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ABSTRACT 
In this paper, we proposed the method for solving fuzzy wolfe’s modified simplex method. This method is easy to solve 
fuzzy nonlinear programming problem (NLPP). The fuzzy non-linearity of the functions makes the solution of the 
problem much more involved as compared to NLPPs and there is no single algorithm like the modified simplex method, 
which can be employed to solve efficiently all fuzzy NPPs. 
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1. INTRODUCTION 
 
The fuzzy set theory is being applied in many fields these days. One of these is nonlinear programming problems. 
Quadratic programming problems (QPP) deals with the nonlinear programming problem (NLPP) of maximizing         
(or minimizing) the quadratic objective function subjective to a set of linear inequality constraints. In general form of 
QPP [1, 3] be:  
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Where kjjk cc ~~ =   for all j, k and ≥ib~ 0, i = 1, 2…m. The quadratic form ∑∑ kjjk xxc ~~~ be negative semi-definite. 
 
The simplex method for fuzzy variable linear programming problem discussed for single objective by [7, 13, 14]. The 
concept of a fuzzy decision making was first proposed by Bellman and Zadeh [2]. Lalitha and Loganathan [11] 
proposed an objective fuzzy non linear programming problem with symmetric trapezoidal fuzzy numbers. Detail 
literature on fuzzy linear and non-linear programming with application is available in two well-known books of Lie and 
Hwang (1992, 1994). Mokhter, Hanif and Shetty [12] presented nonlinear programming theory and algorithms. Frank 
and Wolfe [6] proposed an algorithm for quadratic programming. Terlaky’s algorithm [15] is active set method which 
starts from a primal feasible solution construct dual feasible solution which is complementary to the primal feasible 
solution. Hildreth [8] presented a Quadratic Programming Procedure. Wolfe Philip [16] has given algorithm which 
based on fairly simple modification of simplex method and converges in finite number of iterations. Dantzig [4] 
suggestion is to choose that entering vector corresponding to which is most negative. In this paper, we find the solution 
of fuzzy nonlinear programming problem by proposed method which is an alternative for wolfe’s method. This method 
is different from Terlaky, wolfe’s and earlier approaches. 
 
2. PRELIMINARIES 
 
Definition 2.1: Fuzzy Number: A fuzzy number is a normal and convex fuzzy set of real line R. 
 
Definition 2.2: A fuzzy set Ã is called normal if its core is non-empty. In other words, there is at least one point x ∈ X 
with )(~ xAµ  = 1. 
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Definition 2.3: Let X is a nonempty set A. Fuzzy set A in X is characterized by its membership function                      
μA :  x → [0, 1]  and μA(x) is interpreted as the degree of membership of element X in fuzzy set A for each x ∈ X. 
 
3. TRAPEZOIDAL FUZZY NUMBER 
 
There are various types of fuzzy numbers, but the triangular and trapezoidal are the most important fuzzy memberships. 
In this research we use the trapezoidal fuzzy numbers. 
 

  L ((AL – x) | α)  if x ≤ AL, α > 0 
µÃ(x) =                 R ((x – AU) | β)  if x ≥ AU, β > 0 
   1                          otherwise, 

 
where AL < AU, [AL, AU] is the core of Ã, µÃ(x) = 1 ∀x + [AL, AU], AL, AU are the lower and upper model values of Ã 
and α > 0, β > 0 are the left hand and right hand spreads [13]. 
 
4. SOLVING A FUZZY NONLINEAR PROGRAMMING PROBLEM 
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Where 𝑐𝑐 j̅ ,  𝑎𝑎�j and 𝑏𝑏�i are fuzzy numbers. 
 
5. PROPOSED ALGORITHM 

Step-1: Convert   inequality constraints into equations by introducing slack variables 
2~

x i (i = 1,2..p) in the ith  

Constraints and the slack variables 
2~

jx  (j=1, 2, 3…..q) in the jth constraints. 

Step-2: Convert the Lagrangian function 
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Differentiating the Lagrangian function   L( µλ ~,~,~,~ sx )with respect to the components of µλ ~,~,~,~ sx and equating the 
first order partial derivative to zero. Derive Kuhn tucker condition from the resulting equations. 
 
