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ABSTRACT

Regression model is one of the most important statistical tool for analyzing data. In regression analysis it is
customarily to consider that the error term follows Gaussian distribution which is mesokurtic and having infinite
range. But in many data sets arising at places like agricultural experiments, biological experiments, financial analysis,
space experiments, etc., the error term may not have mesokurtic in nature and its range is finite. As a result of it, the
regression model with Gaussian errors may badly fit such data. To have accurate analysis for this type of data we
develop and analyze a two variable regression model with doubly truncated new symmetric distributed errors. The
model parameters are estimated by driving maximum likelihood estimators. The properties of this estimators are also
discussed. Simulation study is conducted to compare the efficiency of proposed model with that of new symmetric
distributed errors and Gaussian errors. It is observed that the proposed model performs much better than other two
models when the variable are platykurtic and having constraints on tail ends.

Keywords: Regression model; Doubly truncated new symmetric distribution; Simulation studies; Maximum likelihood
estimators.

1. INTRODUCTION

Applied Statisticians have to balance several things before analyzing data sets. In general in regression analysis it is
assumed that the error term follows a normal (Gaussian) distribution. This assumption is valid only when the variable
under study is mesokurtic and having infinite range. However, many scientific studies revealed that the distribution of
the error term may not follow the Gaussian distribution, since the presence of skewness or heavy tails in the distribution
of the error terms (Gabriele Soffritti and GiulianoGalimberti (2011), Fama (1965), Sutton (1997)). Recently much work
has been reported in literature regarding regression analysis with different parametric distributions for error terms.
Zellner(1976), Sutradhar and Ali (1986), Galea et al. (1997), Liu (2002), and Diaz-Garcia et al. (2003) have studied
the regression models with a class of elliptic type distributions specially t- distribution for error term. Liu (1996) has
studied regression analysis with missing values with the assumptions that the error term follows elliptic distribution
family. Ferreira and Steel (2003, 2004) have considered the same problem under the Bayesian framework assuming
skewed and heavy tailed distribution for error term. Zeckhauser and Thomson (1970) has studied regression model with
power distributed error terms. Gabriele Soffritti and Giuliano Galimberti (2011) have studied multivariate regression
model with mixture of multivariate Gaussian error distribution.

In all these papers the major consideration is on the estimation of the model parameters rather than the structure of error
term distribution. If the structure of the error term is non-normal one cannot use the standard methodology of regression
analysis for analyzing the data. Hence considering the peakedness (Kurtosis) of the variable Asrat Atsedeweyn and
Srinivasa Rao (2014) have investigated linear regression model with new symmetric distributed errors. They assumed
that in a regression model error term follows a new symmetric distribution given by Srinivasa Rao et al. (1997). The
new symmetric distribution includes a family of platykurtic distributions and its probability density function is as a

form
: — [ ((y /J)/O-)Zki(llz)((y*/l)/a')z
T MU, O ) = (1)
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However, for some data sets this regression model also may not serve the purpose since the range of the error term is
assumed to have infinite range (—oo,0). But in many data sets the range of the error term or the response variable are
constrained to have finite values and hence the range is finite. Ignoring the finite range for error term may leads to
falsification in the model and the analysis may not be accurate. Hence, to have an accurate analysis of the data sets it is
needed to develop and analyze regression model with doubly truncated new symmetric distributed errors. Very little
work has been reported in literature regarding regression analysis with doubly truncated symmetric distributed errors
which is useful for analyzing several data sets arising at agricultural experiments, space research, financial modeling
and biological experiments etc. This article fills the gap in this area of research.

The rest of the paper is organized as follows: In Section 2, the doubly truncated new symmetric distribution and their
properties are discussed. In Section 3, the Maximum likelihood estimation of the model are derived using Newton—
Raphson (NR) iterative method. In Section 4, simulation study is carried for studying the properties of model
parameters under Maximum likelihood method of estimation. In Section 5, the least square estimators of the model
parameters are studied. In Section 6, a comparative study is carried to study the efficiency of the proposed model with
that of Gaussian model and new symmetric distributed errors. Finally, the conclusion of the paper is given in Section 7.

