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ABSTRACT 
In this paper a new class of generalized closed sets, namely p*g-closed sets is introduced in topological spaces. We 
find some basic properties and characterizations of p*g-closed sets.                                                                                                                                                                                     
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1. INTRODUCTION  
 
In 1970, N. Levine [8] introduced the concept of generalized closed sets (briefly g-closed). In 1982, Dunham [6] 
introduced the generalized closure (briefly g-closure). In 1996, H. Maki, J. Umehara and T. Noiri [4, 10] introduced the 
class of pre generalized closed sets and used them to obtain properties of pre-Τ1/2 spaces. Selvi [20] introduced 
pre*closed sets using the g-closure operator due to Dunham. Y. Gnanambal [7], H. Maki, R. Devi, K. Balachandran  
[9], J. Dontchev [4, 5], Veerakumar [23, 24, 25], N. Palaniappan and K. C. Rao [17], N. Nagaveni [14], J. H. Park [18], 
S. Muthuvel and R. Parimelazhagan, Milby Mathew [12, 13], Sarsak. M. S. and N. Rajesh [19], introduced and 
investigated gpr-closed, α-closed, αg-closed, gsp-closed, πg-closed, g*-closed, g*p-closed, pre semi closed, rg-closed, 
wg-closed, rwg-closed, πgp-closed, αm-closed, b*-closed, πgsp-closed respectively.   
  
In this paper we introduce a new class of sets called p*g-closed sets. We give characterizations of p*g-closed sets also 
investigate some fundamental properties of p*g-closed set.    
 
2. PRELIMINARIES     
 
Throughout this paper (X, τ) represents a topological space on which no separation axiom is assumed unless otherwise 
mentioned. For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior of A 
respectively. (X, τ) will be replaced by X if there is no changes of confusion. We recall the following definitions and 
results. 
 
Definition 2.1: Let (X, τ) be a topological space. A subset A of X is said to be generalized closed [8] (briefly g-closed) 
if cl(A) ⊆ U whenever A ⊆ U and U is an open in (X, τ).                                                                                                                                               
 
Definition 2.2: Let (X, τ) be a topological space and A ⊆  X. The generalized closure of A [6], denoted by cl*(A) and 
is defined by the intersection of all g-closed sets containing A and generalized interior of A [6], denoted by int*(A) and 
is defined by union of all g-open sets contained in A.           
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Definition 2.3: Let(Χ, τ) be a topological space and A ⊆ Χ. Then                                                                                                                                                     

(i) A is α-open if A ⊆ int(cl(int(A))) and α-closed if cl(int(cl(A))) ⊆ A [15]. 
(ii) A is pre open if A ⊆ int(cl(A)) and pre closed if cl(int(A)) ⊆ A [11]. 
(iii) A is pre*open if Α ⊆ int∗(cl(A)) and pre*closed if cl*(int(A)) ⊆ A [20]. 
(iv) A is regular open if A = int(cl(A)) and regular closed if A = cl(int(A)) [21]. 
(v) A is semi pre open if A ⊆ cl(int(cl(A))) and semi pre closed if int(cl(int(A))) ⊆ A [1]. 
(vi) π-closed set [26] if A is a finite intersection of regular closed sets. The complement of a π-closed set is called 

a π-open set. 
(vii) a regular α-open set (briefly rα-open) [22] if there is a regular open set U such that U ⊆ A ⊆ αcl(U). 

 
Definition 2.4: Let (X, τ) be a topological space and A ⊆ X. The pre closure of A [11], denoted by pcl(A) and  is 
defined by the intersection of all pre closed sets containing A. 
 
Definition 2.5: Let (X, τ) be a topological space. A subset A of X is said to be                                                                                                                                               

1. α-generalized closed set (briefly αg-closed) [9] if αcl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).  
2. generalized pre closed set (briefly gp-closed) [10] if pcl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).  
3. strongly generalized closed set (briefly g∗closed) [23] if cl(A) ⊆ U whenever A ⊆ U and U is g-open in (X, τ). 
4. generalized*pre closed set (briefly g∗p-closed) [24] if pcl(A) ⊆ U whenever A ⊆ U and U is g-open in (X, τ). 
5. regular generalized closed set (briefly rg-closed) [17] if cl(A) ⊆ U whenever A ⊆ U and U is regular open in 

