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ABSTRACT

In this paper, some properties of (Q, L)-fuzzy subgroup of a group are discussed, and obtained some algebraic
properties on the direct product of (Q, L)-fuzzy subgroups by means of Q-level sets.
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SECTION 1 - INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [7]. Rosenfield [6] gave the idea of subgroups. Solairajuand
Nagarajan [4, 5] introduced and defined a new algebraic structure of Q-fuzzy groups. Asokkumer Ray [1] defined a
product of fuzzy groups. Goguen [2] studied the fuzzy set theory by studying L-fuzzysets. In this paper, we discuss
some equivalent characterizations of direct product of (Q, L)-fuzzy groups by means of Q-level subsets.

SECTION 2 - BASIC DEFINITIONS

Definition 2.1: Let X and Q be any two non-empty sets. A mapping u: X x Q — [0, 1] is called a Q-fuzzy set in X.

Definition 2.2: Let X be a non-empty set and L = (L, <) be a lattice with least element 0 and greatest element 1 and Q
be a non-empty set .A (Q, L)-fuzzy subset A of X is a function A: X x Q — L.

Definition 2.3: A (Q, L) - fuzzy subset A of G is said to be a (Q, L)-fuzzy subgroup of G if for all x,y € G and q € Q
(1) (xy,q) = 2, A (Y, @)

(i) A(x7 q) = Ax, @)
SECTION 3 - PROPERTIES ON (Q, L) - FUZZY SUBGROUP

Theorem 3.1: A (Q, L)-fuzzy subset A of G is a (Q, L)-fuzzy subgroup of G if and only if
(xy ™4, q) = A(x, )N A(y,q), Vx,y € G and q € Q.

Proof: A is a (Q, L)-fuzzy subgroup of G.
< Axy,q) 2 A, ) A, q) and A(x7', q) = A(x, q)

< AMxy™Lq) = Ax, )ANA(y,q) Vx,y €EGandq € Q

Definition 3.2: Let A be a (Q, L)-fuzzy subset of G. For «a € L, a Q-level subset of A corresponding to a is the set
A, = {x€G,qeQ: A(x,q) = a}
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Theorem 3.3: If Ais a (Q, L)-fuzzy subset of a group G. Then A is a (Q, L)-fuzzy subgroup of G if and only if 4, is a
subgroup of a group G forall @ € L.

Proof: Let x,y € G,q € Q

Alxy™,q) = A, QAN A(Y, @)
Axy L, Q) = «a

= Xy_l € A,= A,is asubgroup of a group G for all a € L.

Definition 3.4: A (Q, L) - fuzzy subgroup A of group G is a (Q, L)-fuzzy normal subgroup of G
taCeyx™,q) = ua(y,q) or pa(xy,q) = pa(yx,q)for allx,y € G and q € Q.

Theorem 3.5: If Ais a (Q, L) — fuzzy subset of a group G. Then A is a (Q, L) — fuzzy normal subgroup of G if and
only if A, is a normal subgroup of a group G forall « € L.

Proof: Let A be a (Q, L)-fuzzy normal subgroup of a group G and the level subset 4,,a €L isa subgroup of G.Let
x€Ganda € A, . Then uy(xax™t,q) = uy(a,q) = a. Hence 4, is a normal subgroup of a group G forall « € L.

Definition 3.6: Let A and B be two (Q, L) —fuzzy subgroups of G. Then A and B are said to be (Q, L) —fuzzy conjugate
subgroup of G if for some € G, uy(x,q) = uz(g—'xg,q),vx € G.

Definition 3.7: Let A be a (Q, L) —fuzzy subset in a set S, the strongest(Q, L) fuzzy relation on S, that is (Q, L) —fuzzy
relation on A'is V given by uv((x,y), q) = py(x,q) Auy(y,q) Vx,y € S.

