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ABSTRACT 
Let the vertices and edges of a graph G  be called the elements of G . A set X  of elements in G  is an vertex-edge 
dominating set of G  if every element not in X  is either adjacent or incident to at least one element in X . An 
vertex-edge dominating set X  of elements in G  is an independent vertex-edge dominating set of G  if any two 
elements in X  are neither adjacent nor incident. The independent vertex-edge domination number 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) of G , is 
the smallest cardinality of an independent vertex-edge dominating set of G . In this paper,  we  obtained bounds for 
𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). 
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1. INTRODUCTION 
 
All graphs considered here are simple, finite, connected and nontrivial. Let 𝐺𝐺 = (𝑉𝑉(𝐺𝐺),𝐸𝐸(𝐺𝐺)) be a graph, where V(G) is 
the vertex set and E(G) be the edge set of G. The vertex 𝑣𝑣 ∈ 𝑉𝑉 is called a pendant vertex, if 𝑑𝑑𝑣𝑣𝑑𝑑𝐺𝐺(𝑣𝑣) = 1 and an isolated 
vertex 𝑖𝑖𝑖𝑖 𝑑𝑑𝑣𝑣𝑑𝑑𝐺𝐺(𝑣𝑣) = 0, where 𝑑𝑑𝑣𝑣𝑑𝑑𝐺𝐺(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑣𝑣 𝑑𝑑𝑣𝑣𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣 𝑜𝑜𝑖𝑖 𝑎𝑎 𝑣𝑣𝑣𝑣𝑑𝑑𝑡𝑡𝑣𝑣𝑥𝑥 𝑥𝑥 ∈ 𝑉𝑉(𝐺𝐺). A vertex which is adjacent to a pendant 
vertex is called a support vertex. We denote 𝛿𝛿(𝐺𝐺)(∆(𝐺𝐺))  as the 𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) 𝑑𝑑𝑣𝑣𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣 𝑎𝑎𝑚𝑚𝑑𝑑                
𝑝𝑝 = |𝑉𝑉(𝐺𝐺)|, 𝑞𝑞 = |𝐸𝐸(𝐺𝐺)| the order and size of G respectively. A spanning subgraph is a subgraph containing all the 
vertices of G. A shortest 𝑚𝑚 − 𝑣𝑣 𝑝𝑝𝑎𝑎𝑡𝑡ℎ is often called a geodesic. The diameter 𝑑𝑑𝑖𝑖𝑎𝑎𝑚𝑚(𝐺𝐺) of a connected graph G is the 
length of any longest geodesic. The neighborhood of a vertex u in V is the set N(u) consisting of all vertices v which are 
adjacent with u. A claw is another name for the complete bipartite graph 1,3K . A claw-free graph is a graph that does not 
have a claw as an induced subgraph. 

 
A subset 𝐷𝐷 ⊆ 𝑉𝑉 is said to be a dominating set of G if every vertex 𝑉𝑉 − 𝐷𝐷 is adjacent to at least one vertex in D. The 
minimum cardinality of a minimal dominating set is called the domination number 𝛾𝛾(𝐺𝐺) of G [2]. 
 
A subset D of  𝑉𝑉(𝐺𝐺) is an independent set if no two vertices in D are adjacent. A dominating set D which is also an 
independent dominating set. The independent domination number 𝑖𝑖(𝐺𝐺) is the minimum cardinality of an independent 
domination set [2,3]. 
 
A set F  of edges in a graph ),(= EVG  is called an edge dominating set of G  if every edge in FE −  is adjacent 
to atleast one edge in F . The edge domination number )(Gγ ′  of a graph G  is the minimum cardinality of an edge 
dominating set of G . 
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A set X  of elements in G  is an vertex-edge dominating set of G , if every element not in X  is either adjacent or 
incident to at least one element in X . The vertex-edge domination number 𝛾𝛾𝑣𝑣𝑣𝑣(𝐺𝐺) is the order of a smallest vertex-edge 
dominating set of G  [6]. 
 
In this paper, we define a new parameter as follows: 
 
An vertex-edge dominating set X  of elements in G  is an independent vertex-edge dominating set of G  if any two 
elements in X  are neither adjacent nor incident. The independent vertex-edge domination number  𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) of G  is 
the smallest cardinality of an independent vertex-edge dominating set of G . 
 
2. MAIN RESULTS 
 
Observation: For any graph G , 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) = 𝛾𝛾𝑖𝑖(𝑇𝑇(𝐺𝐺)), where T(G) denote the total graph of a graph G. 

 
In next theorem, we compute the independnet vertex-edge domination number of some standard class of graphs. 
 
Theorem 2.1: 

(i) For any complete graph pK ; 2≥p , 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 �𝐾𝐾𝑝𝑝� = �𝑝𝑝
2
�. 

(ii) For any cycle pC ; 4≥p , 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 �𝐶𝐶𝑝𝑝� = �𝑃𝑃
2
�. 