(X, τ). 
6. weakly generalized closed set (briefly wg-closed) [14] if cl(int(A)) ⊆ U whenever A ⊆ U and U is open in   

(X, τ).   
7. generalized pre regular closed set (briefly gpr-closed) [7] if pcl(A) ⊆ U whenever A ⊆ U and U is regular open 

in (X, τ).    
8. generalized semi preclosed set (briefly gsp-closed) [5] if spcl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).   
9. pre semi closed set [25] if spcl(A) ⊆ U whenever A ⊆ U and U is g-open in (X, τ).   
10. πgp-closed set [18] if pcl(A) ⊆ U whenever A ⊆ U and U is π-open in (X, τ).   
11. regular weakly generalized closed set (briefly rwg-closed) [14] if cl(int(A)) ⊆ U whenever A ⊆ U and U is 

regular open in (X, τ).   
12. b-closed set [13] if cl(int(A)) ∩ int(cl(A)) ⊆ A. 
13. b*-closed set [13]  if int(cl(A)) ⊆ U whenever A ⊆ U and U is b-open in (X, τ).   
14. αm-closed set [12] if int(cl(A)) ⊆ U whenever A ⊆ U and U is α-open in (X, τ).   
15. π-generalized semi pre closed set [19] (briefly πgsp-closed) if spcl(A) ⊆ U whenever A ⊆ U and U is π-open 

in (X, τ).    
 
The complements of the above mentioned closed sets are their respective open sets. 
 
Remark 2.6:         
                                                                                                                                                  
  

                                                                                          
  

 
                                                                                                                                 
 
 
 
Remark 2.7:  
 
 
 
 
 
 
 
     
 
 
 
 
Theorem 2.8: [3] Let (X, τ) be a topological space. Then pcl(Α∩Β) ⊆ pcl(Α) ∩ pcl(Β).                                                                                                                                                                                       
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Lemma 2.9: [1] For any subset A of X, pcl(A) = A ∪ cl(int(A)).                                                                                                                                                                                                                           
 
Lemma 2.10: [2] If A is semi closed in X, then pcl(A∪B) = pcl(A) ∪ pcl(B).     
 
Theorem 2.11: [20] Arbitrary union of pre*open sets is pre*open.                                                                                                                                       
 
3. PRE*GENERALIZED CLOSED SETS                                                                      
 
Definition 3.1: A subset A of a topological space (X, τ) is called pre∗generalized closed (briefly p∗g-closed) if      
pcl(A) ⊆ U whenever A ⊆ U and U is pre∗open in (X, τ).       
                                                
Theorem 3.2: Let (X, τ) be a topological space. Then every closed set is p∗g-closed.                                                                                                                                                                            
 
Proof: LetΑ be a closed set. Let A ⊆ U, U is pre*open. Since A is closed , cl(A) = A ⊆ U. But pcl(A) ⊆ cl(A). Thus 
we have pcl(A) ⊆ U whenever A ⊆ U and U is pre∗open. Therefore, Α is p∗g-closed.                                                                                                                                                                                                                                                                                  
 
Remark 3.3: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                                  
 
Example 3.4: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {c}, Χ}. Then {a} and {b} are p∗g-closed but 
not closed.                                                                                                                                                                                                                                              
 
Theorem 3.5: Let (X, τ) be a topological space. Then every regular closed set is p∗g-closed.                                                                                                                                                                    
 
Proof: Let Α be a regular closed set. Let A ⊆ U, U is pre*open. By Remark 2.6, pcl(A) ⊆ rcl(A) = A ⊆ U. Thus we 
have pcl(A) ⊆ U whenever A ⊆ U and U is pre∗open. Therefore, A is p∗g-closed.                                                                                                                                                                                                                               
 
Remark 3.6: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                                                                                                                                                                              
 
Example 3.7: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {a, b}, {c}, Χ}. Then {b, c} and {a} are p∗g-
closed but not regular closed.                                                                                                                                                                                                                             
 
Theorem 3.8: Let (X, τ) be a topological space. Then every α-closed set is p∗g-closed. 
 
Proof: Let A be a α-closed set. Let A ⊆ U, U is pre*open. By Remark 2.6, pcl(A) ⊆ αcl(A) = A ⊆ U. Thus we have 
pcl(A) ⊆ U whenever A ⊆ U and U is pre∗open. Therefore, A is p∗g-closed.   
 