SECTION 4: DIRECT PRODUCT OF (Q, L)-FUZZY SUBGROUPS

Definition 4.1: Let A and B be two (Q, L)-fuzzy subsets of X and Y respectively. Then the Cartesian product of A and
B is denoted by A X B and is defined as

AxB = {<((,y),q) 1axp((x,¥),q) >:x € X,y €Y and q € Q}
where paxp ((x, ¥), @) = pa(x, @) A pp(y, Q).

Theorem 4.2: If A and B be two (Q, L) — fuzzy subsets of X and Y respectively, then (4 x B), = A, X B,for a € L.
Proof: Let (x,y) e(A X B), and qeQ.
Then pawp((x,¥),q9) = a
S, App(,q9) = a
S, q) za,u(y,q) =2 a
& x€l, ,yY€eB,
< (x,y)e A, X B fora € L
Hence,(A X B), = A, X B, ,fora € L.

Theorem4.3: Let A and B be two (Q, L) — fuzzy subgroups of group G, and G, respectively.Then A x B isa (Q, L) —
fuzzy subgroup of group G; X G, .

Proof: Since A and B are (Q, L) — fuzzy subgroups of group G, and G, respectively. Then 4, and B, are subgroups of
group G; and G, respectively.

= A, X B, is asubgroup of G; X G,,fora € L.

= (A X B),, is asubgroup ofG; x G, ,for @ € L. (By thm 2.6)

= A X Bis a (Q,L) — fuzzy subgroup of group G; X G, .

Theorem 4.4: Let A and B be two (Q, L) — fuzzy normal subgroups of group G, and G, respectively. Then A X B is a
(Q, L) — fuzzy normal subgroup of group G; X G,

Proof: Since A and B are (Q, L) — fuzzy normal subgroups of group G,and G, respectively. Then A, and B, are
normal subgroups of group G, and G, respectively.
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= A, X B, is a normal subgroup of G; X G, , for a € L.

= (A X B), is a normal subgroup of G; X G, ,for a € L. (By thm 2.6)

= A X Bisa(Q, L) — fuzzy normal subgroup of group G; X G, .
Remark 4.5: Let A and B be (Q, L) — fuzzy subgroups of group G, and G, respectively. If A x B is a (Q, L) —fuzzy
subgroup of group G; X G, then it is not necessary that both A and B should be (Q, L) — fuzzy subgroup of group
G, X G,.
Example 4.6: Let G, = {e;,x} where x> = e;,G, = {e,,a,b,ab} where a*> = b?> = e, and ab = ba.
Then G; X G, = {(e1, €2), (e1,a), (e, b), (e, ab), (x, e2), (x, @), (x, b), (x, ab)}

Let A = {< (el ) Q); (05l q) >I < (xl Q); (08! CI) >} and B = {< (621 Q); (07l CI) >I < (a! Q); (1! Q) >, <
0,4,0.8 g>,<(abq),0.7,g>be (Q, L)-fuzzy subsets of &7and &2 respectively.

Then

AXB= {< ((el ) ez)' CI); (051 CI) >, < ((el ) a)l Q)p (051 CI) >, < ((el ) b): CI); (051 CI) >, < ((el ) ab)l CI)' (05! CI) >
,<xe2,9,0.7,g><xaq08qg> <x04,q,0.8q9><xabq0.7,q>.

Here A x B is a (Q, L)-fuzzy subgroup of G; x G, where A is a (Q, L)-fuzzy subgroup of G; but B is not a (Q, L)-
fuzzy subgroup of G,.

Theorem 4.7: Let A and B be (Q, L)- fuzzy subgroups of G;and G, respectively. Suppose that e; and e, are the
identity element of G,and G, respectively. If A X B is a (Q,L)-Fuzzy subgroup of G; X G,, then at least one of the two
statements must holds.

(D) up(ez, q) = pa(x, q)for all xeG, (ii) pyer, q) = up(y, q) forall y €G,
Proof: Let A x B isa (Q, L)-Fuzzy subgroup of G; X G,.
Suppose that (i) and (ii) does not holds.

