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1. INTRODUCTION 
 
Let (X, τ ) be a topological space. A set X equipped with two topologies 1τ , 2τ  is called a Bitopological space with 

topology τ = ( )21 ττ  . This concept was first introduced by Kelly J.C [6] in 1963. In 1982, Mashhour et al. [8] 
introduced the concept of separation axioms in bitopological spaces. After that many authors worked on separation 
axioms in bitopological spaces [1], [4]. The study of tri topological spaces was first initiated by Kovar M [7] in 2000. A 
non empty set X with three topologies 1τ , 2τ , 3τ  is called a tri topological space with topology 'τ =  

and is denoted by (X, 1τ , 2τ , 3τ ). Hameed and Mohammed Yahya Abid [3] studied separation axioms in tri topological 

spaces. In 2014, Palaniammal S and Somasundharam S [9] defined another topology ''τ = 1τ  2τ  3τ  in tri 
topological space. In 2016, Stella Irene Mary J and Hemalatha M [10] introduced a new topology called T*123-topology 
in tri topological spaces, which is a combination of two bitopologies defined byτ = ( ) ( )3231 ττττ   and studied 

the various properties of T*123-open, T*123-pre open and T*123-semi open sets. Note that 'τ ⊃  T*123⊃ ''τ .  
 
In this paper, we introduce T*123-Tk spaces, T*123 –pre Tk spaces, k = 0, 1, 2, 3 based on the separation axioms induced 
by T*123-open and T*123- pre open sets and their properties are analyzed. 
 
2. PRELIMINARIES 
 
Definition 2.1.1: [10] A tri topological space (X, 1τ , 2τ , 3τ ) is said to be T*123-topological space if the topology τ  on 

X is defined by  τ = ( ) ( )3231 ττττ  , where ( )31 ττ   and  ( )32 ττ   are bitopologies defined on the 

bitopological spaces  (X, 1τ , 3τ )  and  (X , 2τ , 3τ )  respectively. 
 
Definition 2.1.2: [10] Let (X, 1τ , 2τ , 3τ ) be T*123-topological space and A⊂  X is called 

1. T*123-open if A ⊆  1τ 3τ -int( 2τ 3τ -int A) = 2τ 3τ -int( 1τ 3τ -int A) and  T*123-closed if   

A ⊇  1τ 3τ -cl ( 2τ 3τ --cl A).  

            2.   T*123- pre open if A ⊆  1τ 3τ -int( 2τ 3τ -cl A) and  T*123- pre closed if 1τ 3τ -cl ( 2τ 3τ -int A) ⊆  A.    
 
The intersection of all T*123-closed sets (or T*123-pre closed sets) containing A is called T*123-closure ( or T*123-pre 
closure) of A and it is denoted by T*123-cl(A)( or T*123- pre cl(A)). 
 

Corresponding Author: Stella Irene Mary J.*1 

( )321 τττ 

http://www.ijma.info/�


Stella Irene Mary J.*1, Hemalatha M.2 / Separation Axioms On Tri Star Topological Spaces / IJMA- 7(12), Dec.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                         76  

 
Definition 2.1.3:  [5] Let X be a topological space with topology τ . If Y is a subset of X, the collection  

Yτ  = {Y U | U∈τ } is a topology on Y, called subspace topology. 
 
Definition 2.1.4: [2] Let (X, τ ) be a topological space. 
 
To axiom: If x, y are distinct elements of X, then there exist an open set U∈τ  such that either x∈U and y∉  U or x∉
U and y∈U. 
 
T1 axiom: If x, y∈  X and y≠ x, then there exist two open sets U and V such that U contains x but not y and V contains 
y but not x. 
 
T2 axiom: If x, y∈  X and y≠ x, then there exist two disjoint open sets U and V containing x and y respectively. 
 
T3 axiom: If A is a closed  subset of X and x be any point of X disjoint from A, then there exist two disjoint open sets U 
and V containing x and A respectively 
 
3.  SEPARATION AXIOMS IN T*123-SPACE 
 
3.1. T*123- T0  space:  
 
Definition 3.1.1: A T*123 topological space (X, 1τ , 2τ , 3τ ) is said to be T*123- T0 space if and only if for each pair 
distinct points x, y ∈  X, there exist a T*123-open set U such that either x∈U and y∉  U or x∉U and y∈U.  
 
Example 3.1.2: Let X = {a, b, c} with 1τ  = {X,φ }, 2τ  = {X,φ ,{a}}, 3τ  = Discrete topology, then for each pair x, y 
with x≠ y in X, there exist a T*123-open {x} not containing y. 
 
