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ABSTRACT  

In this paper, we prove a fixed point theorem in L- FM space satisfying a Contrractive condition of integral form and 
also it is a generalization of results. 
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1. INTRODUCTION 
 
In 1965, the concept of fuzzy sets was introduced initially by Zadeh [186].Since then, to use this concept in topology 
and analysis many authors have expansively developed the theory of fuzzy sets and applications. In particular, George 
and Veeramani [61] have introduced and studied a notion of fuzzy metric space with the help of continuous t-norms, 
which constitutes a slight but appealing modification of the one due to Kramosil and Michalek [89]. Deschrijver and 
Kerre [44] have shown that intuitionistic fuzzy sets can also be seen as L- fuzzy sets in the sense of Goguen [6]. Using 
the idea of L-fuzzy sets [6], Saadati et al. introduced the notion of L-fuzzy metric spaces with the help of continuous t-
norms as a generalization of fuzzy metric space due to George and Veeramani and intuitionistic fuzzy metric space due 
to Park and Saadati and prove a common fixed point theorem for a pair of commuting mappings. Later on in he 
introduce the notion of uniform continuity and equicontinuity in an L-fuzzy metric space and prove Uniform continuity 
theorem for L-fuzzy metric space and prove Ascoli–Arzela theorem for L-fuzzy metric space.  
 
Branciari [30] initiated the study of contractive conditions of integral type in 2002 and give integral version of Banach 
contraction principle which was further generalized by Rhoades  Several common fixed point theorems for a family of 
four mappings satisfying some contractive conditions of integral type were established in [14, 47] and [12]. 
 
In metric fixed point theory, various mathematicians weakened the notion of commutativity by introducing the notions 
of weak commutativity, compatibility and weak compatibility and produced a number of fixed point theorems using 
these notions. It is worth to mention that every pair of commuting self-maps is weakly commuting, each pair of weakly 
commuting self-maps is compatible and each pair of compatible self-maps is weak compatible but the reverse is not 
always true. 
 
The main object of this paper is to prove common fixed point theorem in ℒ -fuzzy metric space for weakly compatible 
mappings satisfying integral type contractive condition and property (C). Which is a generalization of some results 
Adibi et al. [5] for this first, we recall some definitions and known results that will be used in the sequel. 
 
Definition 1.1: Let ℒ =  (L,≤L)  be a complete lattice, and U a nonempty set called a universe. An ℒ -fuzzy set 𝒜𝒜 on U 
is defined as a mapping:U →  L. For each u in U, 𝒜𝒜(u)  represents the degree (in L) to which u satisfies 𝒜𝒜. 
 
Lemma 1.2: Consider the set L∗ and the operation ≤L∗ defined by: 

L∗ =  {(x1, x2): (x1, x2)  ∈  [0, 1]2 and x1 + x2 ≤  1}, 
(x1, x2) ≤L∗ (y1, y2) ⟺  x1 ≤  y1 and x2 ≥  y2,  

for every (x1, x2), (y1, y2) ∈ L∗. Then (L∗,≤L∗)  is a complete lattice. 
 
Classically, a triangular norm T on ([0 ,1] ,≤) is defined as an increasing, commutative, associative mapping             
T ∶ [0, 1]2  → [0, 1]   satisfying  T(1, x) = x,  for all x ∈ [0, 1]. 
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These definitions can be straightforwardly extended to any lattice ℒ = (L,≤L).  Define first 

0ℒ =  inf L and 1ℒ =  supL. 
 
Definition 1.3: A triangular norm (t-norm) on ℒ is a mapping T: L2  → L satisfying the following conditions: 
1.3 (i) (∀x ∈ L)(T(x, 1ℒ) = x)  
1.3 (ii) (∀(x, y) ∈ L2)(T(x, y) = T(y, x)) 
1.3 (iii) (∀(x, y, z) ∈ L3)(T(x, T (y, z))  = T (T (x, y), z)) 
1.3 (iv)(∀(x, x’, y, y’) ∈ L4)(x ≤L  x’ and y ≤L y’  ⇒  T(x, y)  ≤L T (x’, y’)). 
 
Definition 1.4: A t-norm T on ℒ is said to be continuous if for any x, y ∈  ℒ and any sequence {xn} and {yn} which 
converge to x  and y we have 

lim
n→∞

T(xn, yn) = T(x, y). 
 
Example 1.5: T(x, y) = min(x, y) and T(x, y) = xy are two continuous t- norms on [0 ,1]. A t-norm can also be 
defined recursively as an (n + 1) -ary operation (n ∈ N) by T1 = T and 

Tn (x1, x2, … . . , xn+1) =  T(Tn−1(x1, x2, … . . , xn), xn+1)  for n ≥ 2  and xi ∈ L, 1 ≤ i ≤ n + 1. 
 