Remark 3.9: The converse of the above theorem need not be true, as seen from the following example.  
                                                                                                                                                                                                                                                                                                                                                           
Example 3.10: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {a, b}, Χ}. Then {a}, {b} are p∗g-closed but 
not α-closed.                                                                                                                              
 
Theorem 3.11: Let (X, τ) be a topological space. Then every p*g-closed set is gp-closed.    
                                                          
Proof: Let A be a p*g-closed set. Let A ⊆ U, U is open. Then by Remark 2.7, U is pre∗open. Since A is p*g-closed, 
pcl(A) ⊆ U. Thus we have pcl(A) ⊆ U whenever A ⊆ U and U is open. Therefore, A is gp-closed.   
                                                                                                                                                   
Remark 3.12: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                             
 
Example 3.13: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {c}, Χ}. Then {a, c} and {b, c} are gp-closed 
but not p*g-closed.                                                                                                              
 
Theorem 3.14: Let (X, τ) be a topological space. Then every p*g-closed set is gpr-closed.   
                                                        
Proof: Let A be a p*g-closed set. Let A ⊆ U, U is regular open. Then by Remark 2.7, U is pre∗open. Since A is p*g-
closed, pcl(A) ⊆ U. Thus we have pcl(A) ⊆ U whenever A ⊆ U and U is regular open. Therefore, A is gpr-closed. 
                                                                                                                                                         
Remark 3.15: The converse of the above theorem need not be true, as seen from the following example.      
 
Example 3.16: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {a, b}, Χ}. Then {a, b} is gpr-closed                                                                                                                                     
but not p*g-closed.                                                                                                                              
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Theorem 3.17: Let (X, τ) be a topological space. Then every p*g-closed set is wg-closed.   
                                                           
Proof: Let A be a p*g-closed set. Let A ⊆ U, U is open. Then by Remark 2.7, U is pre*open. Since A is p*g-closed, 
pcl(A) ⊆ U. By Lemma 2.9, A ∪ cl(int(A)) ⊆ U. Thus we have cl(int(A)) ⊆ U whenever A ⊆ U and U is open. 
Therefore, A is wg-closed.                                                                                                                  
 
Remark 3.18: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                                
 
Example 3.19: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {c},  Χ}. Then {a, c} and {b, c} are wg-
closed but not p*g-closed.                                                                                                                
 
Theorem 3.20: Let (X, τ) be a topological space. Then every p*g-closed set is rwg-closed.             
 
Proof: Let A be a p*g-closed set. Let A ⊆ U, U is regular open. Then by Remark 2.7, U is pre∗open. Since A is p*g-
closed, pcl(A) ⊆ U. By Lemma 2.9, A ∪ cl(int(A)) ⊆ U. Thus we have cl(int(A)) ⊆ U whenever A ⊆ U and U is 
regular open. Therefore, A is rwg-closed.         
                                                                                                                           
Remark 3.21: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                             
 
Example 3.22: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, Χ}. Then {a, b} is rwg-
closed but not p*g-closed.                                                                                                    
 
Theorem 3.23: Let (X, τ) be a topological space. Then every p*g-closed set is πgp-closed.   
                                                          
Proof: Let A be a p*g-closed set. Let A ⊆ U, U is π-open. Then by Remark 2.7, U is pre∗open. Since A is p*g-closed, 
pcl(A) ⊆ U. Thus we have pcl(A) ⊆ U whenever A ⊆ U and U is π-open. Therefore, A is πgp-closed.  
                                                                                                                                               
Remark 3.24: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                             
 
Example 3.25: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, Χ}. Then {a, b} is πgp-
closed but not p*g-closed.                                                                                                      
 
Theorem 3.26: Let (X, τ) be a topological space. Then every p*g-closed set is gsp-closed.   
                                                                 
Proof: Let A be a p*g-closed set. Let A ⊆ U, U is open. Then by Remark 2.7, U is pre∗open. Since A is p*g-closed, 
pcl(A) ⊆ U. But spcl(A) ⊆ pcl(A) ⊆ U. Thus we have spcl(A) ⊆ U whenever A ⊆ U and U is open. Therefore, A is 
gsp-closed.                                                                                                    
 