Step-3: Introduce non- negative artificial variables jy~  (j=1, 2…q) in the Kuhn tucker condition 
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For  j = 1, 2…n and construct an objective function 
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Step-4: Obtain an initial basic feasible solution to the LPP 
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and satisfying the slackness condition: 

0~~
=ii sλ   and 0~~ =jj xµ  

 
Step-5: solve this LPP by proposed method .Choose greatest coefficients. If greatest coefficient is unique, then variable 
corresponding to this column becomes incoming variable. If greatest coefficient is not unique, then use tie breaking 
technique. 
 
Step-6: Compute the ratio with Bx~ . Choose minimum ratio, the variable corresponding to this row is Outgoing 
variable.  If artificial variable is outgoing in the basis means corresponding artificial column also will be removed. 
 
Step-7: Then proceed this table given by [10] and go to next step. 
 
Step-8: Ignore corresponding row and column. Proceed to step5 for remaining elements and repeat the same procedure. 
Either an optimal solution is obtained or there is an indication of an unbounded solution. 
 
Step-9: If all rows and columns are ignored, current solutions an optimal solution. Thus optimum solution is obtained 
and which is the given solution of given QPP. 
 
6. SOLVED PROBLEMS 
 
6.1. Problem 1: Solve the following quadratic programming problem: 

5~~~~2~~4~ 2
2

2
121 −−−+= xxxxMaxZ  

Subject to: 4~~~
21 ≤+ xx  ,  0~,~

21 ≥xx  
 
Solution: First, we convert the inequality constraint into equation by introducing slack variable 2

1
~s . Also the inequality 

constraints 0~,~
21 ≥xx .  We convert them into equations by introducing slack variables 2

2
~s and 2

3
~s  . So the problem 
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Subject to: 4~~~~ 2
121 =++ sxx  

                  0~~ 2
21 =+− sx   

                  0~~ 2
32 =+− sx  
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3.4~6.0~9.0~9.1~2.3~ 2
2

2
121 −−−+= xxxxZMax  

1.4~2.1~8.0~7.0 2
121 =++ sxx  

0~1.2~3.0 2
21 =+− sx  

0~4.2~5.0 2
32 =+− sx  

 
Construct the Lagrangian function 

)~4.2~5.0(~)~1.2~3.0(~
)1.4~2.1~8.0~7.0(~)2.4~6.0~9.0~9.1~2.3()~,~,~,~,~,~,~,~(
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By Kuhn-Tucker conditions, we get 

2.3~3.0~7.0~8.1 211 =−+ λλx  

9.1~5.0~8.0~2.1 312 =−+ λλx  

0~~~~~~
331122 === sss λλλ  

1.4~2.1~8.0~7.0 2
121 =++ sxx  

0~1.2~3.0 2
21 =+− sx  

0~4.2~5.0 2
32 =+− sx  

0~~~~~~
331122 === sss λλλ  

Where 0~,~,~,~ 2
21 ≥iisxx λ    , i  = 1, 2, 3 satisfying the complementary slackness conditions 

 0~~~~~~
23

2
112 1

=++ xsx λλλ  
 
Now, introducing the artificial variables 0~,~

21 ≥aa the given QPP is equivalent to : 

21
~6.0~8.0~ aaZMin +=  

2.3~3.0~7.0~8.1 211 =−+ λλx  
9.1~5.0~8.0~2.1 312 =−+ λλx  

1.4~2.1~8.0~7.0 2
121 =++ sxx  
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1
~s  Ratio 

0.8 ~

1a  3.2 1.8 0 0.7 0.3 0 0.8 0 0 1.7 

0.6 
~

2a  1.9 0 1.2 0.8 0 0.5 0 0.6 0 - 

0 2
1s  4.1 0.7 0.8 0 0 0 0 0 1.2 5.8 

0 1
~x  1.7 1 0 0.4 -0.2 0 0.4 0 0 0 

0.6 
~

2a  1.9 0 1.2 0.8 0 -0.5 0 0.6 0 1.6 

0 2
1s  2.9 0 0.8 -0.3 1.4 0 -0.3 0 1.2 3.6 

0 1
~x  1.7 1 0 0.4 -0.2 0 0.4 0 0  

0 2
~x  1.6 0 1 0.7 0 -0.4 0 0.5 0  

0 2
1s  1.6 0 0 -1.3 1.4 0.3 -0.3 -0.4 1.2  
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Table-1: Comparison with Kirtiwant and et al., method 

NLPP 1x  2x  Max Z 

Kirtiwant and et al., 2 1 0 

FNLPP 1
~x  2

~x  ZMax ~
 

Our proposed method 1.7 1.6 0.2 

 
From the Table 1, Objective (maximum) value obtained by our method is better than Kirtiwant and et al., [10] Method. 
 

