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ABSTRACT 
Let ),( EVG =  be a simple finite undirected graph. A subset S of V is called an equivalence set if every component of 

the induced sub graph S  is complete. An equivalence number )(Geβ is the maximum cardinality of an equivalence 
set of G [3]. A proper coloring of a graph is a partition of V(G) into independent sets and the minimum cardinality of 
such a partition is called the chromatic number of G ( )(Gχ ). A partition of V into equivalence sets is called an 
equivalence partition of V. The minimum cardinality of an equivalence partition is called the equivalence chromatic 
number of G and is denoted by )(Geqχ . In this paper, a partition of V(G) into equivalence sets is defined and results are 
derived.  
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1. INTRODUCTION 
 
Let ),( EVG =  be a simple finite undirected graph. A subset S of V is called an equivalence set if every component of 
the induced sub graph S  is complete. An equivalence number )(Geβ is the maximum cardinality of an equivalence 
set of G [3]. A proper coloring of a graph is a partition of V(G) into independent sets and the minimum cardinality of 
such a partition is called the chromatic number of G ( )(Gχ ). Since an equivalence set is a generalization of an 
independent set, every proper color partition is an equivalence partition. Thus, equivalence partition may be considered 
as a generalization of proper color partition.  A vertex u in V(G) is said to be eβ -good  if u belongs to a eβ  set of G. 

G is said to be eβ -excellent [12]  if every vertex of G is eβ -good. An equivalence graph is a vertex disjoint union of 
complete graphs.  Several variations of partitions of the vertex set have been studied. Since an equivalence set is a 
generalization of an independent set, every proper color partition is an equivalence partition. Thus, equivalence 
partition may be considered as a generalization of proper color partition. The concept of equivalence set, sub chromatic 
number, generalized coloring and equivalence covering number were studied in [1], [2], [4], [5], [6], [8], [10], [12]. In 
this paper, a partition of V(G) into equivalence sets is defined and results are derived.  
 
2. EQUIVALENCE CHROMATIC PARTITION 
 
Definition 2.1 [3]: Recall that a subset S of V is an equivalent set if every component of  is complete. 
 
Definition 2.2: A partition of V into equivalence sets is called an equivalence partition of V. The minimum cardinality 
of an equivalence partition is called the equivalence chromatic number  of G and is denoted by .  
 
Remark 2.3: Any proper color  cross partition is an equivalence partition. Therefore, . 
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8. , where P is the Petersen graph. 
 
Proposition 2.4:  if and only if G is component wise complete. 
 
Proof: Obvious. 
 
Proposition 2.5:  iff  V(G) is the disjoint union of two maximal equivalence sets. 
 
Remark 2.6: If G is a complete k-partite graph then . 
 
Remark 2.7: Given a positive integer k, there exists a graph G such that .  

 
For example, take .  

, . 

 
Definition 2.8 [3]: A dominating set S of G is called an equivalence dominating set if S  is complete. The 

equivalence dominating number )(Geγ  of G is the cardinality of its smallest equivalence dominating set. 
 
Remark 2.9: There is no relationship between  and . 

 For:       and  

,  

,  

 
Remark 2.10: Given a positive integer k, there exists a graph G such that . 

 
Proof: Let G be a ( k+2)-partite graph, where each partite sets contains  at least two elements. Then (Since 
the set containing two vertices from different partite sets forms a K2 and this set is a dominating set) and 

. Therefore . 

 
Remark 2.11: Let G be a bipartite graph of order ≥ 3 which contains an edge. Then  2)( =Geqγ . Therefore,  for any 

tree T with at least 3 vertices, . 

 
Proposition 2.12:  Let G be an unicyclic graph. Then . 

 
Proof: Let G be an unicyclic graph. Let C be the unique cycle in G.  
            Let V(C) = {u1 ,u2,u3,...,uk} 
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Case I: k is even. 
 
Then   contains the partitions S1 = {u1,u3,...,uk-1}; S2 = {u2,u4,...,uk}. 

 
Let Pi be a path attached at ui, 1≤ i ≤ k. 
 
Let V(Pi) = {ui1,ui2,...,uiri}where ri may be zero. Let Si1 = {ui1,ui3,...,uiri} if ri  is odd and  Si1 = {ui1,...,uiri-1}if ri  is even. 
Let Si2 = {ui2,ui4,...,uiri} or {ui2,ui4,...,uiri-1}if ri is even or odd. Join Si2 with S1 if 1Sui ∈ . Otherwise join Si2 with S2. 

Also join Si1 with  S2 if 1Sui ∈ . Otherwise, join Si1 with S1.The resulting partition ∏ of V(G) contains only two 
elements and hence . 

