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ABSTRACT 
In this paper, we study some of the properties of bipolar valued multi fuzzy subsemigroup and prove some results on 
these. 
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INTRODUCTION 
 
In 1965, Zadeh [12] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical 
structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of 
research in different domains, there have been a number of generalizations of this fundamental concept such as 
intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc [5]. Lee [7] introduced the notion of bipolar 
valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged 
from the interval [0, 1] to [−1, 1]. In a bipolar valued fuzzy subset, the membership degree 0 means that elements are 
irrelevant to the corresponding property, the membership degree (0, 1] indicates that elements somewhat satisfy the 
property and the membership degree [−1, 0 ) indicates that elements somewhat satisfy the implicit counter property. 
Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other 
[7, 8]. We introduce the concept of bipolar valued multi fuzzy subsemigroup and established some results. 
 
1. PRELIMINARIES 
 
1.1 Definition: A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form A = { < x, A+(x), A−(x) >/ 
x∈X}, where A+

 : X→ [0, 1] and A−
 : X→ [−1, 0]. The positive membership degree A+(x) denotes the satisfaction 

degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative membership 
degree A−(x) denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a 
bipolar valued fuzzy set A.  
 
1.2 Example: A = {< a, 0.4, −0.7 >, < b, 0.8, −0.5 >, < c, 0.7, −0.4 >} is a bipolar valued fuzzy subset of X = {a, b, c}. 
 
1.3 Definition: A bipolar valued multi fuzzy set (BVMFS) A in X is defined as an object of the form A = {< x, Ai

+(x), 
Ai

−(x) >/ x∈X}, where Ai
+: X→ [0, 1] and Ai

−
 : X→ [−1, 0]. The positive membership degrees Ai

+(x) denote the 
satisfaction degree of an element x to the property corresponding to a bipolar valued multi fuzzy set A and the negative 
membership degrees Ai

−(x) denote the satisfaction degree of an element x to some implicit counter-property 
corresponding to a bipolar valued multi fuzzy set A.  
 
1.4 Example: A = {< a, 0.3, 0, 2, 0.3, −0.3, −0.7, −0.4 >, < b, 0.2, 0.5, 0.6, −0.7, −0.2, −0.6 >, < c, 0.5, 0.4, 0.7, −0.4, 
−0.2, −0.1 >} is a bipolar valued multi fuzzy subset with order three of X = {a, b, c}. 
 
1.5 Definition: Let S be a semigroup. A bipolar valued multi fuzzy subset A of S is said to be a bipolar valued multi 
fuzzy subsemigroup of S if the following conditions are satisfied 
(i)   Ai

+(xy) ≥ min {Ai
+ (x), Ai

+ (y)} 
(ii)  Ai

− (xy) ≤ max {Ai
− (x), Ai

− (y)} for all x and y in S. 
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1.6 Example: Let S = {1, −1, i, −i} be a semigroup with respect to the ordinary multiplication. Then A = {< 1, 0.6, 0.6, 
0.5, −0.6, −0.7, −0.3 >, < −1, 0.5, 0.5, 0.4, −0.5, −0.6, −0.2 >, < i, 0.3, 0.2, 0.3, −0.4, −0.5, −0.1 >, < −i, 0.3, 0.2, 0.3, 
−0.4, −0.5, −0.1 >} is a bipolar valued multi fuzzy subsemigroup of S. 
 
1.7 Definition: Let A = 〈Ai

+, Ai
− 〉 and B = 〈Bi

+, Bi
− 〉 be any two bipolar valued multi fuzzy subsets of sets G and H, 

respectively. The product of A and B, denoted by A×B, is defined as A×B = { 〈 (x, y), (Ai×Bi)+(x, y), (Ai×Bi)−(x, y) 〉 / 
for all x in G and y in H } where (Ai×Bi)+(x, y) = min {Ai

+(x), Bi
+(y) } and (Ai×Bi)−(x, y) = max {Ai

−(x), Bi
−(y) } for all 

x in G and y in H. 
 
1.8 Definition: Let A = 〈 Ai

+, Ai
− 〉 be a bipolar valued multi fuzzy subset in a set S, the strongest bipolar valued multi 

fuzzy relation on S, that is a bipolar valued multi fuzzy relation on A is V = {〈 (x, y), Vi
+(x, y), Vi

−(x, y) 〉 / x and y in 
S} given by Vi

+(x, y) = min {Ai
+(x), Ai

+(y)} and Vi
− (x, y) = max { Ai

−(x), Ai
−(y) } for all x and y in S. 

 
1.9 Definition: Let A = 〈 Ai

+, Ai
− 〉 be a bipolar valued multi fuzzy subsemigroup of a semigroup S and a in S. Then the 

pseudo bipolar valued multi fuzzy coset (aA)p = 〈 (aAi
+)p, (aAi

−)p 〉 is defined by (aAi
+)p(x) = p(a) Ai

+(x) and (aAi
−)p(x) 

= p(a)Ai
−(x), for every x in S and for some p in P. 

 
2. PROPERTIES 
 
2.1 Theorem: Let A = 〈 Ai

+, Ai
− 〉 be a bipolar valued multi fuzzy subsemigroup of a semigroup S.  