Then we can find some xeG; and y €G, such that u,(x, q) > ug(e,, q) and py(er, q) < g (¥, q).

NOW 1455 (%, %), @) = paCe, D Aup(v, @) > pp(ez, DA ualer, @) = paxz (e, €2), 9).

which implies that A x B is not a (Q, L)-Fuzzy subgroup of G; X G,,which is a contradiction.

Hence either ug(e,, q) = uy(x, q) for all xeG; , q €Q oruy(er, q) = ug(y, q) forall y €G,, q €Q.

Theorem 4.8: Let A and B be (Q, L)-fuzzy subsets of G;and G, respectively such that u,(x,q) < ug(ez, q),x €
G,,e,be the identity element of G,, q € Q.If A X B is a (Q, L)-fuzzy subgroup of G; X G, then A is a (Q, L)-fuzzy
subgroup of G;.

Proof: Letx,y € G;. Then (x,e,), (v, e;) € G; X G,.
Since uy(x,q) < ug(ey, q), for all x € Gy,e; € G,,q € Q.

ta(xy™,q) = pa(xy™, @A pp(ezez q)
= IleB((xy_l'ezez)'CI) = paxp((x, )71, €2)),9)
= /"AxB((x' e2), DMNaxp (71, e), Q)("A x B is a (Q, L)-Fuzzy subgroup of G; X G)
= (ua(x, O Aug ez, OIN (A=, DA up(ez, @)
=) Ayt q)
= o) Apa(y,q)

Hence A is an (Q, L)-fuzzy subgroup of G;.
Corollary 4.9: Let A and B be (Q, L)-fuzzy subsets of Gyand G, respectively such that ug (v, q) < uz(es, q) holds for

all y € G,, q € Q.e; being the identity element of G;. If A x B is a (Q, L)-fuzzy subgroup of G; X G,, then B is a
(Q, L)-fuzzy subgroup of G,.
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SECTION 5: OTHER PROPERTIES ON (Q, L) - FUZZY SUBGROUPS
Theorem 5.1: Let 4, C be (Q, L)-fuzzy subgroups of G; and B,D be (Q, L)-fuzzy subgroups of G, respectively such
that 4, C be (Q, L)-fuzzy conjugate subgroups of G; and B,D be (Q, L)-fuzzy conjugate subgroups of G,.Then A x B of
G, X G, is conjugate to the (Q, L)-fuzzy conjugate subgroup € X D of G; X G,.

Proof: Since A and C are (Q, L)-fuzzy conjugate subgroups of G;, 3g; € G; such that
1a(x,q) = pc(g917'x91,9),Vx € G, .

Since B and D are (Q, L)-fuzzy conjugate subgroups of G,, 3g, € G, such that uz(y,q) = tp(g,"'vgs q),Vy € G, .

NOW paxs (%, 3),q) = a(x, @) A s (v, @) = pc(917 %91, @) A pp (92" 'y 92, 9)
= piexp ((9171%91,927192), @) = pexo (9175 9271 (%, ¥)(91.92), @)

Hence the (Q, L) —fuzzy subgroup A X B is conjugate to the (Q, L) —fuzzy subgroup C x D.

Theorem 5.2: Let A be a(Q, L)-fuzzy subset of a group G and V be the strongest fuzzy (Q, L)-fuzzy relation on G.
Then Ais a(Q, L)-fuzzy subgroup of G iff V is (Q, L)-fuzzy subgroup of G x G.

Proof: Let A be a (Q, L)-fuzzy subgroup of G.