Theorem 3.1.3: A T*123 topological space (X, 1τ , 2τ , 3τ ) is a T*123- T0 space if and only if for each pair of distinct 

points x, y ∈  X, there exist a subset U of X, which is 1τ  2τ -open or 3τ -open such that x∈U and y∉  U or x∉U 
and y∈U.  
 
Proof: Assume that (X, 1τ , 2τ , 3τ ) is a T*123- T0 space. By definition 3.1.1, for any two points x, y with x≠ y in X, 

there exist a T*123-open set U such that either x∈U and y∉  U or x∉U and y∈U. Since τ = ( ) ( )3231 ττττ   = 

( 1τ  2τ )  3τ  and U is T*123-open, we have U is ( 1τ  2τ )-open or 3τ -open. 
 
Conversely, let x, y in X with x≠ y. By hypothesis, there exist a subset U⊂X, which is ( 1τ  2τ )-open or 3τ -open 

such that x∈U and y∉  U or x∉U and y∈U. Butτ  is union of the ( 1τ  2τ ) and 3τ open sets, implies U is T*123-

open containing x or y. Hence (X, 1τ , 2τ , 3τ ) is a T*123- T0 space. 
 
Theorem 3.1.4: For a space (X, 1τ , 2τ , 3τ ) to be a T*123- T 0 space, it is sufficient that X with 3τ -as its topology is a 

T0-space or X with 1τ  2τ  - as its topology is a T0-space.  
 
Proof: Assume that (X, 3τ ) is a T0 space or (X, 1τ  2τ ) is a T0 space . Then for each pair of distinct points x, y of X, 

there exist a 3τ -open set U1 or a 1τ  2τ - open set U2 containing either x or y. Since τ = ( 1τ  2τ )  3τ , we have 

U1 and U2 areτ -open, and hence U1 and U2 are T*123-open. Consequently, (X, 1τ , 2τ , 3τ )  is a T*123- T0 space.   
 
Remark 3.1.5: The condition in the above Theorem is not necessary. We show that there exist (X, 3τ ) and                

(X, 1τ  2τ ) spaces which are not T0, yet (X, 1τ , 2τ , 3τ ) is T*123- T0 space.   
 
Example 3.1.6: Let X = {a, b, c} with 1τ = {X,φ ,{a},{c},{a, c}}, 2τ  = { X,φ ,{a},{b},{a, b}}, 3τ = {X,φ ,{a, c}} 
then for each pair x, y with x≠ y in X, there exist a subset U of X, such that x∈U and y∉  U or x∉U and y∈U. Here 
X with 3τ and X with 1τ  2τ -are not a T0-space, but (X, 1τ , 2τ , 3τ )  is a T*123- T0 space. 
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The following Theorem proves a characterization for a T*123- T0 space: 
 
Theorem 3.1.7: A T*123 topological space (X, 1τ , 2τ , 3τ ) is said to be T*123- T0 space if and only if the T*123-closure of 
distinct  points are distinct. 
 
Proof: Assume that (X, 1τ , 2τ , 3τ ) is T*123- T0 space and let x, y be two distinct points of X. We show that T*123-

closure of x and y are also distinct. (X, 1τ , 2τ , 3τ ) is T*123- T0 space implies that there exist a T*123-open set U such that 
either x∈U and y∉  U. Now U being T*123-open implies that X-U is T*123-closed. Also x ∉  X-U and y∈  X-U. Since 
T*123-cl{y} is the intersection of all T*123-closed sets containing y, y∈  T*123-cl{y} but x∉  T*123-cl{y} as x∉  X-U. 
Similarly x∈  T*123-cl{x} but y∉  T*123-cl{x}. Hence T*123-cl{x}≠  T*123-cl{y}. 
 
Conversely, Suppose that for any pair of distinct points x, y in (X,𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3) we have T*123-cl{x} ≠  T*123-cl{y}. Then 
there exist  at least one point z∈X such that z∈  T*123-cl{x} but z∉  T*123-cl{y}. We claim that x∉  T*123-cl{y}. If      
x∈T*123-cl{y} then T*123-cl{x}⊆  T*123-cl{y}. So z∈  T*123-cl{y} which is contradiction. Hence x∉  T*123-cl{y}. 
This implies that x∈  (T*123-cl{y})c, which is a T*123-open set containing x but not y. Hence (X, 1τ , 2τ , 3τ ) is a       
T*123- T0 space. 
 