(iii) For any path pP ; 2≥p , 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 �𝑃𝑃𝑝𝑝� = �𝑃𝑃
2
�. 

(iv) For any complete bipartite graph 
2,1 ppK , 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 �𝐾𝐾𝑝𝑝1,𝑝𝑝2� =  𝑝𝑝1, 211 pp ≤≤ . 

(v) For any wheel pW ; 4≥p , 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 �𝑊𝑊𝑝𝑝� = �𝑃𝑃
2
�  

 
In the following theorem, a relation between 𝛾𝛾𝑣𝑣𝑣𝑣(𝐺𝐺) and 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) is obtained. 

 
Theorem 2.2: For any graph G , 𝛾𝛾𝑣𝑣𝑣𝑣(𝐺𝐺) ≤ 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). 
 
Proof: It is known that, for any graph G , )()( GG iγγ ≤ . Therefore similarly 𝛾𝛾𝑣𝑣𝑣𝑣(𝐺𝐺) ≤ 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). 
 
Next we obtain the relation between )(Giγ , )(Giγ ′  and 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). 
 
Theorem 2.3: For any graph G  

𝛾𝛾𝑖𝑖(𝐺𝐺)+𝛾𝛾𝑖𝑖
′(𝐺𝐺)

2
 ≤ 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) ≤ 𝛾𝛾𝑖𝑖(𝐺𝐺) + 𝛾𝛾𝑖𝑖′(𝐺𝐺). 

 
Proof. First we establish the lower bound. D  and F  be the minimum independent dominating and independent edge 
dominating sets of G  respectively. Let FDX ∪=  be a minimum independent vertex-edge dominating set of G . 
For each edge uve =  in F , choose a vertex u  or v  but not both which are independent. Let F ′  be the collection 
of such vertices. Clearly FD ′∪  is an independent dominating set of G . Therefore 

𝛾𝛾𝑖𝑖(𝐺𝐺) ≤ |𝐷𝐷 ∪ 𝐹𝐹′| = |𝐷𝐷 ∪ 𝐹𝐹| = 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺).                                                         (2.1) 
 
Now for each vertex u  in D , choose exactly one edge incident with u  which is independent. Let D′  be the 
collection of such edges. Clearly FD ∪′  is an independent edge dominating set of G . Therefore 

𝛾𝛾𝑖𝑖′(𝐺𝐺) ≤ |𝐷𝐷 ∪ 𝐹𝐹′| = |𝐷𝐷 ∪ 𝐹𝐹| = 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺).                                                         (2.2) 
 

From (2.1) and (2.2) it follows that  𝛾𝛾𝑖𝑖(𝐺𝐺)+𝛾𝛾𝑖𝑖
′(𝐺𝐺)

2
≤ 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). 

 
Now for the upper bound, let D  and F  be the minimum independent dominating and independent edge dominating 
sets of G  respectively. Then FD∪  is an independent vertex-edge dominating set. Thus 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) ≤ |𝐷𝐷 ∪ 𝐹𝐹| =
𝛾𝛾𝑖𝑖(𝐺𝐺) + 𝛾𝛾𝑖𝑖′(𝐺𝐺). 
 
Hence, 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) ≤  𝛾𝛾𝑖𝑖(𝐺𝐺) + 𝛾𝛾𝑖𝑖′(𝐺𝐺). 

. 
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Theorem 2.4: If G  is a claw-free graph, then 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) ≤ 𝛾𝛾𝑖𝑖(𝐺𝐺) + 𝛾𝛾𝑖𝑖′(𝐿𝐿(𝐺𝐺)). 
 
Proof: In [1], it is proved that, if G  is a claw free-graph, then )(=)( GG iγγ  and ))((=))(( GLGL iγγ . 
Therefore using Theorem 2.3, we get the required result. 
 
Theorem A[6]: For any connected graph G  of order p  

𝑝𝑝+𝑞𝑞
2∆(𝐺𝐺)+1

≤ 𝛾𝛾𝑣𝑣𝑣𝑣(𝐺𝐺). 
 

Now we establish another lower bound for 𝛾𝛾𝑣𝑣𝑣𝑣
𝑖𝑖 (𝐺𝐺). 

 
Theorem 2.5: For any graph G  

𝑝𝑝+𝑞𝑞
2∆(𝐺𝐺)+1

≤ 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). 
 
Proof: The proof follows from Theorem A and the fact that 𝛾𝛾𝑣𝑣𝑣𝑣(𝐺𝐺) ≤ 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). 
 
In a graph G  if 1=)(vdeg , then v  is called a pendant vertex of G  
 
Lemma 1: Let G  be a connected graph of order 3≥p . Then there exist two nonadjacent vertices u  and v  having a 
common neighbor w  such that },{ vuG −  is connected. 
 
Proof: Let T  denote a spanning tree of G . If T  has exactly one nonpendant vertex, then the removal of any two 
pendant vertices u  and v  of T , results in a connected graph. Suppose T  has at least two nonpendant vertices. Then 
there exist at least two nonpendant vertices each of which is adjacent to exactly one nonpendant vertex. If w  is adjacent 
to at least two pendant vertices u  and v , then removal of u  and v  results in a connected graph. If w  is adjacent to 
exactly one pendant vertex u , then removal of w  and u  results in a connected graph. This completes the proof. 
 
