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ABSTRACT 
In this paper we discussed about the properties of projective Spaces and described the cubic curve and its group law. 
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1. INTRODUCTION 
 
Assume K is an Algebraically closed field  not of characteristic 2 and let g(x) be a cubic with no repeated roots where 
g(x) = ax3 + bx2 + cx + d. Let f(x, y) = y2 - g(x) and F(X, Y, Z) = ZY2 - aX3 - bZX2 - cZ2X - dZ2 be irreducible cubics  
so that  neither  contains a line or a conic. Suppose E ∈ K[X, Y, Z] is a cubic form defining a non-empty plane curve  
C: (E = 0) ⊂ P2(K). Then the set is a cubic form defining a non-empty plane curve C: (E = 0) P2(K). Then the set 

E = {(X: Y: Z) ∈ P2(K) \ F(X, Y, Z) = 0} 
   = {(x, y) ∈ A2(K) \ f(x, y) = 0}∪{(0: 1: 0)} 

is called an Elliptic curve. 
 
Now we define our zero elements, 
 
Definition: Let O = (0: 1: 0) be the point at infinity on E. Then we define TO(E) = L∞. We note that F/L∞ has a triple 
root at O. Next we define the addition of points on E by first defining the third point of intersection and its negative. 
 
Definition: Let LPQ(E) denote the third point on LPQ∩E.That is  

1. If P ≠ Q, LPQ ≠ TPE, then there is a genuine third point on E that is neither P nor Q and which we define as 
LPQ(E) = P. 

2. If P ≠ 𝑄𝑄, LPQ = TPE, then  we define LPQ(E) = P. 
3. If P = Q, LPQ = TPE = TQE, then there exists a genuine third point that we define as LPQ(E) = ). 

 
Definition: For any point P we define –P = LPO(E).. 

 
Theorem:  If P = (a, b) = (a, b, 1) ∈ E then –P = (a, -b). Furthermore, -O = O. 
 
Proof: We observe that  

LPO = {(X: Y: Z) / X – aZ = 0} 
      = {(x, y) / x = a} ∪ {(0: 1: 0)}. 

 
Then LPQ∩ 𝐸𝐸 = {(a, y) / f(a, y) = y2 - g(a) = 0}.This implies that b2 = g(a) and so (-b)2 = g(a) as  well. Thus the points on       
LPQ ∩ E are   
  {P = (a, b), O, -P = (a, -b)}. 
 
Corollary: Fir any point P, we have – (- P = P. 
 
Proof: We know LPQ(E) = - P. Furthermore, the point – (-P) = L(-P)O(E), but L(-P)O = LPQ by definition of  –P. Thus 
 L(-P)O(E) = P. 
 

Corresponding Author: Dr. S. Vasundhara*,  
Asst. Prof of Mathematics, G. Narayanamma Institute of Technology & science for Women, 

Shaikpet, Hyderabad, Telengana, India. 
 

http://www.ijma.info/�


Dr. S. Vasundhara* / Cubics in Projective Spaces (IJM) / IJMA- 8(1), Jan.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                      201  

 
Finally we arrive at our definition of a sum of two points on a conic. 
 
Definition: We define n operation “+” on E by P + Q = - LPQ(E). 
 
The construction of (A + B) + C above can be seen in the graphic that follows. 
 
Theorem: The set (E, +) is an abelian group where the identity is O and the inverse of P is –P. 
 
Proof: We need to check for associativity, identity, inverse, and commutativity under the operation In E. Let P and Q 
be the points on E. 
1. P + Q = - LPQ(E) = - LQP(E) = Q + P, so (E, +) is commutative. 

 
Figure -1.1: Cubic curve and its group law. 

 
P + Q = - LPQ(E) = - (-P), by definition of –P and thus –(-P) = P, so O is the identity element. 
1. –P + P = - L(-P)P(E) = - O by definition of –P as the third point on the line through O and P, and thus –O=O. So 

each point has an additive inverse. 
2. Proof of Associativity for a special case follows (for a complete proof see silverman [Sil86]). Let A, B and C be 

the points on E. We begin by constructing (A + B) + C. 
• Let LAB(E) = R. 
• Then LRO(E)=-R=A+B, by definition. 
• Now let L(-R)C(E) = S. 
• Then L(SO(E) = - S = (A + B) + C. 
• Next we construct A + (B + C). 
• Let LBC(E) = Q. 
• Then LQO(E) = - Q = B + C, by definition. 
• Now let L(-Q)A(E) = T. 
• Then LTO(E) = - T = A + (B + C). 
 