The following Theorem proves the hereditary property of T*123- T0 space. 
 
Theorem3.1.8: Every subspace of T*123- T0 space is a T*123- T0 space in (X, 1τ , 2τ , 3τ ). 
 
Proof: Let (X, 1τ , 2τ , 3τ ) be a T*123- T0 space and (Y, '

3
'
2

'
1 ,, τττ ) be its subspace where 

'
3

'
1ττ

'
3

'
2ττ  is subspace 

topology of  
31ττ 32ττ  on Y. Let y1, y2  be any two distinct point of Y and hence of X. Now as (X, 1τ , 2τ , 3τ ) is a 

T*123- T0 space there exist a T*123-open set U such that y1∈U and y2∉  U. Then U  Y is a T*123-open in                   
(Y, '

3
'
2

'
1 ,, τττ ), which contains y1 but does not contain y2. Hence Y is T*123- T0 space. 

 
3.2. T*123- T1  space: 
 
Definition 3.2.1: A T*123 topological space (X, 1τ , 2τ , 3τ ) is said to be T*123- T1 space if and only if for any given pair 
of distinct points x and y, there exist two T*123-open sets U and V such that U contains x but not y and V contains y but 
not x. 
 
Remark 3.2.2: Every T*123- T1 space is T*123- To space, but converse not true. 
 
Example 3.2.3: Consider the set N, of all natural numbers and let 1τ  = 2τ = {N, φ } and 3τ  be the collection 

consisting of N, φ  and those subsets of N of the form {1,2,3,…n}, n∈N. Clearly the space (N, 1τ , 2τ , 3τ ) is a T*123- 

To space. But it is not a T*123- T1 space, because if we consider two distinct points m and n (m < n)and if we choose U = 
{1,2,3,…m} then m∈U and n∉U, but there does not exist any T*123-open set V contains n but not m. 
 
Theorem 3.2.4: A T*123 topological space (X, 1τ , 2τ , 3τ ) is a T*123- T1 space iff for each pair of distinct points x, y ∈  

X, there exist subsets U, V of X, which are 1τ  2τ -open or 3τ -open such that x∈U and y∉  U or x∉V and y∈V.  
 
Proof: Assume that (X, 1τ , 2τ , 3τ ) is a T*123- T1 space. By definition 3.2.1, for any two points x,y with x≠ y in X, there 

exist T*123-open sets U and V such that U contains x but not y and V contains y but not x. Since τ  = ( 1τ  2τ )  3τ  

and U, V∈  τ , implies U is 1τ  2τ -open or 3τ -open. 
 
Conversely, let x, y in X with x≠ y. By hypothesis, there exist subsets U, V⊂X, which are    ( 1τ  2τ )-open or 3τ -
open such that x∈U and y∉  U or x∉V and y∈V. Then U and V must belongs to the collectionτ . This implies U is 
T*123-open containing either x or y. Hence (X, 1τ , 2τ , 3τ ) is a T*123- T1 space. 
 
 
 



Stella Irene Mary J.*1, Hemalatha M.2 / Separation Axioms On Tri Star Topological Spaces / IJMA- 7(12), Dec.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                         78  

 
Theorem 3.2.5: A space (X, 1τ , 2τ , 3τ ) to be T*123- T 1 space, it is sufficient that X with 3τ -is a T1-space or X with 1τ
 2τ  -is a T1-space.  
 
Proof: Assume that (X, 3τ ) is a T1 space or (X, 1τ  2τ ) is a T1 space. Then for each pair of distinct points x, y of X, 

there exist a 3τ -open sets U1 and V1, such that U1 contains x but not y and V1 contains y but not x or 1τ  2τ -open 

sets U2 and V2  such that U2 contains x but not y and V2 contains y but not x. Since τ = ( 1τ  2τ )  3τ , we have  

U1,V1 and U2,V2 are T*123-open sets. Hence (X, 1τ , 2τ , 3τ )  is a T*123- T1 space.  
 
Remark 3.2.6: The condition in the above theorem is not necessary. We show that there exist (X, 3τ ) and                  

(X, 1τ  2τ ) spaces which are not T1, yet (X, 1τ , 2τ , 3τ ) is T*123- T1 space.   
 
Example 3.2.7: Let X = {a, b, c} with  1τ = {X,φ ,{a},{c},{b, c},{a, c}}, 2τ  = { X,φ ,{a},{b, c}}, 3τ = {X,φ ,          
{a, b},{c}} then for every pair of distinct points of X there exists T*123-open sets U and V contains each points 
respectively. Here X with 3τ  and X with 1τ  2τ  -are notT1-space, but (X, 1τ , 2τ , 3τ )  is a T*123- T1 space. 
 