2. DOUBLY TRUNCATED NEW SYMMETRIC DISTRIBUTION AND ITS PROPORTIES

Double truncation occurs when the values of a variable are observable only ovefirite range, i.e., only when they
exceed a lower bound and are also smaller than some upper bound. For each observation, a SYi <b, where a and

b are fixed points of truncation.

A continuous random variable Y is said to have a two parameter Doubly Truncated New Symmetric distribution with
parametersu and o if its probability density function is of the form,

f(y)=bgi'as y<b;a< u<b;ab e (—w,x)

[ a(ydy
_ 2 - 2)((y-p) o)
Where, g(y) = b #)3/53/%

b b 2 |- 2)(y-p)! o)
2+ —-u)/
. jg(ymy:j[ («y u)ﬁ; &y
a a o T
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PR jg iemm:dv—(bg—a”jemm: :q)(b—ﬂj_ %(b—,u] ¢(b—ﬂj .
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Therefore,
0,—o<y<a
_ 2 |- 2)(y-p) ! 0)?
() =) B -m1o)k <y<b @

3027 [F(b) - F(a)]
O,b<y<ow
Where a < u<b, and o >0 are location and scale parameters, respectively and a and b are the lower and upper

truncation points. ¢ and @ are the probability density and cumulative distribution functions for the standard normal

distribution respectively. The various shapes of the, cumulative density function and frequency curves of the
distributions are given in Figure 1.
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In this paper, we attempt to investigate a simple regression model with non-normal error terms where there is only one
independent variable and the regression function is linear. The model can be stated as

Y, =L, + X +u,i=12...n ©))
Where X; is a single regressor of interest. Y is the dependent variable. The random errors, the U; ’s, are independent
and identically distributed. The B’s are the unknown regression coefficients. To have an appropriate fitting model,
some assumptions describing about the behavior of the errors are needed. It is assumed that the error terms (U, ) are
independent and identically distributed (i.i.d.) random variables whose distribution is assumed to follow a two-
parameter doubly truncated new symmetric distributions DTNS (O, o’ ) .The observations (Xi ,Yi) pairs where the
response variable for the i™ observation Y, also follows a doubly truncated new symmetric distribution and

customarily, the non-stochastic variables, X ’s, are considered to be fixed.

19}
ra
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_
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Figure-1: The shape of the frequency curves for the pdf and cumulative distribution function (CDF) of the two
parameter DTNS distribution for different values of parameters c: (£ and o as

(2,0.75) - green, (2,1) - blue,and(2,2) — red, fora = -4 &b = 6.

The distributional properties of the DTNSD are:
i. The distribution function of the random variable Y specified by the probability density function (2) is given by

2+ (t_'ujz e;[tojuf
y (o2

y
F (y)=| f(t)dt= 4
()= 1= 30+/27[F (b) - F(a)] “
ii. The Mean (location of the peak) of the variable is
E(y) = u+0ci(a)
2 2

X el edane wdlicy

3 3\ o o 3 3\ o o
where A(a) = (®)

F(b) - F(a)

If £>0 and the truncation is both sides, i.e., A() > 0,the mean of the truncated variable is greater than the

original mean. A(a) is the mean of the truncated normal distribution.
iii.  The Median ‘M’ of the variable is

M
L f (y)dy =1/2 , where M is the median of the distribution
implies

M
. tondy+ [ f(y)dy=1/2 ©)

Solving equation (6) one can set median of the distribution
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iv. The Mode of the variable is

aifu<a
The mode M = uifa< u<b
b,ifu > b
LV ) g
At Whichdzlong(y) _ dzlgg o _d o o c ™
dy dy* [F(o)-F(@Rov2r dy [2+[y ﬂ)] 0[2+( j
o

v.Variance of the variable is

iz (3T 33T o227

F)-F() ®

|22 322 (25 (205 225 o (252)
[F(b)—F(a)] 9 o 3 o o 9 o 3
vi.The characteristic function @, (t)ofarandom variable Y is

b ity [2+((y_ﬂ)/a)zk—(uz)«y_#),g)z "