Current solution is an optimal solution 7.1~
1 =x , 6.1~

2 =x , 2.0~ =ZMax  

 
6.2. Problem 2: Solve the following quadratic programming problem: 
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21 ≤+ xx   , 0~,~

21 ≥xx  
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Subject to: 2~~~~ 2
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                  0~~ 2
21 =+− sx   

                  0~~ 2
32 =+− sx  

Where 

)2.0,3.0,5.1,4.1(1~
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)3.3,2.3,6.2,4.2(2~
)8.6,6.6,5.7,3.7(6~
)5.1,4.2,1.2,3.1(2~
)2.4,2.5,4.4,8.5(5~
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Construct the Lagrangian function 

)~3.0~5.2(~)~4.1~1.1(~
)5.1~4.1~8.1~8.0(~)~6.1~1.2~~2.3~2.52.5()~,~,~,~,~,~,~,~(
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By Kuhn-Tucker conditions, we get 

2.5~1.1~8.0~2.42.3 2112 =−++− λλxx  

0~5.2~8.1~2.3~2.3 3121 =−++− λλxx  

5.14.18.18.0 2
121 =++ sxx  

0~3.0~5.2

,0~4.1~1.1
2

32

2
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=+−

=+−

sx
sx

 

0~~~~~~
331122 === sss λλλ  

                                                      

Where 0~,~,~,~ 2
21 ≥iisxx λ    ,i  = 1,2,3 satisfying the complementary slackness conditions 

0~~~~~~
23

2
112 1

=++ xsx λλλ  
 

Now, introducing the artificial variables 0~,~
21 ≥aa the given QPP is equivalent to:    21

~6.0~4.0~ aaZMin +=  

2.5~1.1~8.0~2.42.3 2112 =−++− λλxx  
0~5.2~8.1~2.3~2.3 3121 =−++− λλxx  

   5.14.18.18.0 2
121 =++ sxx  

 

 
 
 
 
 
 

Bc  BVS Bx~  1
~x  2

~x  
~

1λ  
~

2λ  
~

3λ  
~

1a  
~

2a  
2

1
~s  Ratio 

0.4 ~

1a  5.2 4.2 -3.2 0.8 -1.1 0 0.4 0 0 1.6 

0.6 
~

2a  0 -3.2 3.2 1.8 0 -2.5 0 1.2 0 0 

0 2
1s  1.5 0.8 1.8 0 0 0 0 0 1.4 2.9 

0 1
~x  1.2 1 -0.8 0.2 -0.3 0 0.1 0 0 -ve 

0.6 
~

2a  5.1 0 0.6 2.4 -1 -2.5 0.3 1.2 0 8.5 

0 2
1s  0.5 0 2.4 -0.2 0.2 0 -0.1 0 1.4 0.2 

0 1
~x  1.4 1 0 0.1 -0.2 0 0.1 0 0.5 14 

0.6 
~

2a  5 0 0 2.5 -1.1 -2.5 0.3 1.2 -0.4 2 

0 2
~x  0.5 0 1 -0.1 0.1 0 -0.04 0 0.6 -ve 

0 1
~x  1.6 1 0 1 -0.2 0.1 0.1 -0.1 0.5  

0 
~

1λ  
2 0 0 1 -0.4 -1 0.1 0.5 -0.2  

0 2
~x  0.4 0 1 0 0.1 -0.1 -0.03 0.1 0.6  
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Table-2: Comparison with Kirtiwant and et al., method 

NLPP 1x  2x  Min Z 

Kirtiwant and et al., 1.5 0.5 0.5 

FNLPP 1
~x  2

~x  ZMin ~
 

Our proposed method 1.2 0.4 0.3 

 
From the Table 2, Objective (minimum) value obtained by our method is better than Kirtiwant and et al., [10] method. 
 
