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ABSTRACT 
Let ),( EVG =  be a simple finite undirected graph. A subset S of V is called an equivalence set if every component 

of the induced sub graph S  is complete. The equivalence number )(Geβ is the maximum cardinality of an 

equivalence set of G [3]. A vertex u in V(G) is said to be eβ -good  if u belongs to a eβ  set of G. G is said to be eβ -

excellent if every vertex of G is eβ -good. A graph G = (V,E) is said to be very eβ -excellent if there exists a eβ -set S 

of G such that for every u in V-S, there exists a vertex v in S such that { } { }uvS ∪− )(  is eβ -set of G. S is called a 

very eβ -excellent set of G and G is called a very eβ -excellent graph. An equivalence graph is a vertex disjoint union 
of complete graphs. The concept of equivalence set, sub chromatic number, generalized coloring and equivalence 
covering number were studied in [1], [2], [4], [5], [6], [8], [10]. In this paper the concept of very eβ -excellence is 
studied. 
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1. INTRODUCTION 
 
Gred.H. Fricke et al [7] called a vertex u of a graph G = (V, E) to be µ -good if u is contained in a )(Gµ -set of 
G(where µ  is a parameter). G is said to be µ -excellent if every vertex in V is µ -good. A number of results has been 
proved by taking µ  as the domination parameter. Sridharan and Yamuna [12], [13] introduced several types of 
excellence, one of them being rigid excellence. A graph G is said to be rigid µ -excellent if every vertex of G belongs 
to a unique µ -set of G. Rigid γ -excellence was studied in [13]. A similar study was made with respect to the 

parameter 0β  in [11]. A sub set S of V(G) is said to be an equivalence set  if every component of S is complete. A 
graph G is said to be an equivalence graph if V(G) is an equivalence set. The maximum cardinality of an equivalence 
set is denoted by )(Geβ [3]. In this paper, very eβ -excellence is defined and several results are derived. 
 
2. Very eβ -Excellence of a Graph 
 
Definition 2.1: A graph G = (V,E) is said to be very eβ -excellent if there exists a eβ -set S of G such that for every u 

in V-S, there exists a vertex v in S such that { } { }uvS ∪− )(  is a eβ -set of G. S is called a very eβ -excellent set of 

G and G is called a very eβ -excellent graph. 
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Example 2.2:  Consider P4 with },,,{)( 43214 uuuuPV = . 
 
 
 
 
 
 
 
S={u1,u2,u4} is a eβ -set of P4. Also P4  is eβ -excellent. }{ 3uSV =−    and }{}){( 32 uuS ∪−  is a eβ  set of P4. 

Therefore,  S is a very eβ -excellent set of P4 and P4 is a very eβ -excellent graph. 
 
Remark 2.3: Any very eβ -excellent graph is a eβ -excellent graph. 
 
Proof: Let G be a very eβ -excellent graph and let S be a very eβ -excellent set of G. Let SVu −∈ . Then there 

exist Sv∈ such that { } { }uvS ∪− )( is a eβ -set of G. Therefore, every vertex of V-S is an element of a eβ -set of G. 

Since S is a eβ -set of G, every element of V(G) is in a eβ -set of G. Therefore, G is eβ -excellent. 
 
Remark 2.4: A very eβ -excellent graph need not be a rigid eβ -excellent graph. For example, P4 is a very eβ -

excellent graph. But is not a rigid eβ -excellent graph. 
 
Very eβ -excellence for standard graphs 

1. Kn is very eβ -excellent for all n. 

2. K1,n is not a very eβ -excellent graph  for any 2≥n .  

3. nK  is a very eβ - excellent  for all n. 

4. Wn is not very eβ -excellent for 5≥n . 

5. Km,n is not very eβ -excellent . 

6. Petersen graph is not very eβ -excellent. 

7. Any equivalence graph is very eβ -excellent. 
 
Proposition 2.5: Pn is very eβ -excellent iff  12,9,7,6,4,3,2=n . 
 
Proof: When )3(mod2≡n , Pn is not eβ -excellent and hence  not very eβ -excellent.  

Therefore, the possible values of n are rn 15= , 115 += rn , 315 += rn , 415 += rn , 615 += rn , 
715 += rn , 915 += rn , 1015 += rn , 1215 += rn ,  1315 += rn , 1515 += rn ( 1≥r ). 

 
Case I: rn 15= . Let kn 3= . Then rk 5= ; If kn 3=  then rke 102 ==β . 
 