[1+ (oit) J{q{b —u_ onJ . cp(a—_ﬂ_ oitﬂ s
__ & 3 o e )
FO)-F® EKa‘” +oitj¢[a_’u —oitj—l(b‘“ +oitJ¢[b_—ﬂ—oitﬂ
3 o o 3\ o

o
This is the product of the normal characteristic function and a polynomial of even powers of ‘t’
vii.The moment generating function of the distribution is

pr (1+ (G;)Z j[q{b —H otj - q)(a_—” - atﬂ T
M (D) = e c c

(10)
F(b)-F _ _ - -
(b) - F(a) EKa u+dJ¢(a u_d)_l(b_hd},{b_ﬂ_dﬂ
3 o o 3\ o o
viii. The cumulant generating function of the distribution is
g(t;1,0%) =INM(t; ,0%),
Letting
2
s L i
3
(S el )
3 o o 3 o
g(t;,u,az)=|nM(t;,u,62)=,ut+%0'2t2 +1In A= In(F (b) - F(a)) (1)

The cumulants kn, are extracted from the cumulant-generating function via differentiation (at zero) of g (t). The first
two cumulants of the distribution are;
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B30 )30 )
K =g'(0) =t o 3 3 o o 3 3 o o
F()-F(a)
e B0 Je (55 o)
>, =9 (0)= 3 F(b)_F(a) (12)
NEOE F(a)]{{lo[ ;ﬂ]+%(a;#j }"[a;ﬂ]{%(b;ﬂ]%[b;#j }‘p(b%j}
iX. The odd central moments of a DTNSD vanish by symmetry, we get
Moy =0 (13)
The (2n)th order central moments of the DTNS distribution is given by
b 2n Vi 2 1[ywjz
o= oo U [2+( j} dy
Therefore,
4 1(a—u) - 4 b b— °
B e (e e
3 F{)—-F(@a)
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TR

Where A(a) = (15)
F(b)-F(a)
Thus, the variance of the distribution is
2 2 2
4+1[a—ﬂj (D(a—ﬂj_ 4+1(b—ﬂj (/,(b—ﬂj
562 , |3 3 o o 3 3\ o o
My = —C
3 F((b)-F(a)
2 3 3
O SOl RGO I
[ F(b)—F (a)] o 3 o o 9 o 3\ o o
X. The kurtosis of the distribution is
U
ﬂz = _42
Hs
where [t and pizare as given in equations (14) and (15) (16)

3. MAXIMUM LIKELIHOOD METHOD OF ESTMATION FOR MODEL PARAMETERS

Let VY, Y, Y, beasample of size n drawn from a population having a p.d.f of the form given in equation (2), then

the likelihood function of the sample is

n{z{yi—ﬂz xS ﬂ |

LB Auabe = o - F ]

ey (Vi) (17)

Where
5 (v 1 3
F(b)_m/_ je dy, > NS
:q)(b_ﬂo_ﬂ ij__(b_ﬂo_ﬂlxij¢(b_ﬂo_ﬂ1xij

o 3 o o
And

a (y. Yo ﬂlx] a-p—px) 1 7%(a*ﬁoojﬁixi]2
F(a) rj[o dyi_( 3o J\/ge

:q)(a ﬁo ﬁl j (a_ﬂo_ﬂlxij¢(a_ﬂo_ﬂlxij
o 3 o o

In standard units of the complete distribution, the truncated points are denoted as
a—pf, - px b-f, - pX
T1 — ,Bo ﬂl i ,and T2 — ﬂo ﬁl i
(o2 o
F(b) and F(a) will be simplified as follows

T T
F(@) =, _§1¢1 and F(b) =D, _?2¢2
1(a=fy—pi% : 1 b=By-BiXi ]2

%62( 0 j’(ﬁz_ie 2[ 7

where, ¢, =
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a (V. Bo— ﬂlxj b [Y. —fo— ﬁ1x)
e ’ dy. and @ e e dy. 18
o, ij Y, and @, 0\/—] Y, (18)
qb[] and 'Ib[:] are ordinates and areas of normal distribution respectively.
1(yi-Bo—PXi g
1 ) )2 _E(f)
H[ o' (Vi = fo—fix) ]e oy (V) (19)

o frabio?)= RN RS F(b)—F(a)