Remark 3.27: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                                    
 
Example 3.28: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {a}, {a, b}, Χ}. Then {a, c} is gsp-closed but 
not p*g-closed.                                                                                                               
 
Theorem 3.29: Let (X, τ) be a topological space. Then every p*g-closed set is πgsp-closed.   
                                               
Proof: Let A be a p*g-closed set. Let A⊆U, U is π-open. Then by Remark 2.7, U is pre∗open. Since A is p*g-closed, 
pcl(A) ⊆ U. But spcl(A) ⊆ pcl(A) ⊆ U. Thus we have spcl(A) ⊆ U whenever A ⊆ U and U is π-open. Therefore, A is 
πgsp-closed.                                                                                                    
 
Remark 3.30: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                                      
 
Example 3.31: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {a, b}, Χ}. Then {a, b} is πgsp-closed but not 
p*g-closed.                                                                                                             
 
Theorem 3.32: Let (X, τ) be a topological space. Then every p*g-closed set is pre semi closed.   
                                                              
Proof: Let A be a p*g-closed set. Let A ⊆ U, U is g-open. Then by Remark 2.7, U is pre∗open. Since A is p*g-closed, 
pcl(A) ⊆ U. But spcl(A) ⊆ pcl(A) ⊆ U. Thus we have spcl(A) ⊆ U whenever A ⊆ U and U is g-open. Therefore, A is 
pre semi closed.                                                                                                                                         
 
Remark 3.33: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                                     
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Example 3.34: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {c}, {b, c}, Χ}. Then {a, c} is pre semi closed 
but not p*g-closed.                                                                                                      
 
Theorem 3.35: Let (X, τ) be a topological space. Then every p*g-closed set is g*p-closed.                                                                             
 
Proof: Let A be a p*g-closed set. Let A ⊆ U, U is g-open. Then by Remark 2.7, U is pre∗open. Since A is p*g-closed, 
pcl(A) ⊆ U. Thus we have pcl(A) ⊆ U whenever A ⊆ U and U is g-open. Therefore, A is g*p-closed.  
                                                                                                                                                   
Remark 3.36: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                                 
 
Example 3.37: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {c}, {b, c}, Χ}. Then {a, c} is g*p-closed but 
not p*g-closed.                                                                                                                                                                               
 
Theorem 3.38: Let (X, τ) be a topological space. If A and Β are two p∗g-closed in X, then A∩Β is p∗g-closed.                                                                                                                                                                                                                                                                           
 
Proof: Let U be pre*open such that A∩B ⊆ U. Then by Theorem 2.11, U ∪ (X-B) is pre*open containing A. Since A 
is p*g-closed, pcl(A) ⊆ U ∪ (X-B).  
 
Now pcl(A ∩ B) ⊆ pcl(A) ∩ pcl(B) ⊆ pcl(A) ∩ cl(B) = pcl(A) ∩ B ⊆ (U ∪ (X-B)) ∩ B = U ∩ B ⊆ U. Thus we have 
pcl(A∩B) ⊆ U, U is pre*open and A∩B ⊆ U. Therefore A∩B is p*g-closed.  
                                                                                                                                                                                                                                                                                                       
Remark 3.39: In general, union of any two p*g-closed sets in (X, τ) need not be a p*g-closed set, as seen from the 
following example.                                                                                                                                                                                                                                                         
 
Example 3.40: Consider the space (X, τ) where Χ = {a, b, c} and τ = {φ, {a, b}, Χ}. Here, {a} and {b} are p∗g-closed. 
But their union {a, b} is not p∗g-closed.                                                                                                                                                                                                        
 
Remark 3.41: The above discussions are summarized in the following implications.                                                                                                                                                                     
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Remark 3.42: p*g-closedness and rg-closedness are independent concepts as we illustrate by means of the following 
example.                                                                                                                                                                                                                                         
 
Example 3.43: Let X = {a, b, c, d} and τ = {φ, {a}, {b}, {a, b}, {b, c}, {a, b, c}, Χ}. Then the set {c} is p*g-closed but 
not rg-closed and also {a, b} is rg-closed but not p*g-closed.                                                                                                                                                                         
 
Remark 3.44: p*g-closedness and g-closedness are independent concepts as we illustrate by means of the following 
example.                                                                                                                                                                                                                                         
 