Since the number of vertices is 15r, there are 3r consecutive   five vertices set.  For very eβ -excellence, from each set 

at most 3 vertices can be taken. Therefore, at most 3(3r) =9r vertices can be taken for constructing a very eβ -excellent 

set.  But )( ne Pβ =10r where rn 15= . Therefore, Pn  where rn 15= is not very eβ  excellent. 
 
Case II: 115 += rn . 
 
 13 += kn implies rk 5= ; 11012 +=+= rkeβ . 
 
 

A graph which is very eβ -excellent 
Figure-2.1 

 

u1 u2 u3 u4 
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Since there are 15r+1 vertices, we have 3r five consecutive element sets. From these sets as per the definition of very 

eβ -excellent set, at most 3 vertices can be taken from each set. The number of possible vertices chosen is 

3(3r)+1=9r+1.   But 110 += reβ .  Therefore, Pn  where n = 15r+1 is not very eβ -excellent. 
 
Case III: 315 += rn  

n= 3k where 15 += rk , )15(22 +== rkeβ  . 
 
The number of possible vertices in a very eβ -excellent set   chosen is 292)3(3 +=+ rr . 
 
Hence, Pn where n = 15r+3 is not very eβ -excellent. 
 
Case IV: 415 += rn .  13 += kn  where 15 += rk , 3101)15(212 +=++=+= rrkeβ . 
 
The number of possible vertices chosen with respect to the definition of very eβ -excellent set is 393)3(3 +=+ rr . 

But 310 += reβ . 

Therefore, Pn where n = 15r+4 is not very eβ -excellent. 
 
Case V: 615 += rn , kn 3=  where 25 += rk , 410)25(22 +=+== rrkeβ . There are 3r+1 five 

consecutive elements sets and from each set at most 3 vertices can be chosen is at most 491)13(3 +=++ rr . But  

410 += reβ . Therefore,  Pn where n = 15r+6 is not very eβ -excellent. 
 
Case VI: 715 += rn , 13 += kn  where 25 += rk , 5101)25(212 +=++=+= rrkeβ . 
 
The number of maximum possible vertices chosen for a very eβ -excellent set is 592)13(3 +=++ rr . But 

510 += reβ .   Therefore,  Pn    where     n = 15r+7     is    not      very eβ -excellent. 
 
Case VII: 915 += rn ; 33 += kn  where  35 += rk , 610)35(22 +=+== rrkeβ . 
 
The number of possible vertices chosen for constructing a very eβ -excellent set is 693)13(3 +=++ rr . But 

610 += reβ . Therefore, Pn  where n = 15r+9   is     not    very eβ -excellent. 
 
Case VIII: 1015 += rn . 13 += kn where 35 += rk ; 7101)35(212 +=++=+= rrkeβ . The number 

of possible vertices chosen for constructing a very eβ -excellent set is 69)23(3 +=+ rr . But 710 += reβ . 

Therefore, Pn where n= 15r+10 is not very eβ -excellent.  
 
Case IX: 1215 += rn , kn 3= where 45 += rk ; 810)45(22 +=+== rrkeβ . 
 
The number of possible vertices chosen for constructing a very eβ -excellent set is 3(3r+2)+2=9r+8. But 

810 += reβ . Therefore, Pn where 1215 += rn is not very eβ -excellent set. 
 
Case X: 1315 += rn . 13 += kn  where 45 += rk ; 9101)45(212 +=++=+= rrkeβ . 
 
The number of possible vertices chosen for constructing a very eβ -excellent set is 3(3r+2)+2. But 910 += reβ . 

Therefore Pn where 1315 += rn is not very eβ -excellent set. 
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Case XI: 1515 += rn . kn 3=  where 55 += rk ; 1010)55(22 +=+== rrkeβ . 
 
The number of possible vertices    chosen    for    constructing a very eβ -excellent set is 3(3r+5) = 9r+15. But 

1010 += reβ . Therefore Pn where 1515 += rn is not very eβ -excellent set. 
 
When 4,3,2,1=n  Pn is clearly very eβ -excellent.  
 
When n =6, {u1,u2,u5,u6}is a very eβ -excellent set where },,,,{)( 6,543216 uuuuuuPV = . 
 
When n =7, {u 1,u2,u4, u6, u7} is a very eβ  -excellent set. 
 
When 9=n , {u 1,u2,u4, u6, u7, u9}is a  very eβ  -excellent.  
 
When 10=n ; 13 += kn  where 3=k . There are two five consecutive elements set in P10 and at most 6 element 

are  possible for a very eβ -excellent.  Hence Pn is not very eβ -excellent. 
 