Theorem 3.2.8: A T*123 Topological space (X, 1τ , 2τ , 3τ ) is a T*123- T1 space if and only if every singleton subset {x} 
of X is a T*123- closed set. 
 
Proof: Let X be a T*123- T1 space and x be arbitrary point of X. If y∈{x}c, then y≠ x. Since X is T*123- T1 space and y
≠ x there must exist an T*123-open set Uy such that y∈Uy  but not x. Thus for each  y∈{x}c, there exist an T*123-open 
set Uy such that y∈Uy⊆ {x}c. Therefore {x}c = { y | y≠ x}⊆  {Uy | y≠ x }⊆ {x}c and so {x}c =  {Uy | y≠ x }. 
Since Uy  is T*123-open set and the arbitrary union of T*123-open sets is T*123-open, we have {x}c is T*123-open. Hence 
{x} is T*123-closed. 
 
Conversely, let x and y are two distinct points of X such that {x} and {y} are T*123-closed set. Then {x}c  and {y}c are 
T*123-open sets in X such that y∈{x}c but x ∉{x}c and x∈{y}c but y ∉{y}c. Hence X is T*123- T1 space. 
 
Remark 3.2.9: A topological space (X, 1τ , 2τ , 3τ ) is a T*123- T1 space if and only if every finite subset of X is T*123- 
closed. 
 
Definition 3.2.10: Let X be a T*123-topological space and A⊂X, x∈X is a limit point of A if for every T*123-open set 
B containing x, B -{x} A≠  φ .  
 
Theorem 3.2.11: If (X, 1τ , 2τ , 3τ ) be a T*123- T1 space, then the following statements are equivalent: 
   i)   x∈X is a T*123-limit point of A where A⊂X. 
  ii)  Every T*123-open set containing x, contains infinite number of point of A. 
 
Proof: 
(i)⇒ (ii): Assuming that x ∈X is a T*123-limit point of A where A⊂X and U is any T*123-open set containing x, we 
shall show that U contains infinitely many points of A. Suppose U contains only finite number of points of A other than 
x.  Let V = U-{x} A, then V being a finite subset of T*123- T1 space, is closed and hence Vc  is T*123-open. Take        
W = U  Vc, which is also T*123-open and x∈W implies W does not contain a point of A other than x. This means x is 
not a T*123-limit point of A which is contradiction to our assumption.  Hence U must contain infinite number of points 
of A other than x.   
 
(ii) ⇒  (i): It is obviously true by the definition of T*123-limit point. 
 
3.3. T*123- T2  space: 
 
Definition 3.3.1: A T*123 topological space (X, 1τ , 2τ , 3τ ) is said to be T*123- T2 space if and only if for every pair of 
distinct points x, y of X, there exist disjoint T*123-open sets U and V containing x and y respectively. 
 
Remark 3.3.2: Every T*123- T2 space is a T*123- T1 space, but converse need not be true. 
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Theorem 3.3.3: Every discrete space is T*123- T2 space while no indiscrete space consisting of at least two points is 
T*123- T2 space. 
 
Proof: We know that every singleton set is T*123-open in a discrete space, therefore every pair of distinct points of a 
discrete space will have disjoint T*123-open sets and hence every discrete space is T*123- T2 space. On the other hand an 
indiscrete space consisting of at least two points is not a T*123- T2 space since the whole space is the only T*123- open 
set of each point, so that any two distinct points cannot have disjoint T*123- open sets. 
 
3.4. T*123- T3  space: 
 
Definition 3.4.1: A T*123 topological space (X, 1τ , 2τ , 3τ ) is said to be T*123-regular if for each pair consisting of a 
point x and a T*123-closed set B disjoint from x, there exist disjoint T*123- open sets containing x and B respectively. A 
T*123 –topological space is said to be T*123-T3 space if it is T*123- regular and its points are T*123- closed. 
 
Theorem 3.4.2: A T*123 topological space (X, 1τ , 2τ , 3τ ) is said to be T*123- T3 space iff for each pair consisting of a 

point x and a T*123-closed set B disjoint from x, there exist disjoint subsets U, V of X, which are 1τ  2τ -open or     

3τ -open containing x and B respectively. 
 