(i) If Ai
+(xy) = 0, then either Ai

+(x) = 0 or Ai
+(y) = 0 for x and y in S. 

(ii) If Ai
−(xy) = 0, then either Ai

−(x) = 0 or Ai
−(y) = 0 for x and y in S. 

 
Proof: Let x and y in S.  
(i) By the definition Ai

+(xy) ≥ min {Ai
+(x), Ai

+(y)} which implies that 0 ≥ min {Ai
+(x), Ai

+(y)}. Therefore either 
Ai

+(x) = 0 or Ai
+(y) = 0.                 

(ii) By the definition Ai
−(xy) ≤ max { Ai

−(x), Ai
−(y)} which implies that 0 ≤ max {A i

−(x), Ai
−(y)}. Therefore either 

Ai
−(x) = 0 or Ai

−(y) = 0. 
 
2.2 Theorem: If A = 〈 Ai

+, Ai
− 〉 is a bipolar valued multi fuzzy subsemigroup of a semigroup S, then  

                            H = {x∈S | Ai
+(x) = 1, Ai

−(x) = −1} is either empty or a subsemigroup of S. 
 
Proof: If no element satisfies this condition, then H is empty. If x and y in H, then Ai

+(xy) ≥ min{Ai
+(x), Ai

+ (y)} = 
min{1, 1} = 1. Therefore Ai

+ (xy) = 1. And Ai
− (xy) ≤ max{Ai

− (x), Ai
− (y)} = max {−1, −1}= −1. Therefore                

Ai
− (xy) = −1. That is xy∈H. Hence H is a subsemigroup of S. Hence H is either empty or a subsemigroup of S. 

 
2.3 Theorem: If A = 〈 Ai

+, Ai
− 〉 is a bipolar valued multi fuzzy subsemigroup of S, then H = {x∈S | Ai

+(x) = H(Ai
+) and 

Ai
− (x) = H(Ai

−)} is a subsemigroup of S. 
 
Proof: Here H = {x∈S | Ai

+(x) = H(Ai
+) and Ai

−(x) = H(Ai
−)}. Let x, y in H. Then Ai

+(xy) ≥ min {Ai
+(x), Ai

+(y) } = min 
{H(Ai

+), H(Ai
+)} = H(Ai

+). Hence Ai
+(xy) = H(Ai

+). Also Ai
−(xy) ≤ max {Ai

−(x), Ai
−(y) } = max { H(Ai

−), H(Ai
−)} = 

H(Ai
−).  Hence Ai

− (xy) = H(Ai
−). Therefore xy∈H. Hence H is a subsemigroup of S. 

 
2.4 Theorem: If A = 〈 Ai

+, Ai
−  〉  and B = 〈 Bi

+, Bi
−  〉 are two bipolar valued multi fuzzy subsemigroups of a semigroup 

S, then their intersection A∩B is a bipolar valued multi fuzzy subsemigroup of S. 
 
Proof: Let A = {< x, Ai

+(x), Ai
−(x) > / x∈S}, B = {< x, Bi

+(x), Bi
−(x) > / x∈S }.  Let C = A∩B and C = {< x, Ci

+(x), 
Ci

−(x) > / x∈S}. Now Ci
+(xy) = min {Ai

+(xy), Bi
+(xy)}≥ min {min {Ai

+(x), Ai
+(y)}, min {Bi

+(x), Bi
+(y) } }≥ min {min 

{Ai
+(x), Bi

+(x)}, min {Ai
+(y), Bi

+(y)}}= min {Ci
+(x), Ci

+(y)}. Therefore Ci
+(xy) ≥ min {Ci

+(x), Ci
+(y)}. Also Ci

−(xy) = 
max {Ai

−(xy), Bi
−(xy)}≤ max{ max {Ai

−(x), Ai
−(y)}, max {Bi

−(x), Bi
−(y)}} ≤ max { max { Ai

−(x), Bi
−(x)}, max {Ai

−(y), 
Bi

−(y)}} = max {Ci
−(x), Ci

−(y)}. Therefore Ci
−(xy) ≤ max{Ci

−(x), Ci
−(y)}. Hence A∩B is a bipolarvalued multi fuzzy 

subsemigroup of S. 
 
2.5 Theorem: The intersection of a family of bipolar valued multi fuzzy subsemigroups of a semigroup S is a bipolar 
valued multi fuzzy subsemigroup of S. 
 
Proof: The Theorem is true by Theorem 2.4. 
 