Taking logarithms on both sides of (19), we get

L b (y. ﬂiﬂlxj a-f, - fix (aﬂogﬂlx)'
n| ° Z”Ie dyi( 30 j@e
-3n l b—f—A%
I(ﬂo,ﬁ1,02)=|nL(y;a,b,02)=—|n(02)—z (b By — BX j ( - ]
9 . e
i=1 | 30 \/E |
n ) 1 n
+;'“E/2; ﬂo ﬂl J_F; [ﬂl
(20)

To get the Maximum likelihood estimates of the parameters we differentiate equation (20) with respectto f3,, 3, and

g® and equate them to O gives:

Therefore,
a(6,.5,.57)
op,

Z”:[(2+T b —2+T1, )¢] % oS LR P

i=L 3(7[F(b) F(a) 7 20° +(y| ﬂo_ﬂlx‘)z o’ i3 ’

A e

=0 this implies

= 30'[F (b) - F(a)]
_2n Yi =By — BX in B _Ax )=
;202+(yi_ﬂo_ﬁlxi)z+az > (%= £y~ 5x)
where
b _ y. Ao ﬁlx A Ay Afapy-pn Y
F0)-F@)=— j gy (a ﬂgaﬂlx']é_ﬂez( )
1(b—fo—px |
( j ;Tez( ’ j (21)
6I(,BO,—,31,0'2) =0 this implies
b
x[(2+T)¢ (2+T J| VB BN L& . B
,1 30|F(b) - F(a)] .21:20 24 (y, - B, - ﬂlxi)2+02iz_1:(yi Fo=Fixi )i =0
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% [2+(a ﬂoa P JJ echootisf [2+(b ,806 B U Yoot

i1 30‘[F(b) — F(a)]
. (i =B = BX)% 1 &
-2 i = o 3 W =0
i=1 20‘2 +(yi —ﬂo _ﬂlxi )2 + 02 — (y, ﬁo ﬂlxl )Xu (22)
(M%,—M =0 implies
oo’

ZKZT AN LA AT 1 +Z”:(yi—ﬂo—ﬁ1xi)zzo
= 65%[F(b)-F(a)] T 202 +(y, - B, - px) = 20"
where Tl,T2,¢51 and ¢, are given in equation (18). (23)

For likelihood equations we couldn’t get a closed from solution, but, numerical methods such as Newton-Raphson
(NR) iterative method or Fisher scoring method can be used to get the maximum likelihood estimators (MLES).The
usual or standard procedure for implementing this solution is to use the Newton-Raphson method is employed to
implement the solution and it is given by

o) — g _ g (24)
where H is the Hessian (second derivative) matrix and S s the first derivative of the log-likelihood function, both
evaluated at the current value of the parameter vector. That is,

S=[Sj]= % and H =[hij]= % where QZ(ﬂO,ﬂl,O'Z) (25)
i“Yj

]

. . H(n+1 . .
The iteration is to be repeated until the sequence {9“” )}thus obtained converges to the desired degree of accuracy.
This technique the prior computation of the Hessian matrix and an initial guess &‘® for the model parameters Bo: Py

and o2 . To derive the Hessian matrix, we need to have the second-order derivatives of the log-likelihood function:

o0 (o -Ti0,) (FO)-F@)- 5 [(2+77)0 - (247)0 ]
6ﬂ02 ji= 302 [F(b) _ F(a)]

9 C _202+(yi_ﬂ0_ﬂlxi)2 _n
i1 [20_2+(yi _ﬂo_ﬂlxi)z} o

where T, T,, ¢, and @, are given in equation (18).

