so f is θ-continuous.

6. **DECOMPOSITION OF T_{\theta\omega\omega}\$-SPACES**

We introduce the following definition:

Definition: 6.1 A space (X, τ) is called a $T_{\theta\omega\omega}$-space if every $\theta\omega$-closed set in it is closed.

Example: 6.2 Let X and τ be as in the Example 3.3. Then $\theta\omega C(X) = \{\phi, \{b, c\}, X\}$ and the sets in $\{\phi, \{b, c\}, X\}$ are closed. Thus (X, τ) is a $T_{\theta\omega\omega}$-space.
Example: 6.3 Let X and τ be as in the Example 3.14. Then $\theta_\omega C(X) = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$ and the sets in $\{\phi, \{c\}, X\}$ are closed. Thus (X, τ) is not a T_{θ_ω}-space.

Theorem: 6.4 For a topological space (X, τ), the following properties are equivalent:
(i) (X, τ) is a T_{θ_ω}-space.
(ii) Every singleton of (X, τ) is either open or semi-closed.

Proof:
(i) \rightarrow (ii). If $\{x\}$ is not semi-closed, then $X - \{x\}$ is not semi-open. Hence X is only semi-open set containing $X - \{x\}$. Therefore $cl_\theta (X - \{x\}) \subseteq X$. Thus $X - \{x\}$ is θ_ω-closed. By (i) $X - \{x\}$ is closed, i.e. $\{x\}$ is open.

(ii) \rightarrow (i). Let $A \subseteq X$ be a θ_ω-closed. Let $x \in cl_\theta (A)$. We consider the following two cases:

Case (a) Let $\{x\}$ be open. Since x belongs to the closure of A, then $\{x\} \cap A \neq \emptyset$. This shows that $x \in A$.

Case (b) Let $\{x\}$ be semi-closed. If we assume that $x \notin A$, then we would have $x \in cl_\theta (A) - A$ which cannot happen according to Proposition 4.5. Hence $x \in A$.

So in both cases we have $cl_\theta (A) \subseteq A$. Since the reverse inclusion is trivial, then $A = cl_\theta (A)$ or equivalently A is θ-closed. It implies that A is closed.

Definition: 6.5 A space (X, τ) is called $g_{\ T_{\theta_\omega}}$-space if every g-closed set is θ_ω-closed.

Example: 6.6 Let X and τ be as in the Example 3.14. Then $G C(X) = \theta_\omega C(X) = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$. Thus (X, τ) is a $g_{\ T_{\theta_\omega}}$-space.

Example: 6.7 Let X and τ be as in the Example 3.3. Then $G C(X) = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $\theta_\omega C(X) = \{\emptyset, \{b, c\}, X\}$. Thus (X, τ) is not a $g_{\ T_{\theta_\omega}}$-space.

Proposition: 6.8 Every $T_{1/2}$-space is T_{θ_ω}-space but not conversely.

Proof: Follows from Proposition 3.4.

The converse of Proposition 6.8 need not be true as seen from the following example.

Example: 6.9 Let X and τ be as in the Example 3.3. Then $G C(X) = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $\theta_\omega C(X) = \{\emptyset, \{b, c\}, X\}$. Thus (X, τ) is a T_{θ_ω}-space but it is not a $T_{1/2}$-space.

Proposition: 6.10 Every $T_{1/2}$-space is $g_{\ T_{\theta_\omega}}$-space but not conversely.

Proof: Follows from Proposition 3.2.

The converse of Proposition 6.10 need not be true as seen from the following example.

Example: 6.11 Let X and τ be as in the Example 3.14. Then $G C(X) = \theta_\omega C(X) = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$. Thus (X, τ) is a $g_{\ T_{\theta_\omega}}$-space but it is not a $T_{1/2}$-space.

Remark: 6.12 T_{θ_ω}-spaces and $g_{\ T_{\theta_\omega}}$-spaces are independent.

Example: 6.13 Let X and τ be as in the Example 3.14. Thus (X, τ) is a $g_{\ T_{\theta_\omega}}$-space but it is not a T_{θ_ω}-space.

Example: 6.14 Let X and τ be as in the Example 3.3. Thus (X, τ) is a T_{θ_ω}-space but it is not a $g_{\ T_{\theta_\omega}}$-space.

Theorem: 6.15 A space (X, τ) is $T_{1/2}$ if and only if it is both T_{θ_ω} and $g_{\ T_{\theta_\omega}}$.

Proof: Necessity. Follows from Propositions 6.8 and 6.10.

Sufficiency. Assume that (X, τ) is both T_{θ_ω} and $g_{\ T_{\theta_\omega}}$. Let A be a g-closed set of (X, τ). Then A is θ_ω-closed, since (X, τ) is $g_{\ T_{\theta_\omega}}$. Again since (X, τ) is a T_{θ_ω}, A is closed set in (X, τ) and so (X, τ) is $T_{1/2}$.
REFERENCES