Theorem 2.6: For any connected graph G  of order 2≥p  and 2)( ≥Gδ ,  𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) ≤ �𝑃𝑃

2
�. 

 
Proof: We prove the result by induction on p . 
 
If 3=p  or 4 , then the result can be verified. Assume the result is true for all connected graphs G  with 2)( ≥Gδ  

and 1−p  vertices. Let 1G  be a connected graph with 2)( ≥Gδ  and p  vertices. Let u  and v  denote two 

nonadjacent vertices having a common neighbor w  such that }{= 1 uvGG −  is connected. Let X  be a minimum 
independent vertex-edge dominating set of G , then either }{wX ∪  or }{uvX ∪  is an vertex-edge dominating set 

of 1G . 
 
Thus 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺1) ≤ |𝑋𝑋| + 1 ≤ �𝑃𝑃−1

2
� + 1 ≤ �𝑃𝑃

2
�. 

 
In the following theorem we give characterization of graphs in which  𝛾𝛾𝑣𝑣𝑣𝑣(𝐺𝐺) = 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). 
 
Theorem 2.7: For any graph G  of order 2≥p , 𝛾𝛾𝑣𝑣𝑣𝑣(𝐺𝐺) = 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). if and only if every vertex-edge dominating set of 
G  is independent. 
 
Proof: Let 𝛾𝛾𝑣𝑣𝑣𝑣(𝐺𝐺) = 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). If possible, suppose every vertex-edge dominating set of G  is not independent. Then 
there exists at least one vertex-edge dominating set X  of G  such that at least two elements of X  are either adjacent 
or incident. Therefore 𝛾𝛾𝑣𝑣𝑣𝑣(𝐺𝐺) < 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺), a contradiction. Sufficiency is obvious. 

 
Theorem 2.8: Let G  be a connected graph of order at least 2. Then  𝛾𝛾(𝐺𝐺) = 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) if and only if any two adjacent 
vertices form a minimal dominating set. 
 
Proof: Let G  be a connected graph and let a set consisting of any two vertices of G  form a minimal dominating set of 
G , Also by the fact that a set consisting of any two adjacent vertices of G  forms a minimal dominating set of G  if 
and only if G  is isomorphic to the complete −k partite graph 

kpppK ,,2,1 

; 21 ≥p  for each },{1,2, ki ∈  with  



Shigehalli V.S.1, Vijayakumar Patil*2 / Independent Vertex-Edge Domination in Graphs / IJMA- 8(2), Feb.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                            98  

 
the partite sets of sizes kppp ,,, 21  . 

kpppKG ,,2,1
=



. Hence 𝛾𝛾(𝐺𝐺) = 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺). 

 
Conversely, let 𝛾𝛾(𝐺𝐺) = 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) and any two adjacent do not form a minimal dominating set. Let },,,{= 21 kvvvD   

be the set of all maximal independent vertex set of G . Then |=|)( DGγ . Let },,,{= 21 seeeD 
′  be the maximal 

independent set of edges of G . Then 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) ≤ |𝐷𝐷 ∪ 𝐷𝐷′| > 𝛾𝛾(𝐺𝐺), a contradiction. Hence any two adjacent vertices of 
G  form a minimal dominating set of G  or 

kpppKG ,,2,1
=



. 

This complets the proof. 
 
We need the following definition for our next results. 
 
Definition: A graph G  is −k partite, 1≥k , if it is possible to partition )(GV  into −k  subsets kVVV ,, 21  

called partite sets, such that every element of )(GE  joins a vertex of iV  to a vertex of jV , ji ≠ . 
 
Theorem 2.9: For any connected graph G  of order at least 2,  𝛾𝛾𝑖𝑖(𝐺𝐺) = 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺), if and only if 

kpppKG ,,2,1
=



. 
 

Proof: Since every independent dominating set is a dominating set, therefore the proof of the following theorem is similar 
to Theorem 2.8. 
 
Theorem 2.10: Let G  be any connected graph of order at least 2. Then  𝛾𝛾𝑖𝑖(𝐺𝐺) = 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺), if and only if G  is −k
partite graph. 
 
Proof: The proof  is similar to the proof of Theorem 2.8. 
 
Finally we prove Nordhaus-Gaddum type results for  𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) 
 
Theorem 2.11: Let a graph G  and its complement G  be connected with 2)( ≥Gδ . Then 

(i) 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) + 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (�̅�𝐺) ≤ 2 �𝑃𝑃
2
� 

(ii) 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (𝐺𝐺) ∙ 𝛾𝛾𝑣𝑣𝑣𝑣𝑖𝑖 (�̅�𝐺) ≤ �𝑃𝑃
2
�

2
 

 
Proof: The result follows from Theorem 2.6. 
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