Example 3.45: Let X = {a, b, c} and τ = {φ, {a}, {a, b}, Χ}. Then the set {b} is p*g-closed but not g-closed and also 
{a, c} is g-closed but not p*g-closed.                                                                                                                                                                                                                           
 
Remark 3.46: p*g-closedness and g*-closedness are independent concepts as we illustrate by means of the following 
example.                                                                                                                                                                                                                                       
 
Example 3.47: Let X = {a, b, c} and τ = {φ, {a}, {a, b}, Χ}. Then the set {b} is p*g-closed but not g*-closed and also 
{a, c} is g*-closed but not p*g-closed.                                                                                                                                                                                                             
 
Remark 3.48: p*g-closedness and αg-closedness are independent concepts as we illustrate by means of the following 
examples.                                                                                                                                                                                                                                                          
 
Example 3.49: 

i.  Let Χ = {a, b, c} and τ = {φ, {a, b}, Χ}. Then the set {a} and {b} are p*g-closed but not αg-closed.  
ii. Let Χ = {a, b, c} and τ = {φ, {c}, Χ}. Then the set {a, c} and {b, c} are αg-closed but not p*g-closed.  

 
Remark 3.50: p*g-closedness and regular α-closedness are independent concepts as we illustrate by means of the 
following example. 
 
Example 3.51: Let Χ = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, Χ}. Then {c} is p*g-closed but not regular α-closed and 
also {a} and {b} are regular α-closed but not p*g-closed. 
    
Remark 3.52: p*g-closedness and b*-closedness are independent concepts as we illustrate by means of the following 
examples. 
 
Example 3.53: 

i.   Let Χ = {a, b, c} and τ = {φ, {a, b}, Χ}. Then the set {a} and {b} are p*g-closed but not b*-closed. 
ii.  Let Χ = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, Χ}. Then {a} and {b} are b*-closed but not p*g-closed.    

 
Remark 3.54: p*g-closedness and αm-closedness are independent concepts as we illustrate by means of the following 
examples.  
 
Example 3.55:   

i.  Let Χ = {a, b, c} and τ = {φ, {a, b}, Χ}. Then the set {a} and {b} are p*g-closed but not αm-closed. 
ii. Let Χ = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, Χ}. Then {a} and {b} are αm-closed but not p*g-closed.    

 
Remark 3.56:              
 
 
 
 
 
 
 
 
 
 
 
 
 
4. CHARACTERIZATION  
 
In this section, we investigate some basic characterization of p*g-closed set in topological spaces. 
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Theorem 4.1: If A is g-closed and p*g-closed, then A is wg-closed. 
                                                                 
Proof: Suppose A is  g-closed and p*g-closed. By Remark 2.6, pcl(A) ⊆ cl(A) which implies pcl(A) ⊆ cl(A) ⊆ U. By 
Lemma 2.9, A ∪ cl(int(A)) ⊆ U. Thus we have cl(int(A)) ⊆ U whenever A ⊆ U and U is open. Therfore, A is wg-
closed.                                                                                                                                                                                                                          
 
Remark 4.2: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                                                                                                                                                       
 
Example 4.3: Consider the space (X, τ) where X = {a, b, c} and τ = {φ, {c}, Χ}. Here, {a, c} and {b, c} are both g-
closed and wg-closed but not p*g-closed.                                                                                                                                                                                                    
 
Theorem 4.4: If A is g-closed and p*g-closed, then A is g*p-closed.                                                                                                                                           
 
Proof: Suppose A is g-closed and p*g-closed. By Remark 2.6, pcl(A) ⊆ cl(A) which implies pcl(A) ⊆ cl(A) ⊆ U and 
by Remark 2.7, U is g-open. Thus we have pcl(A) ⊆ U whenever A ⊆ U and U is g-open. Therefore, A is g*p-closed.                                                                                                                                                                                                                                                                
 
Remark 4.5: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                                                                                                                                                              
 
Example 4.6: Consider the space (X, τ) where X = {a, b, c} and τ = {φ, {c}, {b, c}, Χ}. Here, {a, c} is both g-closed 
and g*p-closed but not p*g-closed.                                                                                                                                                                                                 
 
Theorem 4.7: Let A be any p*g-closed set in (X, τ). If  A ⊆ B ⊆ pcl(A), then B is also a p*g-closed set.                                                                                                                               
 