Let x = (x1,x2),y = (v1,¥2) € G X G. We have

w(xy, q) = #V((xl'xz)(Yp)’z)'CI) = #V((x13’1'x23’2)'CI) = g (X191, @) A pa(x2¥2,9)
= (aCe, @) A a1, @) A (a(x2, @) A ua(y2,q))
= (ua G, @ A (a2, ) A (a(ye, @) A a2, q))
= MV((xl.xz)' CI) A HV(()’l')’z). CI)-

by (xy,q) 2 py(x, q) Ay (v, @)
ty(x7hq) = py((xg, )71 q) = llv((xfl,xz_l), CI)
= (et @) Apa(xzh,q)
=pa (e, @) A (ua(x2, @) = py (%, q).
Hence V is a (Q, L)-fuzzy subgroup of G x G.
Lemma 5.3: For a,b € L ,m is positive integer (i) If a<b, then a™ < b™ (ii) (a Ab)™ =a™ AD™

Proof: It is obvious.

Theorem 5.4: Let A be a (Q, L)-fuzzy subgroup of G. Then A™ = {< (x,q), (ta(x,q))™ >: x € G,q € Q}isa (Q,L)-
fuzzy subgroup of G™, where m is a positive integer.

Proof: Let G be a group. Then (G, .) is a group. Hence (G™, .) is also a group

Let A be a (Q, L)-fuzzy subgroup of G. Let x,y € G and q € Q
pam (xy, @) = (a(xy), Q™ = (pa(x, @) A pa v, @)™
= (o O™ Apa(y, ™)
= pgm (%, @) A pam (¥, q)

pam (27, q) = (e, )"
= (ta(x, )™
= Uygm (x, fI)
Hence A™ is a (Q, L)-fuzzy subgroup of G™.
Theorem 5.5: If A and A%are (Q, L)-fuzzy subgroups of G, A is a constant (Q, L)-fuzzy subset of G.

Proof: Since A and ACare (Q, L)-fuzzy subgroups of G, it follows that
taCex™,q) = pa(e, @) Apa (™', q) V., x ™ €G,q €Q )
pae(ex™,q) = puue(x, @) Apge(x7tq) Ve, x P € G,q€Q
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=1-pax™ @) = (1= pa(, @) A1 —pa(x7, q))

=1-[(1 - @A —pax™ @] 2 paCex™, @)

= w6, ) Va7 q) = pa(ext, q) (2).

From (1) & (2) it follows that

1aCe, @) Apa(x™,q) < paCex™,q) < pale, @V pa(x™t

Q)
= us(x,q) < pale,q) < pualx, q).
= u,(x,q) = uy(e,q),vx € G,q € Q. Therefore A is constant.

Theorem 5.6: IfA™ and A™ are (Q, L)-fuzzy subgroups of G™, then A™VA™is also a(Q, L)—fuzzy subgroup of
G"ifn<m.

Proof: Since n < m, then it follows that A™ c A™ and pyn (x,q) < pam (x, q).
Now

Hanyam 6y, @) = pan (y, OViam oy, @) = (1a ey, )"V (pa ey, )"
= (alxy, Q)™
= (uaCe, )™ A (s, )™
= ((uaCe, @)™V (aCe, )™ A ((ay, @)™ V (a e, ™)
= panyam (X, @) A pianyam (¥, q)

panyam (%, @) = pan G, OVitgm (6, @) = (e, )"V (ualx, @)
= (a4 ) V(uax™, @)
= pan (7 @OVpm (x71, q)
= panyam (x4, q)
Therefore A"VA™ is also a(Q, L) —fuzzy subgroup of G™ .

Theorem 5.7: If A"(n =12,...),A' € A/ for i < j is a (Q, L)~fuzzy subgroup, then 4 = Av A>v A% v ... is also
(Q, L)-fuzzy subgroup.

Proof: Since A'VA/ is also a(Q,L)-fuzzy subgroup for i < j ,alsoA’ € A/ fori <j.
Hence,A = AV A? v A3 v ...is a (Q,L) —fuzzy subgroup.
CONCLUSION

In this paper, we have discussed the direct product of (Q, L)-fuzzy groups, (Q, L)-fuzzy conjugate groups, and direct
product of (Q, L) —fuzzy conjugate groups. Also we have conclude that positive integral powers of a (Q, L)-fuzzy
group is a (Q, L)-fuzzy group. This concept can be extended for new results.
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