Definition 1.6: A negation on ℒ is any decreasing mapping N:ℒ→ ℒ  satisfying   

N( 0ℒ) = 1ℒ  and N(1ℒ) = 0ℒ.  
If N�N(x)� = x, for all x ∈ ℒ,  then N is called an involutive negation is fixed. 
If, for all ∈ [0, 1], Ns(x) = 1 − x, we say that Ns is the standard negation on ([0,1],≤). 
 
Definition 1.7: The 3-tuple (X, M, T) is said to be an ℒ -fuzzy metric space if X is an arbitrary (non-empty) set, T is a 
continuous t-norm on ℒ and M is an ℒ -fuzzy set on X2 × (0, ∞) satisfying the following conditions for all x, y, z ∈ X 
and s, t > 0. 
1.7 (i) M (x, y , t ) >L   0ℒ 
1.7 (ii) M (x, y , t) =  1ℒ  for all t >  0if and only if x = y 
1.7 (iii) M (x, y , t) = M (y, x , t ) 
1.7 (iv) T�M ( x, y , t ), M ( y, z , s)� ≤L M ( x, z , t + s) for all x, y, z ∈  X and  s, t > 0 
1.7 (v) M (x, y , . ): (0, ∞)  →  L  is continuous and   lim

t→∞
M(x, y, t) = 1ℒ  

 
In this case M is called an ℒ -fuzzy metric. 
 
Definition 1.8: Let (X, M, T ) be an ℒ -fuzzy metric space, For t ∈ (0, ∞)we define the open ball B(x, r, t ) with center 
x ∈ X and radius r ∈ L\{0ℒ , 1ℒ}  is defined by 

B(x, r, t ) = {y ∈  X ∶ M(x, y, t)  >L N(r)}. 
 
A subset A ⊆ X is called open if for each x ∈ A, there exists t > 0 and r ∈ L\{0ℒ , 1ℒ}  ,such that  B(x, r, t ) ⊆ A.  
 
Let τM  denote the family of all open subsets of X.  Then τM is called the topology induced by the ℒ -fuzzy metric M. 
 
Lemma 1.9: Let (X, M, T ) be an ℒ -fuzzy metric space. Then, M ( x, y , t ) is non-decreasing with respect to t, for all 
x, y ∈  X. 
 
Definition 1.10: Let (X, M, T ) be an ℒ -fuzzy metric space and {xn}  be a sequence in X. 
(1) {xn} is said to be convergent to a point x ∈ X (denoted by lim

n→∞
xn = x) if lim

n→∞
M(x, xn , t) =  1ℒ for all t > 0. 

(2) {xn} is called a Cauchy sequence if for each ε ∈ L\{0ℒ  } and t > 0, there exists n0 ∈ 𝐍𝐍, such that                    
M (xn, xm  , t) >L N(ε)   for all m ≥ n ≥  n0,  (n ≥ m ≥  n0) . 

(3) A ℒ -fuzzy metric in which every Cauchy sequence is convergent is said to be complete. Hence forth, we assume 
that T is a continuous t-norm on the lattice L, such that for every μ ∈ L\{0ℒ , 1ℒ}, there is a λ ∈ L\{0ℒ , 1ℒ}, such 
that 

Tn−1(N(λ), . . . , N(λ)) ≥L N(μ). 
 
Definition 1.11: Let (X, M, T ) be an ℒ -fuzzy metric space. M is said to be continuous functions on X2 × (0, ∞)  if 

lim
n→∞

M(xn , yn , tn ) = M(x, y, t), 
whenever a sequence {(xn , yn , tn )} in X2 × (0, ∞) converges to a point (x, y, t ∈  X2 × (0, ∞)   
 
i.e. lim

n→∞
M(xn , x, t) = lim

n→∞
M�yn,, y, t � = 1ℒ   and  lim

n→∞
M(x, y, tn ) = M(x, y, t).  
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Lemma 1.12: Let (X, M, T ) be an ℒ -fuzzy metric space. Then M is continuous functions on X2 × (0, ∞). 
 
Lemma 1.13: Let (X, M, T) be an ℒ -fuzzy metric space. If we define Eλ,M : X2 →  𝐑𝐑+ ∪ {0} by 

Eλ,M (x, y)  =  inf{t > 0 ∶ M(x, y, t)  >L L N(λ)} for all λ ∈ L\{0ℒ , 1ℒ}, and x, y ∈ X, then 
(1) For all μ ∈ L\{0ℒ, 1ℒ}  there exists λ ∈ L\{0ℒ , 1ℒ},, such that 

Eμ,M (x1, xn) ≤ Eλ,M (x1, x2)  + Eλ,M (x2, x3)  + ⋯+  Eλ,M(xn−1, xn)  
for all x1, x2・ ・ ・, xn ∈  X.  

