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ABSTRACT 
Chemical graph theory is a branch of graph theory whose focus of interest is to finding topological indices of chemical 
graphs which correlate well with chemical properties of the chemical molecules. In this paper, we compute the 
modified first and second Zagreb indices, harmonic index and augmented Zagreb index for certain networks like 
silicate networks and honeycomb networks. 
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1. INTRODUCTION 
 
In this paper, we consider finite simple, undirected graphs. Let G = (V, E) be a graph. The degree dG(v) of a vertex v is 
the number of vertices adjacent to v. The edge connecting the vertices u and v will be denoted by uv. We refer to [1] for 
undefined term and notation. 
 
A molecular graph or a chemical graph is a simple graph related to the structure of a chemical compound. Each vertex 
of this graph represents an atom of the molecule and its edges to the bonds between atoms. 
 
A topological index is a numerical parameter mathematically derived from the graph structure. These indices are useful 
for establishing correlation between the structure of a molecular compound and its physico-chemical properties. 
 
The modified first and second Zagreb indices [2] are respectively defined as  
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Many other topological indices were studied, for example, in [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15]. 
 
The harmonic index of a graph G is defined as  
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This index was studied by Favaron et al. [16] and Zhong [17]. 
 
The augmented Zagreb index of a graph G is defined as  
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The augmented Zagreb index was introduced by Furtula et al. in [18] and was studied, for example, in [19]. 
 
In this paper, the modified first and second Zagreb indices, harmonic index and augmented Zagreb index for certain 
network. For Figures see [20]. 
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2 RESULTS FOR SILICATE NETWORKS 
 
Silicates are obtained by fusing metal oxides or metal carbonates with sand. A silicate network is symbolized by SLn, 
where n is the number of hexagons between the center and boundary of SLn. A silicate network of dimension two is 
depicted in Figure 1. 
 
We compute the exact values of mM1(SLn), mM2(SLn), H(SLn) and AZI(SLn) for silicate networks. 
 
Theorem 2.1: Let SLn be the silicate networks. Then  
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Figure-1: Silicate network of dimension two 

  
Proof: Let G be the graph of silicate network SLn with |V(SLn)| = 15n2 + 3n and |E(SLn)| = 36n2. From Figure 1, it is 
easy to see that there are two partitions of the vertex set of SLn as follows: 

V3 = {u∈V(G) | dG(u) = 3}, |V3| = 6n2 + 6n. 
V6 = {u∈V(G) | dG(u) = 6}, |V6| = 9n2 – 3n. 

 
By algebraic method, in SLn there are three types of edges based on the degree of the vertices of each edge as follows: 
 E6 = {uv∈E(G) | dG(u) = dG(v) = 3}, |E6| = 6n. 
 E9 = {uv∈E(G) | dG(u) = 3, dG(v) = 6}, |E9| = 18n2

 + 6n. 
 E12 = {uv∈E(G) | dG(u) = dG(v) = 6}, |E12| = 18n2

 – 12n. 
 

1) Now to compute mM1(G), we see that 
mM1(G)  = 
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3) To compute H(G), we see that 
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4) To compute AZI(G), we see that 
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3. RESULTS FOR CHAIN SILICATE NETWORKS 
 
We now consider a family of chain silicate networks. This network is symbolized by CSn and is obtained by arranging n 
tetrahedral linearly, see Figure 2. 

 
Figure-2: Chain silicate network 

 
We compute the values of mM1(CSn), mM2(CSn), H(CSn), and AZI(CSn) for chain silicate networks. 
 
Theorem 3.1: Let CSn be the chain silicate networks. Then  
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Proof: Let G be the graph of chain silicate networks CSn with |V(CSn)| = 3n +1 and |E(CSn)| = 6n. From Figure 2, it is 
easy to see that there are two partitions of the vertex set of CSn as follows: 
 V3 = {u∈V(G) | dG(u) = 3}, |V3| = 2n + 2. 
 V6 = {u∈V(G) | dG(u) = 6}, |V6| = n – 1.  
 