Proof: Assume that (X, 1τ , 2τ , 3τ ) is a T*123- T3 space. By definition 3.4.1, for each pair consisting of a point x and a 
T*123-closed set B disjoint from x, there exist disjoint T*123- open sets U and V containing x and B respectively and 
each of its points are T*123- closed.  Since τ  = ( 1τ  2τ )  3τ  and U, V∈τ , implies U and V are in 1τ  2τ -open 

or 3τ -open containing x and B respectively. 
Conversely, let x, y in X with x≠ y. By hypothesis, each pair consisting of a point x and a T*123-closed set B disjoint 
from x, there exist disjoint subsets U, V of X, which are 1τ  2τ -open or 3τ -open containing x and B respectively. 

Since τ  = ( 1τ  2τ )  3τ , then U and V must belongs to the collectionτ . This implies U and V are T*123-open sets 

containing x and B respectively. Hence (X, 1τ , 2τ , 3τ ) is a T*123- T1 space. 
 
Theorem 3.4.3: A space (X, 1τ , 2τ , 3τ ) to be T*123- T3 space, it is sufficient that X with 3τ -is a T3-space or X with   

1τ  2τ  -is a T3-space.  
 
Proof: Assume that (X, 3τ ) is a T3 space or (X, 1τ  2τ ) is a T3 space . Then for each pair consisting of a point x and 

a T*123-closed set B disjoint from x, there exists disjoint 3τ - open sets U1 and V1, such that U1 contains x but not B and 

V1 contains B but not x or 1τ  2τ -open sets U2 and V2  such that U2 contains x but not B and V2 contains B but not x. 

Since τ = ( 1τ  2τ )  3τ , we have U1,V1 and U2,V2 are T*123-open sets. Hence (X, 1τ , 2τ , 3τ )  is a T*123- T3 space.  
 
Remark 3.4.4: The condition in the above theorem is not necessary. We show that there exist (X, 3τ ) and                  

(X, 1τ  2τ ) spaces which are not T3, yet (X, 1τ , 2τ , 3τ ) is T*123- T3 space.   
 
Example 3.4.5: Let X = {a, b, c} with  1τ = {X,φ ,{c},{b, c},{a, c}}, 2τ  = { X,φ ,{a},{b, c}}, 3τ = {X,φ ,{a}} . This 

space X is T*123- T3 space. Here X with 3τ  and X with 1τ  2τ  -are not T*123-T3-space, but (X, 1τ , 2τ , 3τ )  is a T*123- 

T3 space. 
 
3.5. T*123- pre T0  space: 
 
Definition 3.5.1: A T*123 topological space (X, 1τ , 2τ , 3τ ) is said to be T*123-pre T0 space if and only if for any pair of 
distinct points x, y ∈  X, there exist a T*123- pre open set, which contains one of them but not the other. 
 
Theorem 3.5.2: If {x} is T*123- pre open for some x∈X, then x∉T*123-pre cl{y} for all x≠ y. 
 
Proof: Let {x} be T*123- pre open set for some x∈X, then X-{x} is T*123- pre closed. Also x∉X-{x}. If x ∈T*123-pre 
cl{y} for some y≠ x, then x, y both are in all the closed sets containing y, so x∈  X-{x} which is contradiction. Hence 
x∉T*123-pre cl{y} 
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Theorem 3.5.3: If every non trivial subset of a tri topological space (X, 1τ , 2τ , 3τ ) is either T*123-pre open or T*123-pre 
closed then number of T*123-pre open and T*123-pre closed sets are equal. 
 
Proof: Suppose if number of T*123-pre open and T*123-pre closed sets are not equal, then number of T*123-pre open sets 
may be greater than T*123-pre closed sets or number of T*123-pre closed sets may be greater than number of T*123-pre 
open sets. Without loss of generality we assume that, number of T*123-pre closed sets are higher than number of      
T*123-pre open sets. We know that the only T*123-pre closed sets are complement of T*123-pre open sets, implies 
number of T*123-pre open sets must be equal to T*123-pre closed sets. From this we can find some of T*123-pre open sets 
are also T*123-pre closed, which is contradiction to our hypothesis. Hence number of T*123-pre open and T*123-pre 
closed sets are equal. 
 
Theorem 3.5.4: If every non trivial subset of a tri topological space (X, 1τ , 2τ , 3τ ) is either T*123-pre open or T*123-pre 

closed then (X, 1τ , 2τ , 3τ ) is T*123-pre T0 space. 
 