(2) The sequence{xn} n∈N  is convergent to x w.r.t. ℒ -fuzzy metric M if and only if Eλ,M (xn, x) → 0. 
 
Also the sequence {xn}n∈N  is Cauchy w.r.t. ℒ -fuzzy metric M if and only if it is Cauchy with Eλ,M . 
 
We shall need the following lemma for proof of our main theorem: 
 
Lemma 1.14: Let (X, M, T) be a ℒ -fuzzy metric space. If 

M(xn , xn+1, t) ≥L M(x0 , x1, knt) 
for some k > 1 and for every n ∈ 𝐍𝐍. Then sequence {xn}  is a Cauchy sequence. 
 
Definition 1.15: We say that the ℒ -fuzzy metric space (X, M, T) has property(C), if it satisfies the following condition: 

M (x, y , t ) = C, 
for all t >  0 ⟹ C = 1ℒ . 
 
Definition 1.16: Let S and T be two mappings from an ℒ -fuzzy metric space (X, M, T) into itself and {xn}  be a 
sequence in X such that 

lim
n→∞

Sxn =  lim
n→∞

Txn = z 
for some z ∈ X.  Then the mapping S and T are said to be compatible if 

 lim
n→∞

M( STxn , TSxn , t ) = 1ℒ   for all t >  0 
 
Definition 1.17: Let S and T be mappings from an ℒ -fuzzy metric space (X, M, T) into itself. The maps S and T are 
said to be weakly compatible if they commute at their coincidence points, i.e. if Sp = Tp for some  p ∈ X,  then  

STp = TSp 
 
Proposition 1.18: Self mappings S and T of an ℒ -fuzzy metric space (X, M, T) are compatible then they are weakly 
compatible. 
 
In fact Branciari give a following Integral contractive type condition 
 
For a given ε >  0, there exists a real number c ∈ (0, 1)  and a locally Lebesgue-integrable function  g: [0, ∞) → [0 , ∞)  
Such that 

∫ g(t)dt ≤c  ∫ g(t)dtd(x,y)
0

d(fx ,fy ,t)
0   

and ∫ g(t)dt > 0ε
0   for all x , y ∈ X  and for each ε >  0 . 

 
Also, Branciari-Integral contractive type condition is a generalization of Banach contraction map if g(t) = 1 for all 
t ≥ 0. 
 
2 MAIN RESULTS 
 
Theorem 2.1: Let A, B , S and T be self mappings of a compete ℒ fuzzy metric space (X, M, T) which has property (C), 
satisfying: 
2.1 (I) A(X) ⊆ T(X), B(X) ⊆ S(X) and T(X),  S(X) are two closed subsets of X. 
2.1 (II)The pairs (A , S) and (B , T) are weak compatible. 

2.1 (III) ∫ ∅(t)dtM(Ax ,By ,t) 
0 ≥L ∫ ∅(t)dtM(Sx ,Ty ,kt )

0     
for every x, y ∈ X and some k > 1. Where φ: R+ → R is a Lebesgue-integrable mapping which is summable, 
nonnegative and such that 

∫ ∅(t)dtε
0 > 0,ε >  0 

Then A, B, S and T have a unique common fixed point in X. 
 
Proof: Let x0 ∈ X be an arbitrary point in X.  By 2.1(I), there is  x1, x2 ∈ X such that 

y0 =  Ax0  =  Tx1, 
y1 =  Bx1  =  Sx2 
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Inductively, construct sequences {yn}and {xn} in X such that 

y2n =  Ax2n =  Tx2n+1 , 
y2n+1 =  Bx2n+1 =  Sx2n+2 

for n= 0, 1, 2………… 
 
Now, we prove that {yn} is a Cauchy sequence. 
 
Let dm (t) = M(ym , ym+1, t), t > 0. Then, we have 

∫ ∅(t)dtd2n(t)
0 = ∫ ∅(t)dtM�y2n ,y2n +1, t�

0   

    = ∫ ∅(t)dtM�Ax 2n ,Bx 2n +1, t�
0  

   ≥ L∫ ∅(t)dtM�Sx 2n ,Tx 2n +1, kt�
0  

   = ∫ ∅(t)dtM�y2n−1,y2n , kt�
0  

   = ∫ ∅(t)dtd2n−1(kt )
0 . 

Thus  
d2n(t)  ≥L d2n−1(kt) 

for every m = 2n ∈ ℕ  and ∀t > 0. 
 
Similarly for an odd integer m = 2n+1, we have   d2n+1(t) ≥L d2n(kt). 
 