By algebraic method, in CSn, n ≥ 2, there are three types of edges based on the degree of the vertices of each edge as 
follows: 
 E6 = {uv∈E(G) | dG(u) = dG(v) = 3}, |E6| = n + 4. 
 E9 = {uv∈E(G) | dG(u) = 3, dG(v) = 6}, |E9| = 4n – 2. 
 E12 = {uv∈E(G) | dG(u) = dG(v) = 6}, |E12| = n – 2. 
 

(1) Now to compute mM1(G) we see that 
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(3) To compute H(G), we see that 
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(4) To compute AZI(G), we see that 
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Theorem 3.2: Let CSn (n = 1) be the chain silicate network. Then  
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Proof: Let CS1 be the graph of a chain silicate network. Then CS1 = K4. Clearly |V(CS1) | = 4 and |E(CS1)| = 6. Also 
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To compute mM1(CS1), mM2(CS1), H(CS1), and AZI(CS1), we see that  
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4. RESULTS FOR HEXAGONAL NETWORKS 
 
It is known that there exist three regular plane tilings with composition of same kind of regular polygons such as 
triangular, hexagonal and square. Triangular tiling is used in the construction of hexagonal networks. This network is 
symbolized by HXn, where n is the number of vertices in each side of hexagon. A hexagonal network of dimension six 
in shown in Figure 3. 

 
Figure-3: Hexagonal network of dimension six 

 
Now we compute the values of mM1(HXn), mM2(HXn), H(HXn) and AZI(HXn) for hexagonal networks. 
 
Theorem 4.1: Let HXn be the hexagonal networks. Then  
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Proof: Let G be the graph of hexagonal network HXn with |V(HXn)|=3n2 – 3n + 1 and  |E(HXn)|=9n2 – 15n + 6. From 
Figure 3, it is easy to see that there are three partitions of the vertex set of HXn as follows:  

V3 = {u∈V(G) | dG(u) = 3}, |V3| = 6. 
V4 = {u∈V(G) | dG(u) = 4}, |V4| = 6n – 2. 
V6 = {u∈V(G) | dG(u) = 6}, |V6| = 3n2 – 9n + 7. 

 
In HXn, by algebraic method, there are five types of edges based on the degree of the vertices of each edge as follows:  
 E7 = {uv∈E(G) | dG(u) = 3, dG(v) = 4}, |E7| = 12. 
 E9 = {uv∈E(G) | dG(u) = 3, dG(v) = 6}, |E9| = 6. 

E8 = {uv∈E(G) | dG(u) = dG(v) = 4}, |E8| = 6n – 18. 
 E10 = {uv∈E(G) | dG(u) = 4, dG(v) = 6}, |E10| = 12n – 24. 
 E12 = {uv∈E(G) | dG(u) = dG(v) = 6}, |E12| = 9n2 – 33n + 30. 

(1) Now compute mM1(HXn), we see that  
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5. RESULTS FOR OXIDE NETWORKS 
 
The oxide networks are of vital importance in the study of silicate networks. An oxide network of dimension n is 
denoted by OXn. A 5-dimensional oxide network is shown in Figure 4. 
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Figure-4: Oxide network of dimension 5 

 
We compute the values of mM1(OXn), mM2(OXn), H(OXn) and AZI(OXn) for oxide networks. 

 
Theorem 5.1: Let OXn be the oxide network. Then 
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Proof: Let G be the graph of oxide network OXn with |V(OXn) | = 9n2 + 3n and |E(OXn)| = 18n2. From Figure 4, it is 
easy to see that there are two partitions of the vertex set of OXn as follows: 

V2 = {u∈V(G) | dG(u) = 2}, |V2| = 6n. 
V4 = {u∈V(G) | dG(u) = 4}, |V4| = 9n2 – 3n. 

 
In OXn, by algebraic method, there are two types of edges based on the degree of the vertices of each edge as follows; 
 E6 = {uv∈E(G) | dG(u) = 2, dG(v) = 4}, |E6| = 12n. 

E8 = {uv∈E(G) | dG(u) = dG(v) = 4}, |E8| = 18n2
 – 12n. 