Current solution is an optimal solution 2.11 =x 4.02 =x , 3.0=MaxZ  

 
6.3. Problem 3: Solve the following quadratic programming problem: 

2
121

~2~~3~~2~~ xxxZMax −+=  

Subject to: 2~~~
21 ≤+ xx , 0~,~

21 ≥xx  
                                           
Solution: First, we convert the inequality constraint into equation by introducing slack variable 2

1
~s . Also the 

inequality constraints 0~,~
21 ≥xx . We convert them into equations by introducing slack variables 2

2
~s and 2

3
~s  . So the 

problem becomes 
2

121
~2~~3~~2~~ xxxZMax −+=  

Subject to:  2~~~~ 2
121 =++ sxx   , 

                   0~~ 2
21 =+− sx   

                   0~~ 2
32 =+− sx   

Where 
2 (2.3,2.4,0.8,0.5)

2 (3.3,3.8,2.5,2.7)

1 (1.3,1.1,2.2,2.1)

2 (2.1,2.4,3.3,3.8)

1 (1.8,1.9,0.4,0.5)

1 (1.7,1.9,0.3,0.4)

3 (2.4,2.8,3.2.,3.3)

1 (0.3,0.4,1.7,1.8)

1 (1.8,1.9,0.9,0.3)

1 (0.1,0.8,1.7,1.4

=

=

=

=

=

=

=

=

=

=



















 )

1 (1.9,1.7,2.2,2.1)=

 

 2
121

~5.2~4.2~2.2~ xxxZMax −+=  
3.3~9.1~3.1~3.0 2

121 =++ sxx  

0~4.0~1.0 2
21 =+− sx  

0~3.0~9.1 2
32 =+− sx  

 
Construct the Lagrangian function 

)~3.0~9.1(~)~4.0~1.0(~
)3.3~9.1~3.1~3.0(~)~5.2~4.2~2.2()~,~,~,~,,~,~,~(

2
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2
212

2
1211

2
12132132121

sxsx

sxxxxxsssxxL

+−−+−−

−++−−+=
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By Kuhn-Tucker conditions, we get 

3.3~9.1~3.1~3.0 2
121 =++ sxx  

2.2~1.0~3.0~5 211 =−+ λλx  

4.2~9.1~3.1 31 =− λλ  
0~4.0~1.0 2

21 =+− sx  
0~3.0~9.1 2

32 =+− sx  
0~~~~~~

331122 === sss λλλ  
 

Where 0~,~,~,~ 2
21 ≥iisxx λ , i  = 1,2,3 satisfying the complementary slackness conditions 

0~~~~~~
23

2
112 1

=++ xsx λλλ  
 
Now, introducing the artificial variables 0~,~

21 ≥aa  the given QPP is equivalent to: 

21
~5.0~7.0~ aaZMin +=  

3.3~9.1~3.1~3.0 2
121 =++ sxx  

2.23.01.03.05 1211 =+−+ ax λλ  
4.25.09.13.1 231 =+− aλλ  

 

 
Table-3: Comparison with Kirtiwant and et al., method 

NLPP 1x  2x  Max  Z 
Kirtiwant and et al., 0.5 1.5 1.5 

FNLPP 1
~x  2

~x  ZMax ~
 

Our proposed method 0.2 2.6 6.58 
 
From the Table 3, Objective (maximum) value obtained by our method is better than Kirtiwant and et al., [10] Method. 

Current solution is an optimal solution 2.0~
1 =x 6.2~

2 =x , 58.6~ =ZMax  

Bc  BVS Bx~  1
~x  2

~x  
~

1λ  
~

2λ  
~

3λ  
~

1a  
~

2a  
2

1
~s  Ratio 

1 
~

1a  2.2 5 0 0.3 -0.1 0 0.3 0 0  

1 
~

2a  2.4 0 0 `1.3 0 -1.9 0 0.5 0  

0 2
1s  3.3 0.3 1.3 0 0 0 0 0 1.9  

0 1
~x  0.4 1 0 0.1 -0.02 0 0.1 0 0  

1 
~

2a  2.4 0 0 1.3 0 -1.9 0 0.5 0  

0 2
1s  3.2 0 1.3 -0.03 0.01 0 -0.03 0 1.9  

0 1
~x  0.4 1 0 0.1 -0.02 0 0.1 0 0  

1 
~

2a  2.4 0 0 1.3 0 -1.9 0 0.5 0  

0 2
~x  2.5 0 1 -0.02 0.01 0 0.02 0 1.5  

0 1
~x  0.2 1 0 0 -0.02 0.2 0.1 0.04 0  

0 
~

1λ  
1.9 0 0 1 0 -1.5 2 0.4 0  

0 2
~x  2.6 0 1 0 0.01 -0.03 0.02 0.01 1.5  
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6.4. Problem 4: Solve the following quadratic programming problem: 

