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ABSTRACT 
In this paper we consider a class of self-mappings on Cone Banach Space which have at least one fixed point. That is, 
for a convex and closed subset C of a Cone Banach Space with the norm  ||  𝑥𝑥  ||𝑝𝑝 = 𝑑𝑑(𝑥𝑥, 0), if there exists elements  
𝑎𝑎, 𝑏𝑏, 𝑠𝑠  and a mapping 𝑇𝑇: 𝐶𝐶 → 𝐶𝐶 satisfying   the conditions 

0 ≤ 𝑠𝑠 + | 𝑎𝑎 | − 2𝑏𝑏 < 2(𝑎𝑎 + 𝑏𝑏) and 𝑎𝑎𝑎𝑎(𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇) + 𝑏𝑏{𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑇𝑇)} ≤ 𝑠𝑠 𝑑𝑑(𝑥𝑥, 𝑦𝑦) for all  𝑥𝑥, 𝑦𝑦 ∈ 𝐶𝐶 
then  𝑇𝑇 has at least one fixed point. 
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1. INTRODUCTION AND STATEMENT OF RESULTS 
 
Rzepecki [12] introduced a generalized metric 𝑑𝑑𝐸𝐸  on a set 𝑋𝑋 in such a way that 𝑑𝑑𝐸𝐸: 𝑋𝑋 × 𝑋𝑋 → 𝑆𝑆, where E is a Banach 
Space and S is a normal  on E with partial order ≤. In that paper, the author generalized the fixed point theorems of 
Maia type [10]. i.e. let 𝑋𝑋 be a non empty set endowed in two metrics 𝑑𝑑1, 𝑑𝑑2 and 𝑇𝑇 a mapping of 𝑋𝑋 into itself. Suppose 
that 𝑑𝑑1(𝑥𝑥, 𝑦𝑦) ≤ 𝑑𝑑2(𝑥𝑥, 𝑦𝑦) for all 𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋, and 𝑋𝑋 is complete space with respect to 𝑑𝑑1 and 𝑇𝑇 is continuous w.r.t. 𝑑𝑑1 and 𝑇𝑇 
is contraction w. r. t. 𝑑𝑑2, that is, 𝑑𝑑2(𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇) ≤ 𝑘𝑘 𝑑𝑑2(𝑥𝑥, 𝑦𝑦) for all 𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋, where 0 ≤ 𝑘𝑘 < 1. Then 𝑓𝑓 has a unique fixed 
point in 𝑋𝑋. 
 
After a long period of eight years, Lin [13] considered the notion of K-metric spaces by replacing real numbers with 
cone K in the metric function, that is, 𝑑𝑑: 𝑋𝑋 × 𝑋𝑋 → 𝐾𝐾. In his paper, some results of Khan and Imdad [11] on fixed point 
theorems were considered for K-metric spaces. Without mentioning the papers of Lin and Rzepecki, in 2007, Huang 
and Zhang [8] announced the notion of cone metric spaces (CMS) by replacing real numbers with an ordering Banach 
Space. In that paper, they also discussed some properties of convergence sequences and proved the fixed point 
theorems of contractive mapping for cone metric spaces: i.e. any mapping 𝑇𝑇 of a complete cone metric space 𝑋𝑋 into 
itself that satisfies, for some 0 ≤ 𝑘𝑘 < 1, the inequality 

𝑑𝑑(𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇) ≤ 𝑘𝑘 𝑑𝑑(𝑥𝑥, 𝑦𝑦)                                                                                                                      (1.1) 
for all 𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋, has a unique fixed point. 
  
Recently, many results on fixed point theorems have been extended to cone metric spaces [8, 9]. 
 
In this paper, some of known results [7, 15] are extended to Cone Banach Spaces which were defined and used in        
[3, 16] where the existence of fixed point for self-mapping on Cone Banach Spaces is investigated. 
 
In this paper, 𝐸𝐸 = (𝐸𝐸, ∥ . ∥) stands for real Banach Space and  𝑃𝑃 = 𝑃𝑃𝐸𝐸  always be a closed non empty subset of 𝐸𝐸. 
 