Hence for every n ∈ ℕ, we have 

 dn(t) ≥L dn−1(kt). 
That is, 

∫ ∅(t)dtM�yn ,yn +1, t�
0 ≥L ∫ ∅(t)dtM�yn−1,yn , kt�

0 ≥L 

 ≥L ∫ ∅(t)dtM�y0,y1, kn t�
0 . . 

 
So, by Lemma 1.14, {yn} is Cauchy and the completeness of X implies {yn} converges to y in X. That is 
     lim

n→∞
yn = y  

lim
n→∞

y2n = lim
n→∞

Ax2n = lim
n→∞

Tx2n+1 = lim
n→∞

y2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = y. 
 
As B(X) ⊆ S(X), there is  u ∈ X  such that  Su = y. 
 
By (iii), we have 

∫ ∅(t)dtM�Au ,Bx 2n +1, t�
0 ≥L ∫ ∅(t)dtM�Su ,Tx 2n +1, kt�

0 . 
 
Since M is continuous, we get(whenever n → ∞ in the above inequality): 

∫ ∅(t)dtM(Au ,y,t)
0 ≥L ∫ ∅(t)dtM(y,y,kt )

0 = 1ℒ  . 
 
Thus                     M(Au, y, t) = 1ℒ , 
 
i.e.                        Au = y. 
 
Therefore,            Au = Su = y. 
 
Since                     A(X) ⊆ T(X), there is  v ∈ X such that  Tv = y. 
 
Thus,  

∫ ∅(t)dtM(y,Bv ,t)
0 = ∫ ∅(t)dtM(Au ,Bv ,t)

0 . 

 ≥L ∫ ∅(t)dtM(Su ,Tv ,kt )
0   

 = 1ℒ  
 
Hence                    Tv = Bv = Su = y. 
 
Since  (A, S)is weak compatible,  we conclude that 

ASu = SAu, 
 that is 

Ay = Sy. 
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Also (B, T) is weak compatible then,  

TBv = BTv 
that is 

 Ty = By 
 
We now prove that  

Ay = y  
 
By 5.2.1(III), we have 

∫ ∅(t)dtM(Ay ,y,t)
0 =.∫ ∅(t)dtM(Ay ,Bv ,t)

0 . 

≥L∫ ∅(t)dtM(Sy ,Tv ,kt )
0  

≥L∫ ∅(t)dtM(Ay ,y,kn t)
0 . 

 
On the other hand, from Lemma 1.9 we have that 

∫ ∅(t)dtM(Ay ,y,t)
0 ≤L ∫ ∅(t)dtM(Ay ,y,kn t)

0 . 
 
Hence, 

M(Ay, y, t) =  C for all t > 0. 
 
Since (X, M, T)  has property(C) it follows that  

C = 1ℒ, 
i.e., 

Ay = y, 
Therefore 

Ay = Sy = y. 
 
Similarly we prove that 

By = y. 
 
By 2.1(III), we have 

∫ ∅(t)dtM(y,By ,t)
0 = ∫ ∅(t)dtM(Ay ,By ,t)

0 . 

≥ L∫ ∅(t)dtM(Sy ,Ty ,kt )
0  

= ∫ ∅(t)dtM(y,By ,kt )
0  

≥ L∫ ∅(t)dtM(y,By ,kn t)
0 . 

 
On the other hand, from Lemma 1.9 we have that 

∫ ∅(t)dtM(y,By ,t)
0 ≤L ∫ ∅(t)dtM(y,by ,kn t)

0 . 
 
Hence,                  M(y, By, t) = C  ∀ t > 0 
 
Since (X, M, T)  has property (C), it follows that   C = 1ℒ, 
i.e.                 By =  y. 

 
Therefore 

Ay = By = Sy = Ty = y. 
 

i.e., y is a comman fixed point of A, B , S and T. 
 
Uniqueness: Let x be another comman fixed point of A, B , S and T 
 
i.e., x = Ax = Bx = Sx = Tx. 
Hence 

∫ ∅(t)dtM(y,x,t)
0  = ∫ ∅(t)dtM(y,Bx ,t)

0 . 

≥ L∫ ∅(t)dtM(Sy ,Tx ,kt )
0  

= ∫ ∅(t)dtM(y,x,kt )
0  

≥ L∫ ∅(t)dtM(y,x,kn t)
0 . 
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On the other hand, from Lemma 1.9 we have that 

∫ ∅(t)dtM(y,x,t)
0 ≤L ∫ ∅(t)dtM(y,x,kn t)

0 . 
 
Hence,      M(y, x, t) = C   ∀ t > 0. 
 
Since (X, M, T)  has property (C),  it follows that  C = 1ℒ, 
 
i.e.                 y =  x. 
 
Therefore, y is the unique comman fixed point of self maps A, B, S and T. 
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