2
121

~~~2~~ xxxZMax −+=  

Subject to: 6~3~2 21 ≤+ xx  

                 4~~2 21 ≤+ xx  ,   0~,~
21 ≥xx  

                                                                       
Solution: First, we convert the inequality constraint into equation by introducing slack variable 2

1
~s  . Also the 

inequality constraints 0~,~
21 ≥xx .  We convert them into equations by introducing slack variables 2

2
~s and 2

3
~s  . So 

the problem becomes 
2

121
~2~~3~~2~~ xxxZMax −+=  

Subject to: 6~~~3~~2~ 2
121 =++ sxx , 

                   4~~~~2~ 2
221 =++ sxx  

                  0~~ 2
31 =+− sx  

                  0~~ 2
42 =+− sx   

Where 

)7.1,6.1,4.0,3.0(1~
)4.0,5.0,4.2,2.2(1~
)7.1,7.0,8.0,8.1(1~
))5.0,4.0,4.1,2.1(1~
)6.2,5.2,5.1,3.1(1~
)4.3,3.3,3.4,4.4(4~
)4.1,3.1,7.2,6.2(1~
)2.0,1.0,5.1,4.1(1~
)5.5,2.5,3.6,1.6(6~
)4.3,3.3,8.2,2.2(3~
)4.1,2.1,4.0,3.0(1~
)4.2,2.2,3.1,1.1(1~
)6.1,4.1,5.2,4.2(2~
)8.1,6.1,9.2,2.2(2~

=

=

=

=

=

=

=

=

=

=

=

=

=

=

 

 2
121

~1.1~4.0~9.2~ xxxZMax −+=  
2.5~4.0~3.3~4.2 2

121 =++ sxx  
3.4~2.0~1.0~2.3 2

221 =++ sxx  

0~7.2~6.1 2
31 =+− sx  

0~3.1~5.0 2
42 =+− sx  

 
Construct the Lagrangian function 

)~3.1~5.0(~)~7.2~6.1(~
)3.4~2.0~1.0~2.3(~)~1.1~4.0~9.2()~,~,~,~,,~,~,~(

2
423

2
312

2
2211

2
12132132121

sxsx

sxxxxxsssxxL

+−−+−−

−++−−+=

λλ

λλλλ
 

 
By Kuhn-Tucker conditions, we get 

9.2~6.1~2.3~4.2~2.2 3211 =−++ λλλx  
4.0~5.0~1.0~3.3 421 =++ λλλ  
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2.5~4.0~3.3~4.2 2

121 =++ sxx  

3.4~2.0~1.0~2.3 2
221 =++ sxx  

0~7.2~6.1 2
31 =+− sx  

0~3.1~5.0 2
42 =+− sx  

0~~~~~~
331122 === sss λλλ  

                                                           

Where 0~,~,~,~ 2
21 ≥iisxx λ  ,  i  = 1, 2, 3 satisfying the complementary slackness conditions 

0~~~~~~
23

2
112 1

=++ xsx λλλ  

Now, introducing the artificial variables 0~,~
21 ≥aa the given QPP is equivalent to: 21

~6.0~3.0~ aaZMin +=  

9.2~3.0~6.1~2.3~4.2~2.2 13211 =+−++ ax λλλ  
4.0~6.0~5.0~1.0~3.3 2421 =+++ aλλλ  

2.5~4.0~3.3~4.2 2
121 =++ sxx  

3.4~2.0~1.0~2.3 2
221 =++ sxx  

 

 

Bc  BVS Bx~  1
~x  2

~x  
~

1λ  
~

2λ  
~

3λ  
~

1a  
~

2a  
2

1
~s  2

2
~s  

0.3 ~

1a  2.9 2.2 0 2.4 3.2 -1.6 0.3 0 0 0 

0.6 
~

2a  0.4 0 0 3.3 0.1 0 0 0.6 0 0 

0 2
1

~s  5.2 2.4 3.3 0 0 0 0 0 0.4 0 

0 2
2

~s  4.3 3.2 0.1 0 0 0 0 0 0 0.2 

0.3 
~

1a  2.9 2.2 0 0 2.5 -1.6 0.3 0 0 0 

0 
~

1λ  0.1 0 0 1 0.3 0 0 0.6 0 0 

0 2
1

~s  5.2 2.4 3.3 0 0 0 0 0 0.4 0 

0 2
2

~s  4.3 3.2 0.1 0 0 0 0 0 0 0.2 