(26)

ﬂo_ﬂlxl
OB, fr %) 0 Z“:[<2+T)¢ (2472 )¢] 2a Ty, — g, - ﬂlx.)2+
opoB, B S  3o[F(b)-F(a)] 1 "
zzl pix)
Where. T12=(a_ﬁ0_ﬂlxij ,T22=(b_ﬂo_ﬂ1Xij
(o2 (o2

8T12 _ _2XiTl 8T22 _ _2XiT2 6¢1 _ XiT1¢1 and 6¢2 _ XiT2¢2

o, o '‘op o o o B, o
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[(2 T )¢]: XiT;¢l ’ ai[(erTzz)%]: XiT;_¢2 ’
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Therefore,
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272 ), -(2+7,2 ), ]
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im 20° +(Yi =By = BiX )2 o’ 12

~

2 a 2 a A
|:(—2—T1 + T )¢1—(—2—T2 +T, )goz]
1 [F(b)—F(a)]—
_ — z < -
i —160° [F(b) — F(a)]? *[ 2+T 2+T22)(p2] )
3 3
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42 Vi — o — X . 4Z(yl — B, )

R R o
x[(2+T )¢ (2+T )¢]
OBy B o) _ 0 2 30[F (b)-F(a)]
0By 0p, Byl Wi=Bo=Px)x 14
2'211: 20° +(yi =B, _ﬁlxi) 02 ; )XI
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n | —20° i~ PoT PiA i i 4
» |: o +(y| ﬂ ﬂx )2i|2X _LZZXi (29)
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azl(ﬂovﬂl’az) 3n _

(50-2)2 20"
;[(—H1 TP 4T ) (<21, T, + T2, |[F(0) - F(@)] -
i {F(b)—F(a)jLé[(2T1+T13)¢1—(2T2+T23)(p2ﬂ[(2T1+T13)¢)1—(2T2+T23)¢2]

2

= 6c*[F(b)-F(a)]

n 1 1
4> %

- |:262 +(yi _ﬁo _ﬁlxi )2:|2 O ia (yi _ﬂo _ﬂl)(i)

(34)
Thus, the Hessian matrix is the following:

0%/ 0%t 0!

o 0Bof, 0o’0p,

H 0%t 0%t o%(
op,eB, OBt oc’op, (35)

0%t 0%t o°!

0B00° 3o’ (9o°)

4. SIMULATION AND RESULTS

In this section we conduct simulation studies to investigate the properties of Maximum likelihood estimators of the
simple linear model with the proposed Truncated New Symmetric distribution errors having probability density
function given in equation (2). The probability integral transform property (PIT) is a universally applicable way of
generating data set with a given distribution.

The CDF given equation (4) is used to generate random numbers ¥ from the two parameter doubly truncated new
symmetric distribution. The data sets were generated from the model using Wolfram Mathematica 10.4. The method is

-1
used to generate a data from a Uniform distribution. If d is distributed uniformly on (0,1) , then F (d) will have

the two parameter doubly truncated new symmetric distribution. Accordingly, random numbers y is generated from the
DTNS distribution, and the corresponding algorithmic representation is easily obtained by:

Step-1: Given 1 = 2,c=1,a=1,b = 4, generate d. ~U(0,1),i=1,2,...,n,

1 t=p *E(sz
1 _t A _ 2 o
Step-2: Solve jye 2[ 7 j dt - (y—np =d,. The solution for a random
o~ 2x[F(b)-F(a)]*? 3o 2x[F(b)-F(a)]
variable ¥;,i =1,2,..., n, follows the standard doubly truncated new symmetric distribution.

Step-3: Generating X';from a uniform distribution U (0,1) and used it as explanatory variable X ,i =1,2,..., n ,for the

linear model. For illustrative purposes, we can get a set of simulated data (Xi, yi)for sample sizes of

n =100,500,1000,3000,5000,10000.
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Table-1: Summary of simulations for the ML estimation of the regression model

Sample Parameter Estimate Standard Wald 95% Confidence Limits Chi-Square Pr>Chi- Log-Likelihood