So we need to show that –S = -T, but it is sufficient to show that S = T. 
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Let D1 = LAB ∪ LQO ∪ L9-Q)A.The equations of 3 lines multiplied  together yield a cubic, so D1, D2 are cubics. Then  
  E ∩ D1 = {A, B, R, Q, O, - Q, - R, C, S} 
And                      E ∩ D2 = {B, C, Q, R, o, - R, - Q, A, T} 
Where these are the only possible points in E ∩ D1 and E ∩ D2 because F is irreducible so E ∩ D2 = (E ∩ LBC) ∪ 
(E∩LRO) (E∩L(-Q)A, and similarly E∩D1 = (E∩LAB)∪(E∩LQ(O)∪(E∩L(-R)C). not ethat the first 8 points of each 
intersection are distinct and in common (here we make the assumption that the 9 points of the first intersections are  
distinct), so by corollary D2 passes through the 9 th  point as well. That is, S = T and associativity is true. 
 
Corollary: Let k be a subfield of K. Let E be an Elliptic curve defined by y2 = x3 + bx2 + cx + d with a b, c, d  ∈ k. Then  

E(k) = {(x, y) ∈ k2 \ y2 = ax3 + bx2 + cx + d}∪{O} 
Is a subgroup of E(k). 

 
Recall that a subset H of a group G is a subgroup of G if and only if H is closed under the operation of G, the identity 
element of G is in H, and for any element in H it is true that its inverse is also in H 

 
Proof: We first show that if P ∈ E(k), then – P ∈ E(k). Let y ∈ k; then – y ∈ k since k is field. So  if P = (x, y) ∈ E(k), 
then –P = (x, -y) ∈ E(k). since (-y)2 = ax3 + bx2 + cx + d. Also, (O) ∈ E(k) by definition. 
 
We now want to show that if P, Q∈ E(k) then their third point of intersection on E, LPQ(E), is also in E(k), since it then 
follows that P + Q = - LPQ(E) ∈ E(k). 
 
Case-1: Suppose P ≠ Q such that P, Q ∈ E(k). let P = (l, m) and Q = (n, p). Notre that if l = n then 
LPQ(E) = O ∈ E(k). Otherwise, 
LPQ: y = p + 𝑚𝑚−𝑝𝑝

𝑙𝑙−𝑛𝑛
(x - n) and 

LPQ∩E is the solution set to 
0 = ax3 + bx2 + cx + d - (p+𝑚𝑚−𝑝𝑝

𝑙𝑙−𝑛𝑛
(x - n))2, 

 
A cubic equation in x. since we know that (x = l) and (x = n) be in the intersection they must be rooted of the equation 
so we may factor them out and this leaves a third root, (x = r), with r in k. Furthermore, we substitute x = r into 
Y = p + 𝑚𝑚−𝑝𝑝

𝑙𝑙−𝑛𝑛
(x - n) to get our y-coordinate and so y ∈ k as well. 

 
Case-2: Suppose P = Q, then LPQ is the tangent line to the curve E at P which is given by the equation                            
0 = fx(l, m) (x - l) + fy(l, m)(y - m), where fx(l, m) 3al2+2bl+c∈k and fy(l, m) = 2m∈k.This equation can be simplified to 
one  of the form y = λx + v for some λ, v ∈ k.Substituting into the equation for E we find that LPQ∩E has a double root 
at point P = Q so we may factor out (x = l) twice  and we are left with a third root, (x = r), with r ∈ k. 
 
Again we substitute x = r into y = p + 𝑚𝑚−𝑝𝑝

𝑙𝑙−𝑛𝑛
(x - n) to get our y-coordinate and so y ∈ k as well. 

 
So the third point LPQ(E) = (r, y) in LPQ∩E, is also in E(k). 
Thus E(k) is a subgroup of E(K). 
 
Example: Let E be the elliptic curve defined by y2 = x3 - x over the field F11 (i.e., E = E(F11). Note that  the square 
numbers (mod 110 are 02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 = 5 and 52 = 3.computation shows that the values of x that give  us 
a perfect square on the right side of the equation, mod(11), are  x = 0, -1, -2, -3, -4, -5, which yield the 12 points on  
E: (0, 0), (1, 0), (-1, 0), (-2, 4), (-2, -4), (-3, 3), (-3, -3), (4, 4), (4, -4), (-5, 1), (-5,-1), O 
 
Example: Let E be the elliptic curve defined by y2 = x3 - x over the field F11. Let A = (0, 0), B = (1, 0) and C = (-5, 1).  