2.6 Theorem: If A= 〈Ai

+, Ai
−〉 and B = 〈Bi

+, Bi
− 〉 are any two bipolar valued multi fuzzy subsemigroups of the 

semigroups S1 and S2 respectively, then A×B = 〈(Ai×Bi)+, (Ai×Bi)−  〉 is a bipolar valued multi fuzzy subsemigroup of 
S1×S2.  
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Proof: Let A and B be two bipolar-valued multi fuzzy subsemigroups of the semigroups S1 and S2 respectively. Let x1 
and x2 be in S1, y1 and y2 be in S2. Then ( x1, y1 ) and ( x2, y2 ) are in S1×S2. Now, (Ai×Bi)+[(x1, y1)(x2, y2)] = (Ai×Bi)+       

(x1x2, y1y2 ) = min {Ai
+(x1x2), Bi

+( y1y2)} ≥ min {min {Ai
+(x1), Ai

+(x2)}, min {Bi
+(y1), Bi

+(y2)}} = min {min {Ai
+(x1), 

Bi
+(y1)}, min{Ai

+(x2), Bi
+(y2)}} = min {(Ai×Bi)+(x1, y1), (Ai×Bi)+(x2, y2)}. Therefore (Ai×Bi)+ [(x1, y1)(x2, y2)] ≥       

min{ (Ai×Bi)+(x1, y1), (Ai×Bi)+(x2, y2)}. Also (Ai×Bi)−[(x1, y1)(x2, y2)] = (Ai×Bi)−(x1x2, y1y2) = max {Ai
−(x1x2),          

Bi
−( y1y2)} ≤ max {max {Ai

−(x1), Ai
−(x2)}, max {Bi

−(y1), Bi
−(y2)}} = max {max {Ai

−(x1), Bi
−(y1)}, max {Ai

−(x2), 
Bi

−(y2)}} = max {(Ai×Bi)− (x1, y1), (Ai×Bi)− (x2, y2)}. Therefore (Ai×Bi)−[(x1, y1)(x2, y2)] ≤ max  {(Ai×Bi)−(x1, y1), 
(Ai×Bi)−(x2, y2)}. Hence A×B is a bipolar valued multi fuzzy subsemigroup of S1×S2. 
 
2.7 Theorem: Let A = 〈Ai

+, Ai
− 〉 be a bipolar valued multi fuzzy subset of a semigroup (S, . ) and V = 〈Vi

+, Vi
− 〉 be the 

strongest bipolar valued multi fuzzy relation of S. If A is a bipolar valued multi fuzzy subsemigroup of S, then V is a 
bipolar valued multi fuzzy subsemigroup of S×S. 
 
Proof: Suppose that A is a bipolar valued multi fuzzy subsemigroup of S. Then for any x = (x1, x2) and y = (y1, y2) are 
in S×S. We have Vi

+
 (xy) = Vi

+
 [(x1, x2)(y1, y2)] = Vi

+ (x1y1, x2y2) = min {Ai
+ (x1y1), Ai

+ (x2y2) } ≥ min {min { Ai
+ (x1), 

Ai
+ (y1)}, min {Ai

+ (x2), Ai
+ (y2)}} = min {min {Ai

+ (x1), Ai
+ (x2)}, min {Ai

+ (y1), Ai
+ (y2)}} = min {Vi

+(x1, x2),         
Vi

+(y1, y2)}= min {Vi
+(x), Vi

+(y)}. Therefore Vi
+(xy) ≥ min {Vi

+(x), Vi
+(y)}for all x and y in S×S. Also we have 

Vi
−(xy)= Vi

−[(x1, x2)(y1, y2)] = Vi
−(x1y1, x2y2) = max{Ai

−(x1y1), Ai
−(x2y2)}≤ max {max {Ai

−(x1), Ai
−(y1)}, max {Ai

−(x2), 
Ai

−(y2)}} = max {max {Ai
−(x1), Ai

−(x2) }, max { Ai
−(y1), Ai

−(y2)}} = max {Vi
−(x1, x2), Vi

−(y1, y2)} = max {Vi
−(x), 

Vi
−(y)}. Therefore Vi

−(xy) ≤ max {Vi
−(x), Vi

−(y) } for all x and y in S×S. Hence V is a bipolar valued multi fuzzy 
subsemigroup of S×S.  
 
2.8 Theorem: Let A = 〈Ai

+, Ai
− 〉 be a bipolar valued multi fuzzy subsemigroup of a semigroup S. Then the pseudo 

bipolar valued multi fuzzy coset (aA)p = 〈(a Ai
+)p, (a Ai

−)p 〉 is a bipolar valued multi fuzzy subsemigroup of the 
semigroup S, for every a in S and p in P. 
 
Proof: Let A be a bipolar valued multi fuzzy subsemigroup of the semigroup S. For every x and y in S, we have 
(aAi

+)p(xy) = p(a)Ai
+(xy) ≥ p(a) min {Ai

+(x), Ai
+(y) }= min {p(a)Ai

+(x), p(a)Ai
+(y)}= min {(aAi

+)p(x), (aAi
+)p(y)}. 

Therefore (aAi
+)p(xy) ≥ min {(aAi

+)p(x), (aAi
+)p(y)} for x and y in S. And (aAi

−)p(xy) = p(a)Ai
−(xy) ≤ p(a) max {Ai

−(x), 
Ai

−(y)}= max{p(a)Ai
−(x), p(a)Ai

−(y)}= max{(aAi
−)p(x), (aAi

−)p(y)}. Therefore (aAi
−)p(xy) ≤ max {(aAi

−)p(x), (aAi
−)p(y)} 

for x and y in S. Hence (aA)p is a bipolar valued multi fuzzy subsemigroup of the semigroup S. 
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