 
Now to compute mM1(OXn), we see that 
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1. To compute mM2(OXn), we see that  
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2. To compute H(OXn), we see that 
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3. To compute AZI(OXn), we see that 
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6. RESULTS FOR HONEYCOMB NETWORKS 
 
If we recursively use hexagonal tiling in a particular pattern, honeycomb networks are formed. These networks are very 
useful in chemistry and also in computer graphics. A honeycomb network of dimension n is denoted by HCn, where n is 
the number of hexagons between central and boundary hexagon. A 4-dimensional honeycomb network is shown in 
Figure 5. 



V. R. Kulli* / Computation of Some Topological Indices of Certain Networks / IJMA- 8(2), Feb.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                      105  

 

 
Figure-5: Honeycomb network of dimension four 

 
In the following theorem, we compute the values of mM1(HCn), mM2(HCn), H(HCn) and AZI(HCn) for honey comb 
networks. 
 
Theorem 5.1: Let HCn be the honeycomb networks. Then  

(1) ( ) 2
1

3 5 .
2 6

m
nM HC n n= +    (2) ( ) 2

2
1 1 .
3 6

m
nM HC n n= + +  

(3)  ( ) 2 1 13 .
5 5nH HC n n= − +   (4) ( ) ( )2

3
1 .6561 4791 1302 4

= − +nAZI HC n n  

 
Proof: Let G be the graph of honeycomb network HCn with |V(HCn)|=6n2 and |E(HCn)| = 9n2 – 3n. From Figure 5, it is 
easy to see that there are two partitions of the vertex set of HCn as follows: 

V2 = {u∈V(G) | dG(u) = 2}, |V2| = 6n. 
V3 = {u∈V(G) | dG(u) = 3}, |V3| = 6n2 – 3n. 

 
In HCn, by algebraic method, there are three types of edges based on the degree of the vertices of each edge as follows:  

E4 = {uv∈E(G) | dG(u) = dG(v) = 2}, |E4| = 6. 
 E5 = {uv∈E(G) | dG(u) = 2, dG(v) = 3}, |E5| = 12n – 12 . 
 E6 = {uv∈E(G) | dG(u) = dG(v) = 3}, |E6| = 9n2 – 15n + 6. 

(1) Now compute mM1(HCn), we see that  
mM1(G)  = 

( )( ) ( ) ( )
2 3

2 2 2
1 1 1

u V u V u VG G GG d d du u u∈ ∈ ∈
= +∑ ∑ ∑  = ( ) 22

22
3 511 6 .6 6 2 632

n n nn n
   + = +−   

   
    

(2) To compute mM2(HCn), we see that 
mM2(G) =

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
4 5 6

1 1 1 1

G G G G G G G Guv E uv E uv E uv EG d d d d d d d du v u v u v u v∈ ∈ ∈ ∈
= + +∑ ∑ ∑ ∑  

                           = ( ) ( ) ( ) 22 1 11 11 .6 12 12 9 15 6 3 62 3 3 32 2
n nn n n

     + + = + +−      − +× × ×     
 

 
(3) To compute H(HCn), we see that 

H(G) =
( ) ( )( )

2

G Guv E G d du v∈ +∑  
( ) ( ) ( ) ( ) ( ) ( )

4 5 6

2 2 2

G G G G G Guv E uv E uv Ed d d d d du v u v u v∈ ∈ ∈
= + +

+ + +∑ ∑ ∑         

         ( ) ( ) 22 1 12 22 6 3 .12 12 9 15 6 5 52 3 3 32 2
n nn n n

    = + + = − +−      − ++ + +     
 

               23 8 97 .
2 5 210

n n= − +  

(4) To compute AZI(G), we see that 

AZI(G) =
( ) ( )

( ) ( )( )

3

2∈

 
 + − 

∑ G G

G Guv E G

d du v
d du v

= ( ) ( )
3 33

22 3 3 32 2 6 12 12 9 15 62 3 2 3 3 22 2 2
n n n

× ××      + +−      − ++ − + − + −     
  

             ( )2
3

1 .6561 4791 1302 4n n= − +  
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