0 0 
1 0 
-1 0 
-2 4 
-2 -4 
-3 3 
-3 -3 
4 4 
4 -4 
-5 1 
-5 -1 
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The graph is given by: 

 
Figure-1 

 
We will illustrate the associativity of points with points A, B, and C. Note that LAB:y = 0, 
 
So  

LAB∩E.That is, LAB(E) = (-1, 0). Thus A + B = - LAB(E) = (-1, 0).  
 
Now  

L(A+B)C:Y = −1
4

(X + 5) + 1 = - 3(X + 5) + 1) = -3X – 14 = - 3X - 3 (Mod 11) 
 
So L(A+B)C∩E - 3(x + 1))2 = x3 – x = x2 - 1). 
 
Simplifying both sides of this equation we see that (x + 1) (9x + 9) = (x2 - x) (x + 1)\ 
 
And thus 0 = (x + 1) (x2 - 10x -9) where after division by (x+5) we note that x = - 1, -5, 4 are the three roots to the cubic 
equation L(A+B)C∩E however the first two roots correspond to points A+B and C, respectively, so the third root yields 
the third point of L(A+B)C∩E.That is, since y = - 3(4) - 3, 

L(A+B)C(E) = (4, -4). 
Thus. 

(A+B)+C= - L(A+B)C∩ (E) = (4, 4). 
 
Next we will calculate A + (B + C). Note that  

LBC:y = 1
−6

(𝑥𝑥 − 1) = - 2(x - 1) (mod 11), 
 
So           LBC∩E: (-2(x-1))2 = x3-x = x(x2-1), 
 
Simplifying both sides we arrive at (x - 1) (4x - 4) = (x2 + X) (X - 1) and finally 0 = (x2 - 3X + 4) (X - 1) where upon 
dividing by (x + 5) we note that x =1,-5,-3 are the three roots to the cubic lLBC∩E. That is since y = - 2 (-3-1), LBC(E) = 
(-3, 3). 
 
Now  

L(B+C)A∩E = (-x)2 = x(x2-1). 
 
Simplifying both sides of the equation we see that 0 = (x2 – x - 1) where after division by (x+3) we note that x = 0,-3, 4 
are the three roots to the cubic L(B+C)A∩E. Howevwer, the first two roots corresponding to points B + C and A, 
respectively, so that third root yields  the third root of L(B+c)A∩ 𝐸𝐸 .That is, since  

y = - 4, L(B+C)A(E) = (4, -4). 
Thus, 

A + (B + c) = - L(B+C)A∩E) = (4, 4). 
 
So we have illustrated that (A + B) +c = A+ (B + C). 
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Let E be the elliptic curve defined by y2 = x3 - x over the field F11. Let P = (4, 4). Then TP(E): - 3(x-4) + 8(y-4) = 0 or 
y=3𝑥𝑥−2

8
. Furthermore, LPP∩E:((3𝑥𝑥−2)

8
)2 = x3 - x. Simplifying this equation we arrive at 0 = 2(x3 - x2 + 4x + 2) and after 

division by (x - 4) twice we note that the third root is also (x = 4). Thus since y = (3(4)−2
8

, LPP(E) = (4, 4) and  
 
So P + P = (4, - 4) = - P. So we have that (P + P) + P = (-P) + P = O, that is, the order of P is 3. 
 
1.2 PROJECTIVE PLANES 
 
In this chapter we give the background material for the study of finite translation planes, this material can be found in 
any standard textbook on finite projective planes. For the sake of notation and nomenclature we have used 
F.Dembowski (6), D.R.Hughes and F.C Piper (12) M.J, Kallahar (13), F.W.Stevenson, Marshall Hall Jr.() and L.M. 
Blue menthol( ). 
 
A finite projective plane of order  is formally defined as a set of  points with the properties that: 
 
1.2.1 Let P be a set of points, let L be a set of lines where each line is a subset of P and .Let I be an incidence relation 
between elements of P and elements of L. Then the triple (P, L, I) is called a projective plane if: 

1. Any two distinct points are incident with a unique line. 
2. Any two distinct lines are incident with a unique point. 
3. There exists four points no three of which are incident with one line. 