size (n) error Square
Lower Upper
100 ﬂ 0.7293 0.0039 0.7216 0.7370 343249  <.0001 249.9619
0
IB 2.6230 0.0069 2.6095 2.6366 143971  <.0001
1
o 0.0199 0.0014 0.0173 0.0228
500 IB 0.7267 0.0017 0.7233 0.7300 178690  <.0001 1262.9126
0
IB 2.6231 0.0030 2.6172 2.6290 755229  <.0001
1
o 0.0194 0.0006 0.0182 0.0206
1000 IB 0.7260 0.0012 0.7236 0.7284 352561  <.0001 2529.1812
0
IB 2.6238 0.0022 2.6196 2.6281 1472578  <.0001
1
o 0.0193 0.0004 0.0185 0.0202
3000 IB 0.7264 0.0007 0.7250 .0.7278 1031271  <.0001  7598.5318
0
IB 2.6213 0.0012 2.6189 2.6237 4556373  <.0001
1
o 0.0192 0.0002 0.0187 0.0197
5000 IB 0.7241 0.0006 0.7230 0.7252 1722832  <.0001  12600.0290
0
IB 2.6269 0.0010 2.6250 2.6287 7632647  <.0001
1
o 0.0195 0.0002 0.0191 0.0199
10000 IB 0.7257 0.0004 0.7250 0.7265 3590270  <.0001
0 25348.1979
IB 2.6238 0.0007 2.6225 2.6251 1.567E7  <.0001
1
o 0.0192 0.0001 0.0189 0.0195
The value of £ for a sample size of 10,000 that maximizes the likelihood function is thus,
=8y, 5.,6%)=(0.7257,2.6238,0.0192) (36)

The Table 1 reveals that as the sample size increases, the precision of estimates increases and the value of the log

likelihood increases accordingly. It can also be verified that the Hessian matrix (34) evaluated at ﬂ0= 0.7257; ﬂl=

2.6238; and &%= 0.0192, is a negative definite matrix. The ML method provides good estimates of the underlying
model to obtain the regression coefficients. The fitted simple linear model with doubly truncated new symmetric errors
for a sample size of 10,000, is:

Y =0.7257 + 2.6238X (37)
The estimated covariance matrix is:
ﬁo ﬂl o
B, 1.4669E-7 -2.198E-7 -5.88E-21
B -2.198E-7 4.3946E-7 1.097E-20
o2 -5.88E-21 1.097E-20 1.8398E-8

(38)
Standard errors of the estimates were obtained by the square root of the diagonal elements of the inverse of the Hessian
of the log-likelihood function. Thus, the estimate standard errors are

se.(f,)=0.0004 and s&.(B,) =0.0007 (39)
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Table-2: ML estimation output for the simulation data.

Criterion DF Value Value/DF

Deviance 9998 3.6797 0.0004

Scaled Deviance 9998 10000 1.0002

Pearson Chi-Square 9998 3.6797 0.0004

Scaled Pearson X2 9998 10000 1.0002

Log Likelihood 25348.1979

Algorithm converged
Parameter DF Estimate Standard Wald 95% Confidence Chi- Pr>
Error Limits Square Chi-Sq
ﬂ 1 0.7257 0.0004 0.7250 0.7265 3590270 <.0001
0

ysi 1 2.6238 0.0007 2.6225 2.6251 1.567E7 <.0001
o 1 0.0192 0.0001 0.0189 0.0195

Here the scale parameter is estimated using maximum likelihood method.

Scaled deviance and Pearson's chi-square statistic are helpful in evaluating the goodness of fit of a given generalized
linear model. The scaled deviance is defined to be twice the difference between the maximum achievable log likelihood
and the log likelihood at the ML estimates of the regression parameters. Table 2shows that the value of the deviance
divided by its degree of freedom is less than one. Scaled deviance is approximately equal to its degrees of freedom is a
possible indication of a good model fit.

5. LEAST SQUARE METHOD OF ESTIMATION FOR MODEL PARAMETERS

The ordinary least square (OLS) is the most commonly used method for estimating the unknown regression coefficients
is a standard linear regression model. When the errors are normally distributed ordinary least squares (OLS) is an
important procedure for solving regression problems. Even though small departures from normality of the error terms
do not affect the regression coefficients greatly, errors with a heavier or lighter tailed distribution can result in extreme

observations and can significantly affect the estimated OLS regression coefficients. The OLS estimates of ﬂo and ﬂl in
the linear model are the values which minimize

n
2
SS = Z(yi B - ﬁlxi) (40)
i=1
And provide the OLS estimators ﬂo and ﬂl as

Yi i(xi_Y)(yi_V) S

B — i= i=1 i=1 Xy

1 n n 2 n 2 S

anf—( xiJ Z(Xi_x) X
i=1 i=1 1=

And
ﬂo =y-5X (41)

So Dy

wherex = 1= and ¥ = 32—
n n

A

The values :Bo and ﬂl are called the least squares estimates of ﬁo and ﬂl , respectively.