When 12=n , n = 3k where 4=k . 8)( =ne Pβ . 
 
The set },,,,,,,{ 1211976421 uuuuuuuu  is a very eβ -excellent and  hence  P12  is  a very eβ -excellent graph. 
 
When n =13, n = 3k+1 where k=4. 9)( 13 =Peβ . There are two five consecutive element sets with 3 elements 
remaining in the last. Hence at most 6 elements can be taken from the two consecutive elements sets and all the three 
remaining elements are to be taken for having 9 elements. This might will not give a eβ -set, since 3 consecutive    

elements cannot be taken in a eβ -set. Hence  13P   is not very eβ -excellent. 
 
Proposition 2.6:  Cn is very eβ -excellent only if n =3,4,5,7,10,13. 
 
Proof: Arguing as in the previous proposition 2.5 the above result is obtained. 
 
Remark 2.7: If a graph   G has a unique eβ -set  which   is not V(G) then   G  is not very eβ -excellent. 
 
Proposition 2.8: 1KCn   is not very eβ -excellent. 
 
Proof:  
 
Case I: Let n be even. 
 
Let },...,,,,...,,{)( 21211 nnn vvvuuuKCV = . Any eβ -set S of 1KCn   consists of all vi's and alternate ui's. 
Any vertex outside S cannot come inside by replacing a vertex of S without affecting the equivalence nature of S. 
Therefore, 1KCn   is not very eβ -excellent. 
 
Case II: Let n be odd.  
 
A similar argument as before shows  that there exist no eβ  excellent set which is   very  eβ -excellent.  
 
Observation 2.9: A very eβ -excellent graph may have isolates. Also, there are non-equivalence graphs which have 

isolates and which are very eβ -excellent. 
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For example, nm KK ∪  is a very eβ -excellent graph which have isolates, but this is an equivalence graph. 

14 KC ∪ is a non equivalence graph which is very eβ -excellent and which has an isolate. 
 
Remark 2.10: If G is a very eβ -excellent graph then mKG ∪ is also very eβ -excellent. 
 
Proposition 2.11: Let G be  very eβ -excellent graph without   isolates.  Let S be a very eβ -excellent set of G. Then 

for any Su∈ , 1],[ ≥Supn . 
 
Proof: Let G be a very eβ -excellent graph and let S be a very eβ -excellent set of G. Let Su∈ . Suppose u is an 

isolate of S and any neighbor of u in G is adjacent with some vertex of S other than u. Then 1],[ =Supn . Also,  if all 
the neighbors of u form a complete sub graph with u, then 1],[ =Supn .  
 
Corollary 2.12: P6  is very eβ -excellent. },,,{ 6521 uuuuS = is a very eβ  excellent set of G and 12],[ 5 >=Supn  
 
Remark 2.13: Let G be a graph without isolates. Let S be a very eβ -excellent set of G. Let SVx −∈ . Then there 

exist Su∈ such that }{}){( xuS ∪− is a eβ -set of G. x need not be a private neighbour of u. For example, P7 is 

very eβ -excellent. Let  },,,,,,{)( 76543217 uuuuuuuPV = . Let },,,,{ 76421 uuuuuS = . Then S is a very  eβ -

excellent subset of V(G). }{}){( 32 uuS ∪− is a eβ -set of G. But u3 is not a private neighbour of u2. 
 
Theorem 2.14: Let G be a graph without isolates. Suppose there exist a eβ -set S of G such that for every SVx −∈ , 

there exist Su∈ such that ),( Supnx∈ . Then G is very  eβ -excellent. 
 
Proof: By hypothesis, there exist a eβ -set  S of G such that for every SVx −∈ , there exist Su∈ such that 

),( Supnx∈ . Then }{}){( xuS ∪− is a eβ -set of G. Therefore S is a very eβ -excellent set of G. Hence G is a 

very eβ -excellent graph. 
 
Illustration 2.15: Let },,,{)( 43214 uuuuCV = . Let },{ 21 uuS = . Then u3 and u4 are private neighbours of S. 

}{}){( 32 uuS ∪− is a eβ -set. 

}{}){( 41 uuS ∪− is a eβ -set. 
 
Theorem 2.16: Let G be a graph such that G is an equivalence graph. Let kVVV ,...,, 21  be the components of G which 

are complete. Add vertices u1, u2,...,uk. Join ui only with every vertex of Vi, ki ≤≤1 .  Let H be the resulting graph. 

Then H is very eβ -excellent. 
 
Proof: Clearly H is an equivalence graph and H is very eβ -excellent. 
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