 
1.2.2 Let P, L and I be defined as in 1.1.Then (P, L, I) is called an affine plane if: 

i) Any two distinct points are incident with a unique line. 
ii) Given a line L and a point P not incident with L, there is a unique line m such that p is incident with m and 

there is no point incident with both I and m. 
iii) There three points not incident with a line. 

 
1.2.3   It is observed that conditions I and ii of definition 1.1 are symmetric with respect to “points “and “lines”. This 
gives rise to an important principle called the principle of duality. The principle of duality states that any valid theorem 
or statement in projective plane  
 
remains valid if the words “points” and “lines” are interchanged.5.2.4 If the number of points in a projective plane is 
finite, the plane is called a finite plane. If the number of points is infinite then it is called an infinite plane. 
 
1.2.5 If a finite projective plane π such that a line L is incident with (n+1) points, then every line of the plane is incident 
with exactly (n+1) points and every point of π is incident with exactly (n+1) lines. The number n is called the order of 
the projective plane. A projective plane of order n has n2+n+ 1 point and n2+n+ 1 line. 
 
1.2.6 An affine plane A is said to be of order n if each line of A is incident with n points and each Point of A is incident 
with (n+1) lines. A finite affine plane of order n has n2 points and n2+n lines. 
 
1.2.7 Let π be a projective plane and L be a line of π. Let π1 be the set of points and lines of π obtained by deleting the 
line L and the point’s incident with L. Then π1 is an affine plane. 
 
1.2.8 Given a positive integer n it is not known whether or not a projective plane of that order exists. It has been shown 
by Mayor Tarry in 1900 by the method of trial and error that a projective plane of order 6 does not exist. There have 
not been many theorems regarding the existence or the non-existence of projective planes. The only important theorem 
known as Bruck-Ryser theorem which states that “if n≡1 or 2 (mod 4), then there cannot exist a projective plane of 
order n unless n can be expressed as a sum of two integral squares”. Bruck Ryser theorem confirms Mayor Tarry’s 
result and excludes an infinite class of integers to be the orders of projective planes. However there do exist infinite 
positive integers about which it is not known whether they can be orders of projective planes or not? The smallest of 
these is 10.however if n is a prime number or a prime power there always exists a finite field of that order and thus  
finite field can be used to construct a projective plane of order. 
 
1.2.9 Two projective planes π1 and π2 are said to be isomorphic if there exists one-one onto mapping 𝛼𝛼   of points of π1 
ontopoints of π2,lines of π1 onto lines of π2 such that  if for point P and a line  L in π1 such that p is incidence with L 
then 𝛼𝛼(L) in π2.An isomorphism of a projective plane π on to itself is called a collineation of π. If a collineation of π is 
such that it fixes all points incident with a line L then there exists a point v in π such that every line is incident with v is 
fixed by the collineation 𝛼𝛼 exists it is called (v,L) central collineation.The point v is called the centre of the 
collineation.If v is incident  with L then the collineation is called an elation, otherwise it is called a homology. All the 
collineations of a plane π from a group known as the collineation group of π. We mean by a collineation group a 
subgroup of the full collineation group. 

http://mathworld.wolfram.com/Point.html�
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1.3 PROJECTIVE SPACE& AFFINE SPACE: 
 
A projective spaceS can be defined axiomatically as a set P (the set of points), together with a set L of subsets of P (the 
set of lines), satisfying these axioms:  
 
Each two distinct point’s p and q are in exactly one line. 
 
Veblen's axiom: If a, b, c, d are distinct points and the lines through ab and cd meet, then so do the lines through ac and 
bd. 

• Any line has at least 3 points on it. 
 
The last axiom eliminates reducible cases that can be written as a disjoint union of projective spaces together with 2-
point lines joining any two points in distinct projective spaces. More abstractly, it can be defined as an incidence 
structure (P,L,I) consisting of a set P of points, a set L of lines, and an incidence relation I stating which points lie on 
which lines. 
 
A subspace of the projective space is a subset X, such that any line containing two points of X is a subset of X (that is, 
completely contained in X). The full space and the empty space are always subspaces. The geometric dimension of the 
space is said to be n if that is the largest number for which there is a strictly ascending chain of subspaces of this form. 
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