0.3 
~

1a  
2.9 2.2 0 0 2.5 -1.6 0.3 0 0 0 

0 
~

1λ  
0.1 0 0 1 0.3 0 0 0.6 0 0 

0 2
~x  1.6 0.7 1 0 0 0 0 0 0.1 0 

0 2
2

~s  4.1 3.1 0 0 0 0 0 0 -0.01 0.2 

0.3 
~

1a  
0.04 0 0 0 2.5 -1.6 0.3 0 0.01 -0.2 

0 
~

1λ  
0.1 0 0 1 0.3 0 0 0 0.6 0 

0 2
~x  0.7 0 1 0 0 0 0 0 0.1 -0.1 

0 1
~x  1.3 1 0 0 0 0 0 0 -0.003 0.1 

0.3 
~

2λ  
0.02 0 0 0 1 -0.6 0.1 0 0.004 -0.1 

0 
~

1λ  
0.1 0 0 1 0 0.2 -0.03 0 -.001 .03 

0 2
~x  0.7 0 1 0 0 0 0 0 0.1 -0.1 

0 1
~x  1.3 1 0 0 0 0 0 0 -0.003 0.1 
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Table-4: Comparison with Kirtiwant and et al., method 

NLPP 1x  2x  Max Z 

Kirtiwant and et al., 0.6 1.5 2.01 

FNLPP 1
~x  2

~x  ZMax ~
 

Our proposed method 1.3 o.7 2.19 
 
From the Table 4, Objective (maximum) value obtained by our method is better than Kirtiwant and et al., [10] Method. 
 

Current solution is an optimal solution 3.1~
1 =x 7.0~

2 =x , 19.2~ =ZMax  

 
6.5. Problem 5: Solve the following quadratic programming problem: 

2
2

2
1211

~2~~~2~4~ xxxxxZMax −−+=  

Subject to: 6~~2 21 ≤+ xx , 

                  0~4~
21 ≤− xx , 0~,~

21 ≥xx  
                                                                       
Solution: First, we convert the inequality constraint into equation by introducing slack variable 2

1
~s . Also the 

inequality constraints 0~,~
21 ≥xx . We convert them into equations by introducing slack variables 2

2
~s and 2

3
~s  . So the 

problem becomes 
2

2
2

1211
~2~~~2~4~ xxxxxZMax −−+=  

Subject to: 6~~2 2
121 =++ sxx   , 

                  0~4~ 2
221 =+− sxx  

                02
31 =+− sx   

                 02
42 =+− sx  

Where 

)4.4,3.4,4.5,2.5(4~=  

)6.1,4.1,9.0,8.0(1~
)7.1,2.2,1.2,8.1(2~

=

=
 

)7.1,9.0,4.1,3.1(1~ =  

)5.5,4.5,3.6,7.6(6~ =  

)7.4,3.4,7.5,8.5(4~ =  

)6.1,6.0,7.1,4.0(1~ =  

)9.0,8.0,9.1,8.1(1~ =  

)8.1,7.1,2.0,3.0(1~
)5.1,3.1,9.0,8.0(1~
)4.1,3.1,8.2,7.2(2~
)7.1,3.1,8.0,7.0(1~
)5.2,3.2,4.1,1.1(1~
)9.2,7.2,9.1,8.1(1~
)2.3,1.3,6.2,4.2(2~
)8.5,2.5,1.4,4.4(4~

=

=

=

=

=

=

=

=
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2

1
2

2211
~4.1~7.1~~4.2~4.5~ xxxxxZMax −−+=  

4.5~8.1~9.0~4.2 2
121 =++ sxx  

0~7.0~3.4~1.1 2
221 =+− sxx  

0~3.1~4.0 2
31 =+− sx  

0~3.0~8.1 2
42 =+− sx  

 
Construct the Lagrangian function 

)~3.0~8.1(~)~3.1~4.0(~)~7.0~3.4~1.1(~
)4.5~8.1~9.0~4.2(~)~7.1~4.1~~4.2~4.5()~,~,~,~,,~,~,~(

2
424

2
313

2
2212

2
1211

2
2

2
121132132121

sxsxsxx

sxxxxxxxsssxxL

+−−+−−+−−

−++−−−+=

λλλ

λλλλ

 
By Kuhn-Tucker conditions, we get 