Proof: Assume that every non trivial subset of a tri topological space (X, 1τ , 2τ , 3τ ) is either T*123-pre open or      

T*123-pre closed. Suppose (X, 1τ , 2τ , 3τ ) is not T*123-pre T0 space, then for atleast one of distinct points x, y of X, there 
does not exist a T*123-pre open set contains either x or y. This implies both x and y are in the same T*123-pre open set or 
same T*123-pre closed set, means {x} and {y} does not belongs to collections T*123-pre open sets and T*123-pre closed 
sets. But by our hypothesis, every non trivial subset of a tri topological space (X, 1τ , 2τ , 3τ ) is either T*123-pre open or 

T*123-pre closed set. So our assumption, (X, 1τ , 2τ , 3τ ) is not T*123-pre T0 space, is wrong. 
 
Theorem 3.5.5: Every T*123-T0 space is T*123-pre T0 space. 
 
Proof: Let (X, 1τ , 2τ , 3τ ) be a T*123-T0 space, then for every pair of distinct points x, y of X, there exist a T*123-open 
set contains either x or y. We know that every T*123-open set is T*123-pre open, this implies every pair of distinct points 
x, y of X, there exist a T*123-pre open set contains either x or y. Hence (X, 1τ , 2τ , 3τ ) is a T*123-pre T0 space. 
 
Theorem 3.5.6: In any T*123- topological space (X, 1τ , 2τ , 3τ ), if distinct points have distinct T*123-pre closure then X 
is T*123-pre T0 space. 
 
Proof: Let x, y∈  X, with x≠ y and also T*123-pre cl{x} is not equal to T*123-pre cl{y}. Hence there exist z ∈  X such 
that z∈  T*123-pre cl{x} but z ∉  T*123-pre cl{y}or z∈  T*123-pre cl{y} but z ∉  T*123-pre cl{x}. Now without loss of 
generality, let z∈  T*123-pre cl{x} but z ∉  T*123-pre cl{y}. We claim that x ∉  T*123-pre cl{y}. If  x∈  T*123-pre cl{y}, 
then T*123-pre cl{x} is contained in T*123-pre cl{y}. Hence z ∈T*123-pre cl{y}, which is contradiction. This means that 
x ∉  T*123-pre cl{y}, hence x ∈  T*123-pre cl{y}c, which is a T*123-pre open set containing x but not y. Then               
(X, 1τ , 2τ , 3τ ) is a T*123-pre T0 space. 
 
3.6. T*123- pre T1  space: 
 
Definition 3.6.1: A T*123 topological space (X, 1τ , 2τ , 3τ ) is said to be T*123- pre T1 space if and only if for any given 
pair of distinct points x and y, there exist two T*123-pre open sets U and V such that x∈U, y∉U and y∈V, x∉V. 
 
Remark 3.6.2: Every T*123- pre T1 space is T*123- pre T0 space, but converse need not be true. 
 
Example 3.6.3: Let X = {a, b, c, d} with  1τ = { X,φ }, 2τ  = {X,φ ,{d},{c},{c, d}}, 3τ  = {X,φ ,{a}, {a, b, c}, {a, c}, 

{a, c, d},{a, d}}. Here T*123- pre open sets are X,φ ,{a}, {a, b, c},{a, c},{a, c, d},{a, d}. This is T*123- pre  T0 space, but 
not T*123- pre T1 space since for b and c cannot have distinct T*123- pre open sets. 
 
Theorem 3.6.4: A T*123 Topological space (X, 1τ , 2τ , 3τ ) is a T*123- pre T1 space if and only if every singleton subset 
{x} of X is a T*123- pre closed set. 
 
Proof: Let X be a T*123- pre T1 space and x be arbitrary point of  X. If y∈{x}c, then y≠ x. Since X is T*123- pre T1 
space and y≠ x there must exist an T*123-pre open set Uy such that y∈Uy  but not x. Thus for each y∈{x}c, there exist 
an T*123-pre open set Uy such that y∈Uy⊆ {x}c. Therefore { y | y≠ x}∈  {Uy | y≠ x }⊆ {x}c and so  
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{x}c =  {Uy | y≠ x}. Since Uy is T*123-pre open set and the arbitrary union of T*123-pre open set is T*123-pre open and 
so {x}c. Hence {x} is T*123-pre closed set. 
Conversely, let x and y be two distinct points of X such that {x} and {y} are T*123-pre closed sets. Then {x}c  and {y}c 
are T*123-pre open sets in X such that y∈{x}c but x ∉{x}c and x∈{y}c but y ∉{y}c. Hence X is T*123- pre T1 space. 
 
Theorem 3.6.5: Every finite T*123- pre T1 space is discrete. 
 