 
Case II: k is odd. 
 
Then contains the partitions S1= {u1, u3,...,uk-2, uk}; S2 = {u2, u4,...,uk-1}. 

 
Let Pi be a path attached at ui, 1≤ i ≤ k.  
 
Let V(Pi) = {ui1, ui2,...,uiri}where ri may be zero. Let Si1 = {ui1, ui3,...,uiri} if ri  is odd and  Si1 = {ui1,...,uiri-1}if ri  is even. 
Let Si2 = {ui2, ui4,...,uiri} or {ui2, ui4,...,uiri-1}if ri is even or odd. 
 
Join Si2 with S1 if 1Sui ∈ .Otherwise join Si2 with S2. Also join Si1 with S2 if 1Sui ∈ .  Otherwise join Si1 with S1.The 

resulting partition ∏  of V(G) contains  two elements and hence . 

 
Theorem 2.13: Given any positive integer 3≥k , the problem of deciding  is NP-complete for any 

graph G with kG ≥)(χ . 
 
Proof: Let }V,...,V,{V r21=∏  be a chromatic partition of G where )(Gr χ= . Let },...,,{)( 21 nuuuGV = .  
Add   vertices    u11,u12,u21,u22,...,un1,un2 to V.  Join ui1  and ui2 with ui, 1≤ i ≤ n. Also join ui1 and ui2, 1≤ i ≤ n. Let H be 
the resulting graph. Then . The problem of deciding kG ≥)(χ   is NP-complete if 3≥k . 

Therefore, the problem of deciding 
 
is NP-complete. 

 
Definition 2.14: Let )(GVu∈ . Let S be a maximum equivalence set of G containing u. is called the 
equivalence degree of u and is denoted by degeq(u). 
 
Example 2.15:  Let . 
 
Let u be the central vertex. Then where v is the pendant vertex. 
 
Example 2.16:  Let G = Kn.  for any vertex u of G. 
 
Example 2.17:  Let G= P5. The vertices 1,2,4,5 have as 3 and 2)3(deg =eq . 
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Example 2.18: Let  

 
Figure-2.1: Illustration of  

 
The  of any vertex of K3 is  2,  of any vertex of  K4  is 3 and  of any vertex of  K5 is 4. 
 
Definition 2.19 [3]: A graph G is said to be an equivalence graph if V(G) is an equivalence set. The maximum 
cardinality of an equivalence set is denoted by . 
 
Definition 2.20 [12]: A graph G is said to be a -excellent graph if every vertex of G is contained in a -set of G 
. 
Remark 2.21: Let G be a -excellent graph. Then  for every vertex u of G. Therefore, G is 

- regular. 
 
Definition 2.22:    

 

 
 
Remark 2.23: . 
 

Theorem 2.24: Let G be a graph of order n. Then . 

 
Proof: Let .  
 
Let be a -partition of V(G). Each Vi is an equivalence set and hence . 
 
Therefore, . 
 
Therefore,  . 
 

Therefore,  .  

Let S be  a  set of G. Consider the partition  where SVvi −∈ , 
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Therefore,  . 
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Remark 2.25: In the case of Kn, ,  and .

. 
 
Problem 2.26:  

It is known that,  . 
 
Problem 2.27: What is the relationship between  and ? 

In the case of  star , , . 

In the case of P5,  and .  

In the case of , 1−=∆=∆ neq  
 
. 

 
Remark 2.28: If G has a full degree vertex,  and .   
 
Remark 2.29:  iff  or  or G is an equivalence graph. 

 if G is an equivalence graph and in the case of equivalence graph G iff  
 
In the case of equivalence graph, and 1)( −=∆ nGeq . 
 
Remark 2.30: Let be a -partition of G. Let the number of -sets in the partition  be denoted by . 

1. In the case of  Kn,  
 and . 

2. In the case of P6,  
 and . 

3. In the case of complete  tri-partite graph,  where each partite set contains 3 elements,  
 and . 

 
In general, in the case of complete k-partite graph, where each partite set contains  k  elements,  and . 
 
Remark 2.31: In a -partition of G, it may happen that none of the sets in the partition is a  eβ -set. For example, 
 
In W7, ,  }}3{},5,4,2{},7,6,1{{=Π  is a - partition and it does not contain   any -set. 
 
Remark 2.32: Let S be an equivalence set  in G with k components, each component being complete. Then in , the 

vertices of S constitute a complete k-partite graph where each component of S becomes a partite set in . Therefore, S 

becomes an equivalence set in   if and only if  is a complete subgraph of G or a totally   disconnected subgraph 
of G. 
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