Proof: Let B ⊆ U where U is pre*open in (X, τ). Then A ⊆ U. Also since A is p*g-closed, pcl(A) ⊆ U. Since               
B ⊆ pcl(A), pcl(B) ⊆ pcl(pcl(A)) = pcl(A) ⊆ U. This implies, pcl(B) ⊆ U. Thus B is a p*g-closed set.                                                                                                                                                                                                                                                                                                       
 
Theorem 4.8: If a set A is p*g-closed in X, then pcl(A) - A contains no non empty pre*open set in X. 
                                                                                                                          
Proof: Let U ⊆ pcl(A) - A be a non empty pre*open set. Then U ⊆ pcl(A) and A ⊆ X - U, we have pcl(A) ⊆ X-U. So 
U ⊆ X - pcl(A). Therefore U ⊆ pcl(A) ∩ (X - pcl(A)) = {φ}. Hence pcl(A) - A contains no non empty pre*open set in 
X.                                                                                                                                                                                                                                 
 
Remark 4.9: The converse of the above theorem need not be true, as seen from the following example.                                                                                                                               
 
Example 4.10: If pcl(A) - A contains no  non empty pre*open set in X, then A is not a p*g-closed set. Consider X = {a, 
b, c} with the topology τ = {φ, {a}, {b}, {a, b},  Χ} and A = {a, b}. Then pcl(A) – A = X - {a, b} = {c} contains no 
non empty pre*open set in X, but A is not a p*g-closed set in X.                                                                                                                                                                                                                                                                                   
 
Theorem 4.11: For every element x in a space X, the set X - {x} is p*g-closed or pre*open.                                                                                                                                                                                        
 
Proof: Suppose X - {x} is not pre*open. Then X is the only pre*open set containing X - {x}. This implies pcl(X - {x}) 
⊆ X. Hence X - {x} is p*g-closed.                                                                                                                                      
                                      
Theorem 4.12: Let A and B be p*g-closed sets in (X, τ) such that cl(A) = pcl(A) and cl(B) = pcl(B). Then A∪B is p*g-
closed.                                       
             
Proof: Let A∪B ⊆ U, where U is pre*open. Then A ⊆ U and B ⊆ U. Since A and B are p*g-closed, pcl(A) ⊆ U and 
pcl(B) ⊆ U. Now cl(A∪B) = cl(A) ∪ cl(B) = pcl(A) ∪ pcl(B) ⊆ U. But pcl(A∪B) ⊆ cl(A∪B). So, pcl(A∪B) ⊆ 
cl(A∪B) ⊆ U. Therefore pcl(A∪B) ⊆ U whenever A∪B ⊆ U, U is pre*open. Hence A∪B is p*g-closed.      
                                                                 
Theorem 4.13: The union of two p*g-closed sets is p*g-closed if at least one of them is semi closed.                                                                                                                                                 
 
Proof: Let A and Β be two p∗g-closed sets in X. Suppose A is semi closed. To prove that A∪B is p*g-closed. Let 
A∪B  ⊆ U and U is pre*open. Then A ⊆ U and Β ⊆ U. Since A and B are p∗g-closed, pcl(A) ⊆ U and pcl(Β) ⊆ U. 
Therefore, pcl(A) ∪ pcl(Β) ⊆ U. Since by Lemma 2.10, pcl(A∪B) ⊆ U. Thus we have pcl(A∪B) ⊆ U whenever A∪B 
⊆ U and U is pre*open. Therefore A∪B is p*g-closed.                                                                                                                                                                                                                                                           
 
Theorem 4.14: If A ⊆ Y ⊆ X and A is p*g-closed in X then A is p*g-closed relative to Y.    
                                    
Proof: Given that A ⊆ Y ⊆ X and A is a p*g-closed set in X. To prove that A is p*g-closed set relative to Y. Let us 
assume that A ⊆ Y∩U, where U is pre*open in X. Since A is p*g-closed, A ⊆ U. This implies that  pcl(A) ⊆ U. It 
follows that Y ∩ pcl(A) ⊆ Y ∩ U. That is, A is p*g-closed relative to Y.                                                                                                                                                                                                                                                                                                                                                                                                
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5. CONCLUSION 
 
The present paper has introduced a new concept of p*g-closed set in topological spaces. It also analyzed some of the 
properties. The implication shows the relationship between p*g-closed sets and the other existing sets. 
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