Proof: Let X be a finite T*123- pre T1 space. A⊂X be any arbitrary is finite set. By Theorem 3.6.4, every {x} in             
(X, 1τ , 2τ , 3τ ) is T*123- pre closed for all x∈X.  

Consequently A =  {{x}| x∈X} = a finite union of T*123- pre closed sets and hence A is T*123- pre closed. Since     
X-A is also finite, X-A =  {{x}| x∈Ac} = a finite union of  T*123- pre closed sets. This implies X-A is a T*123- pre 
closed set, and A is T*123- pre open. Hence (X, 1τ , 2τ , 3τ ) is a discrete space. 
 
3.7. T*123- pre T2  space, T*123- pre-irreducible: 
 
Definition 3.7.1: A T*123 topological space (X, 1τ , 2τ , 3τ )  is said to be T*123- pre T2 space if and only if for every pair 
of distinct points x, y of X, there exist disjoint T*123-pre open sets U and V containing x and y respectively. Also every 
T*123- pre T2 space is T*123- pre T1 space. 
 
Theorem 3.7.2: Every singleton subset of T*123- pre T2 space is T*123- pre closed. 
 
Proof: Suppose that (X, 1τ , 2τ , 3τ ) is T*123- pre T2 space and x, y are distinct points of X. Since the space is T*123- pre 
T2 space there exist a T*123- pre open set U of y such that x∉U. Hence y cannot be a limit point of {x} and the derived 
set of  {x} is empty. This implies { x } = {x}. Hence {x} is closed. 
 
Theorem 3.7.3: If (X, 1τ , 2τ , 3τ ) be a T*123 – topological space, then the following statements are equivalent: 

(i)  31ττ 32ττ  is T*123- pre T2 topology for X. 
(ii)  The intersection of all T*123- pre closed sets of each point of X is a singleton. 
 
Proof: 
(i)⇔ (ii): Let

31ττ 32ττ be a T*123- pre T2 topology for X and x, y be distinct points of X. Then there exist T*123- 

pre open sets M1 and M2 such that x∈M1, y∈M2 and M1 M2 = φ . Moreover x∈X-M2, is T*123- pre closed and         
y∉X-M2, implies y does not belongs to intersection of all T*123- pre closed sets of x. Hence the intersection of all 
T*123- pre closed sets of x is the singleton {x}, since y is arbitrary. 
 
Conversely, if {x}∈X is the intersection of all the T*123- pre closed sets then any y∈X and y≠ x implies y does not 
not belong to intersection of all T*123- pre closed sets of x. Then there exist a T*123- pre closed set N of x such that         
y∉N, implies there exist a T*123- pre open set O such that x∈O⊂N. This implies O and X-N are T*123- pre open sets, 
such that x∈O, y∈X-N and O X-N =φ . Then the space (X, 1τ , 2τ , 3τ ) is T*123- pre T2 space. 
 
Definition 3.7.4: A T*123 topological space is said to be T*123 – pre irreducible, if it cannot be expressed as the union of 
two proper T*123 – pre closed subsets of X.  
 
Theorem 3.7.5: T*123- pre closure of every one point set is T*123- pre irreducible. 
 
Proof: Let A⊂X be a T*123- pre closure of x∈X. Suppose A = A1 A2 where A1 and A2 are proper T*123- pre closed 
subsets of A. But one of these must contain x, which is contradiction to the fact that A is the smallest T*123- pre closed 
set containing x. Hence T*123- pre closure of every one point set is T*123- pre irreducible. 
 
Theorem 3.7.6: In a T*123- pre T2 space the only T*123- pre irreducible subsets are one point sets. 
 
Proof: Let (X, 1τ , 2τ , 3τ ) be T*123-pre T2 space and A be T*123- pre irreducible subset of X. Then A cannot be 
expressed as the union of two proper T*123 – pre closed subsets of X. Suppose A has more than one element then A can 
be written as union of singleton sets. By Theorem 3.7.2, every singleton subset of T*123- pre T2 space is T*123- pre 
closed. Hence A is union of proper T*

123- pre closed sets, which is contradiction to T*123- pre irreducibility of A. Hence 
the only T*123- pre irreducible subsets of T*123- pre T2 spaces   are one point sets. 
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3.8. T*123- pre regular, T*123- pre T3  space: 
 
Definition 3.8.1: A T*123 topological space (X, 1τ , 2τ , 3τ ) is said to be T*123-pre regular if for each pair consisting of a 
point x and a T*123- pre closed set B disjoint from x, there exist disjoint T*123- pre open sets containing x and B 
respectively. 
 