4.5~4.0~1.1~4.2~4.2~8.2 32121 =−++− λλλxx  

0~8.1~3.4~9.0~4.3~4.2 42121 =−−+−− λλλxx  
4.5~8.1~9.0~4.2 2

121 =++ sxx  
0~7.0~3.4~1.1 2

221 =+− sxx  
0~3.0~8.1 2

42 =+ sx  
0~3.1~4.0 2

31 =+− sx  

0~~~~~~
331122 === sss λλλ  

Where 0~,~,~,~ 2
21 ≥iisxx λ , i =1,2,3 satisfying the complementary slackness condition 0~~~~~~

23
2

112 1
=++ xsx λλλ  

 

Now, introducing the artificial variables 0~,~
21 ≥aa the given QPP is equivalent to: 21

~8.1~2.1~ aaZMin +=  

4.52.1~4.0~1.1~4.2~4.2~8.2 132121 =+−++− axx λλλ

08.0~8.1~3.4~9.0~4.3~4.2 242121 =+−−+−− axx λλλ  
4.5~8.1~9.0~4.2 2

121 =++ sxx  
0~7.0~3.4~1.1 2

221 =+− sxx  
 

Bc  BVS Bx~  1
~x  2

~x  
~

1λ  
~

2λ  
~

3λ  
~

4λ  
~

1a  
~

2a  
2
1s  2

2s  

1.2 
~

1a  5.4 2.8 2.4 2.4 1.1 -0.4 0 1.2 0 0 0 

1.8 
~

2a  0 -2.4 3.4 0.9 -4.3 0 1.8 0 0.8 0 0 

0 2
1s  5.4 2.4 0.9 0 0 0 0 0 0 1.8 0 

0 2
2s  0 1.1 -4.3 0 0 0 0 0 0 0 0.7 

1.2 
~

1a  5.4 4.5 0 1.7 4.2 -0.4 -1.2 0 -0.5 0 0 

0 2
~x  0 -0.7 1 0.3 -1.3 0 0.5 0 0.2 0 0 

0 2
1s  5.4 3 0 -0.3 1.2 0 -0.5 0 -0.2 1.8 0 

0 2
2s  0 -1.9 0 1.3 -5.6 0 -2.1 0 -0.9 0 0.7 

0 1
~x  1.2 1 0 0.4 0.9 -0.1 -0.3 0 0.1 0 0 

0 2
~x  0.8 0 1 0.6 -0.7 -0.1 0.3 0 0.3 0 0 

0 2
1s  1.8 0 0 -1.5 -1.5 0.3 0.4 0 -0.5 1.8 0 

0 2
2s  2.1 0 0 2.1 -3.9 -0.2 -1.5 0 -0.7 0 0.7. 
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Table-5: Comparison with Kirtiwant and et al., method 

NLPP 1x  2x  Min  Z 

Kirtiwant and et al., 2.4 1 -6.7 
FNLPP 1

~x  2
~x  ZMin ~

 
Our proposed method 1.2 0.8 -5.68 

 
From the Table 5, Objective (maximum) value obtained by our method is better than Kirtiwant and et al., [10] Method. 
 
Current solution is an optimal solution 2.11 =x , 8.02 =x , 68.5−=ZMin  

 
7. CONCLUSION 
 
A proposed method to obtain the solution of fuzzy nonlinear programming problem has been derived. It gives better 
solution than the solution of nonlinear programming problem. A number of algorithms have been developed, each 
applicable to specific type of FNLPP only. The number of application of fuzzy nonlinear programming is very large 
and it is not possible to give a comprehensive survey of all of them. An algorithm that performs well on one type of the 
problem may perform poorly on problem with a different structure. However, an efficient method for the solution of 
general FNLPP is still. This technique is useful to apply on numerical problems, reduces the labour work and save 
valuable time.  
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