
International Journal of Mathematical Archive-8(1), 2017, 8-14 
 Available online through www.ijma.info ISSN 2229 – 5046 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                         8  

 
CERTAIN NEW CLASSES CONTAINING COMBINATION  

OF RUSCHEWEYH DERIVATIVE AND A NEW GENERALIZED  
MULTIPLIER DIFFERENTIAL OPERATOR 

 
HARSHITH S R*1, KISHORE P V2 

 
1Palmpower India Handheld Applications Private Limited, #15,Yamuna, Goodwill Apartments, 

III Main, Attiguppe, Vijayanagar, Bengaluru-560 040, Karnataka, India. 
 

2Citrix R&D India Pvt. Ltd, #33, Ulsoor Road, Bengaluru- 560042, Karnataka, India.  
 

(Received On: 12-12-16; Revised & Accepted On: 10-01-17) 
 
 

ABSTRACT 
Certain new classes containing the linear operator obtained as a linear combination of Ruscheweyh derivative and a 
new generalized multiplier differential operator have been considered. Sharp results concerning coefficients, distortion 
theorems of functions belonging to these classes are discussed.  
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1. INTRODUCTION 
 
Denote by U  the open unit disc of the complex plane, }.1:{ <∈= zCzU  Let )(UH be the space of holomorphic 

functions in .U  Let A denote the family of functions in )(UH  of the form 
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k zazzf                                                 (1.1) 

 
In [19], S R Swamy has introduced the following new generalized multiplier differential operator (See [17] also).  
 
Definition 1.1: Let αγβ ,0,0},0{0 ≥≥∪=∈ NNm a real number such that 0>+ βα . Then for Af ∈ , a 

new generalized multiplier operator mI γβα ,,  was defined by 
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Remark 1.2: Observe that for )(zf given by (1.1), we have 
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We note that:  
i) )()( ,0,, zfIzfI mm

βαβα = ([18])  

ii) ),()(0,,1 zfDzfI mm
βββ =− 0≥β

 
([1]),  

iii) ),()( ,0,,1 zfIzfI m
l

m
l βββ =−+   

,1−>l
 

0≥β
 
([3] and it has been considered for 0≥l ) and 

 iv) 0)),1/((),()( ,,,1 ≥+>=−+− µµµλµλλµµλµλ zfDzfI mm ([7] and they have examined for ).0≥≥ µλ  
 
Remark 1.3: i) ),()( ,,,1 zfDzfI mm

µλλµµλµλ =−+− ,0≥≥ µλ was also studied by Raducanu in [8]. ii) )(1 zfDm was 

introduced by Salagean [10] and was considered for 0≥m  by Bhoosnurmath and Swamy in [2].  
 
Definition 1.4: ([9]) For 0Nm∈ , Af ∈ , the operator mR is defined by AAR m →: ,  

)()(0 zfzfR = , )()( '1 zzfzfR = ,…, .),())(()()1( '1 UzzfmRzfRzzfRm mmm ∈+=+ +  
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We now state the following new operator, introduced by us in [6]: 
 
Definition 1.6: Let αγβδ ,0,0,0},0{, 0 ≥≥≥∪=∈∈ NNmAf  a real number such that  

.0>+ βα  Denote by mRI δγβα ,,, , the operator given by ,:,,, AARI m →δγβα   
.),()()1()( ,,,,, UzzfIzfRzfRI mmm ∈+−= γβαδγβα δδ
 

 
Clearly i) mm RIRI δβαδβα ,,,0,, = [13], [14], [15] and [16], ii) mm RRI =0,,, γβα  [10] and iii) 

mm IRI γβαγβα ,,1,,, = [19].
 

 

Remark 1.7: If k
k k zazzf ∑∞

=
+=

2
)( , then from (1.2) and Remark 1.4, we have 

,)},,,()()1{()(
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m zammzzfRI ∑∞

=
Φ+Ω−+= γβαδδδγβα  Uz∈ , 

where     ),,,( mk γβαΦ and )(mkΩ are as defined in (1.3) and (1.4), respectively.   
 
Motivated by a paper of Swamy [12] we now introduce new classes, shown below: 
 
Definition 1.8: Let αγβσρδ ,0,0],1,0(),1,0[,0},0{, 0 ≥≥∈∈≥∪=∈∈ NNmAf  a real number such 

that 0>+ βα . Then )(zf is in the class ),(,,, ρσδγβα
mS if and only if  
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Definition 1.9: Let αγβσρδ ,0,0],1,0(),1,0[,0},0{, 0 ≥≥∈∈≥∪=∈∈ NNmAf  a real number such 

that 0>+ βα . Then )(zf is in the class ),(,,, ρσδγβα
mK if and only if  
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Definition 1.10: Let αγβσρδ ,0,0],1,0(),1,0[,0},0{, 0 ≥≥∈∈≥∪=∈∈ NNmAf  a real number such 

that 0>+ βα .Then )(zf is in the class ),(,,, ρσδγβα
mC if and only if  

' '
, , ,

'
, , ,

' '
, , ,

'
, , ,

[ ( ( )) ]