Definition 3.8.2: A T*123 –topological space is said to be T*123-pre T3 space if it is T*123- pre regular and singleton sets 
are T*123- pre closed. 
 
Definition 3.8.3: In a T*123 topological space (X, 1τ , 2τ , 3τ ), a T*123 –pre neighborhood of a point (or a set) in X is an 
T*123 –pre open set which contains the point ( or the set).   
 
Theorem 3.8.4: 
(i)   Every T*123-pre regular T1 space is a T*123-pre T3 space. 
(ii)  A T*123-topological space (X, 1τ , 2τ , 3τ ) is T*123-pre T3 space, then (X, 1τ , 2τ , 3τ ) is T*123-pre T1 space   
 
Proof: 

(i) Let (X, 1τ , 2τ , 3τ ) be a T*123-pre T1 space and x, y be two distinct points. Then since X is a T*123-pre             
T1 space, {x} is a T*123-pre closed set, also y∉{x}. Hence by definition of T*123-pre regular, there exist 
disjoint open sets G and H such that {x}∈G and y∈H. Hence every T*123-pre regular T1 space is a T*123-pre 
T3 space. 

(ii) Assume that (X, 1τ , 2τ , 3τ ) be a T*123-pre T3 space. This implies that given a T*123- pre closed F⊂X and        

x∈X such that x∉F, there exist T*123 – pre open sets G, H⊂X such that x∈G, F⊂H and G H =φ . Any 
arbitrary y∈F, x∉F implies y≠ x. Therefore for distinct x, y∈X, there exist T*123 –open sets G, H⊂X such 
that x∈G, y∈H and G H =φ . Hence (X, 1τ , 2τ , 3τ ) is a T*123-pre T2 space. By definition 3.7.1, every        
T*123-pre T2 space is T*123-pre T1 space. Hence a T*123-pre T3 space is a T*123-pre T1 space. 

 
Theorem 3.8.5: A T*123-topological space (X, 1τ , 2τ , 3τ ) is T*123-pre T3 space iff  each x∈X, there exist a T*123-pre 
neighborhood of x which contains the closure of another T*123 –pre neighborhood of x. 
 
Proof: Assume that (X, 1τ , 2τ , 3τ ) be a T*123-pre T3 space. Then for  a T*123- pre closed F⊂X and x∈X such that x∉
F, there exist T*123 – pre open sets G, H⊂X such that x∈G, F⊂H and G H =φ .  G H =

⊂⇒−⊂⇒ GHXGφ HX −  = X-H. Since X-H is T*123- pre closed implies G ⊂  X-H⊂  X-F. And F is 
T*123- pre closed implies X-F is T*123- pre open. Therefore given a T*123- neighborhood X-F of x∈X, there exist a 
T*123- neighborhood G of x such that x∈ FXGG −⊂⊂ . 
 
Conversely, if each T*123 –neighborhood of x∈X contains the closure of another T*123- neighborhood of x. Consider a 
T*123- pre closed set F⊂X and any x∈X disjoint from F. Then F is T*123- pre closed and x∉F⇒ x∈X-F is T*123-pre 
open, this means X-F is T*123-neighborhood of x∈X. By assumption there exist a T*123 –neighborhood G of x, such 
that    x∈ FXGG −⊂⊂ . Now ( ) φ=−GXG   and x∈ FXG −⊂  implies, GXF −⊂ , also GX −
is T*123- pre open. Conclusively, given a T*123- pre closed set F and any x∈X such that x∉F, there exist T*123-pre open 
sets G and X- G  such that x∈G, GXF −⊂  and ( ) φ=−GXG   implies (X, 1τ , 2τ , 3τ ) be a T*123-pre regular 
space. Hence X is T*123-pre T3 space. 
 
Theorem 3.8.6: The product of T*123-pre T3 spaces is a T*123-pre T3 space. 
 
Proof: Let {Xα} be a family of T*123-pre T3 space and X = ΠXα. Let x = (xα) be a point of X and U be a T*123- pre 
open set containing x in X. Choose a T*123-pre openΠUα about x contained in U. Choose for each α, a T*123-pre open 
set Vα of xα in Xα, such that 

αV αU⊂ . Take αVV Π=  , then αVV Π= . By Theorem 3.8.5, UUV ⊂Π⊂Π αα . 

It follows that UUV ⊂Π⊂ α , so that X is a T*123-pre T3 space. 
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