Table-3: OLS estimation output for the simulation data Nonlinear OLS summary of residual errors
Equation DF model DFerror SSE ~ MSE Root MSE R-square Adjusted R-square
y 2 9998 3.6797 0.00368 0.0192 0.9994  0.9994
DF degrees of freedom, SSE sum of the squared errors.
Parameter  Estimate  Approximate standard error  tvalue  Approx Pr> [f|

Lo 0.725707 0.000383 1894.61 <.0001
yix 2.623794 0.00663 3957.54 <.0001
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7. COMPARISON OF THE REGRESSION MODEL WITH DTNS DISTRIBUTED ERRORS WITH THE
REGRESSION MODELS HAVING NS DISTRIBUTED ERRORS AND GAUSSIAN DISTRIBUTED ERRORS

The simulated data are used to compare the performance of the linear model with doubly truncated new symmetric

error terms with that of the linear model with new symmetric and normal error terms.

AIC and BIC with model

diagnostics root mean square error (RMSE) are obtained using linear regression models with normal, new symmetric
and doubly truncated new symmetric distributed error terms as shown in Table 4. Simulated data using various sample
sizes are used to compare the performance of AIC and BIC with model diagnostics root mean square error (RMSE).

Table-4: Summary for information criteria and model diagnostics for normal, new symmetric and doubly truncated
new symmetric error model.

Sample

Size AIC

100 -144.7349
500 -741.3906

1000 -1574.2537
3000 -4881.6706
5000 -8103.8095
10000 @ -16166.232

Normal
BIC

-142.6541
-739.3746
-1572.2457
-4879.6680
-8101.8079
-16164.231

RMSE

0.48019
0.47550
0.45470
0.44311
0.44460
0.44557

New symmetric

AIC

-299.9583

-1646.5457
-3356.1916
-9500.2233
-16214.227
-32635.715

BIC

-297.8775
-1644.529
-3354.1836
-9498.2207
-16212.225
-32633.714

RMSE

0.22098
0.19233
0.18654
0.20521
0.19758
0.19556

AIC

-779.7115

-3940.7638
-7892.2394
-23706.695
-39385.443
-79071.167

DTNSD
BIC

-177.6307

-3938.7478
-7890.2314
-23704.692
-39383.442
-79069.166

RMSE

0.02007
0.01939
0.01931
0.01923
0.01947
0.01918

The model with the smallest AIC or BIC among all competing models is deemed the best model where it can be seen
that the DTNS distribution provides the better fit to the data. It is observed that the information criteria and model
diagnostics for linear model with doubly truncated new symmetrically distributed error terms consistently performed
better for all of the sample sizes. The Figures 2, 3, and 4 shows the comparison of three models with respect to AIC,
BIC, and RMSE using different sample sizes, respectively.
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Figure-2: Comparison of DTNS Linear Model versus NS and N Linear Model using AIC
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Figure-4: Comparison of DTNS Linear Model versus NS and N Linear Model using RMSE
From Figures 2, 3, and 4 it is observed that the linear model for DTNS gives better results.
8. CONCLUSIONS

This paper addresses the regression analysis with doubly truncated new symmetric distributed errors. This model is a
deviation from the classical regression model. This regression model is useful when the response variable or the error
term follows a platykurtic distribution having constrained tails. The truncation of the error term distribution has
significant influence on the model parameters. The Maximum likelihood estimators of the parameters are obtained
using Newton—Raphson (NR) iterative numerical method. A simulation study is carried to obtain the properties of the
model parameters as well as its performance. The simulation results revealed that the MLE estimators are superior than
OLS estimators for the model. A comparative study of the proposed model with that of new symmetric distributed
errors and Gaussian errors revealed that the former gives a better fit than the other two models with respect to AIC,
BIC, and RMSE. This regression model can also extended to multivariate regression model with doubly truncated new
symmetric distributed errors which will be taken elsewhere.
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