( ( ))

[ ( ( )) ]

( ( ))

1

1 2

m

m

m

m

z RI f z

RI f z

z RI f z

RI f z

α β γ δ

α β γ δ

α β γ δ

α β γ δ

σ
ρ

−
<

+ −
Uz∈, .                                    (1.7) 

 
Definition 1.11: Let ,0,0],1,0(),1,0[,0,0},0{, 0 ≥≥∈∈≥≥∪=∈∈ γβσρδλNNmAf  α  a real 

number such that 0>+ βα .Then )(zf is in the class ),(,,,, ρσδλγβα
mΡ if and only if     
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Definition 1.12: Let ,0,0],1,0(),1,0[,0,0},0{, 0 ≥≥∈∈≥≥∪=∈∈ γβσρδλNNmAf α a real 

number such that 0>+ βα . Then )(zf is in the class ),(,,,, ρσδλγβα
mΗ if and only if  
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Let T denote the subclass of A consisting of functions whose non-zero coefficients, from second on, are negative; that 
is, an analytic function f is in T if and only if it can be expressed as  

k
k k zazzf ∑∞

=
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2
)( , .,0 Uzak ∈≥  

 

If ,Tf ∈ then ,),,,,()(
2,,,

k
k kk
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=
−= δγβαζδγβα where  

),,,()()1(),,,,( mmm kkk γβαδδδγβαζ Φ+Ω−= ,               (1.10) 
 

)(mkΩ and ),,,( mk γβαΦ are as defined in (1.3) and (1.4), respectively. We denote by ),(,,, ρσδγβα
mTS , 

),(,,, ρσδγβα
mTK , ),(,,, ρσδγβα

mTC , ),(,,,, ρσδλγβα
mTΡ  and ),(,,,, ρσδλγβα

mTΗ , the classes of functions 

Tzf ∈)( satisfying (1.5), (1.6) (1.7),(1.8) and (1.9) respectively. 
 
In this paper, sharp results concerning coefficients and distortion theorems for the classes ),(,,, ρσδγβα

mTS , 

),(,,, ρσδγβα
mTK , ),(,,, ρσδγβα

mTC , ),(,,,, ρσδλγβα
mTΡ  and ),(,,,, ρσδλγβα

mTΗ are determined. Throughout this 

paper, unless otherwise mentioned we shall assume that ),,,,( mk δγβαζ  is as defined in (1.10). 
 
2. COEFFICIENT BOUNDS 
 
In this section we study the characterization properties for functions in the classes ),(,,, ρσδγβα

mTS , 

),(,,, ρσδγβα
mTK , ),(,,, ρσδγβα

mTC , ),(,,,, ρσδλγβα
mTΡ  and  ),(,,,, ρσδλγβα

mTΗ are determined, following the 
papers of V. P. Gupta and P. K. Jain [4], [5] and H. Silverman[11].  
 
Theorem 2.1: A function f is in ),(,,, ρσδγβα

mTS if and only if 
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The result is sharp. 
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Proof: Suppose f satisfies (2.1).Then for ,1<z we have 
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Hence, by using the maximum modulus theorem and (1.5), ),(,,, ρσδγβα

mTSf ∈ . 
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Since zz ≤)Re( for all ,Uz∈ we obtain  
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Choose values of z on the real axis so that ( ))(/)(( ,,,

'
,,, zfRIzfRIz mm

δγβαδγβα  is real. Upon clearing the denominator 

in (2.2) and letting 1→z through real values, we have the desired inequality (2.1).The  
function   

2,
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 is an extremal function for the theorem. 
 
Theorem 2.2: i) A function f is in ),(,,, ρσδγβα

mTK if and only if         
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ii) A function f is in ),(,,, ρσδγβα
mTC if and only if 
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The results (2.4) and (2.5) are sharp. 
 
The proof of Theorem 2.2 is similar to that of Theorem 2.1 and so omitted. Extremal functions are given by  
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Theorem 2.3: i) A function ),()( ,,,, ρσδλγβα
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ii) A function ),()( ,,,, ρσδλγβα

mTzf Η∈ if and only if  
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The results (2.8) and (2.9) are sharp. 
 
The proof of Theorem 2.3 is similar to that of Theorem 2.1 and so omitted. Extremal functions are given by  
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Corollary 2.4: i) If ),(,,, ρσδγβα
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3. DISTORTION THEOREMS 
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Theorem 3.2: i) If a function Tzf ∈)( is in ),(,,, ρσδγβα
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The proof of Theorem 3.2 is similar to that of Theorem 3.1. 
 
Remark 3.3:The bounds of Theorem 3.2 are sharp since the equalities are attained for the 
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