Here  𝑃𝑃 is called cone if 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 ∈ 𝑃𝑃 for all 𝑥𝑥, 𝑦𝑦 ∈ 𝑃𝑃 and non-negative real numbers 𝑎𝑎, 𝑏𝑏 where 𝑃𝑃 ∩ (−𝑃𝑃) = {0} and 
𝑃𝑃 ≠ {0}. 
 
Now for a given cone P, we can define a partial ordering denoted by ≤ 𝑜𝑜𝑜𝑜 ≤ 𝑝𝑝 with respect to P by 𝑥𝑥 ≤ 𝑦𝑦 𝑖𝑖𝑖𝑖𝑖𝑖 𝑦𝑦 − 𝑥𝑥 ∈ 𝑃𝑃. 
The notation 𝑥𝑥 < 𝑦𝑦 indicates that 𝑥𝑥 ≤ 𝑦𝑦 will show 𝑦𝑦 − 𝑥𝑥 ∈ 𝑖𝑖𝑖𝑖𝑖𝑖. 𝑃𝑃; where 𝑖𝑖𝑖𝑖𝑖𝑖. 𝑃𝑃 denotes the interior of P. From now it 
is assumed that 𝑖𝑖𝑖𝑖𝑖𝑖. 𝑃𝑃 ≠ 𝜙𝜙. 
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The cone P is called (N) normal if there is a number 𝐾𝐾 ≥ 1 s.t. ∀ 𝑥𝑥, 𝑦𝑦 ∈ 𝐸𝐸, 0 ≤ 𝑥𝑥 ≤ 𝑦𝑦 implies that  

∥ 𝑥𝑥 ∥ ≤ 𝐾𝐾 ∥ 𝑦𝑦 ∥                                                                                                                                  (1.2) 
And (R) regular, if every increasing sequence which is bounded above is convergent. That is, if {𝑥𝑥𝑛𝑛}𝑛𝑛≥1  is a sequence 
such that 𝑥𝑥1 ≤ 𝑥𝑥2 ≤ 𝑥𝑥3 ≤ ⋯ ≤ 𝑦𝑦 for some 𝑦𝑦 ∈ 𝐸𝐸, then there is 𝑥𝑥 ∈ 𝐸𝐸 such that. 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞ ∥ 𝑥𝑥𝑛𝑛 − 𝑥𝑥 ∥= 0.  
 
In above (N), the least positive integer K, satisfying (1.2), is called the normal constant of P. 
 
Now we have the following lemma. 
 
Lemma 1.1 [14]: 

(a) Every regular cone is normal. 
(b) For each k>1, there is a normal cone with normal constant K > k. 
(c) The cone P is regular if every decreasing sequence which is bounded below is convergent. 

Here the proofs of (a), (b) are given in [14] and that of (c) follows from definition. 
 
Now we have the following definitions. 
 
Definition 1.2 [8]: Suppose X is a non-empty set and the mapping 𝑑𝑑: 𝑋𝑋 × 𝑋𝑋 → 𝐸𝐸 satisfies the following four onditions: 

(a) 0 ≤ 𝑑𝑑(𝑥𝑥, 𝑦𝑦) for  all  𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋 
(b) 𝑑𝑑(𝑥𝑥, 𝑦𝑦) = 0   𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 = 𝑦𝑦 
(c) 𝑑𝑑(𝑥𝑥, 𝑦𝑦) ≤ 𝑑𝑑(𝑥𝑥, 𝑧𝑧) + 𝑑𝑑(𝑧𝑧, 𝑦𝑦) for   all 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋 
(d) 𝑑𝑑(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑(𝑦𝑦, 𝑥𝑥)   for   all 𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋 

 
Then 𝑑𝑑 is called cone metric on 𝑋𝑋 and the pair (𝑋𝑋, 𝑑𝑑) is called a cone metric space (CMS). 
 
Now we define cone normal spaces. 
 
Definition 1.3 [3, 16]: Consider 𝑋𝑋 to be a vector space over R and let the mapping ∥. ∥𝑝𝑝 : 𝑋𝑋 → 𝐸𝐸 satisfies the following 
four conditions: 

(a) ∥ 𝑥𝑥 ∥𝑝𝑝> 0   ∀   𝑥𝑥 ∈ 𝑋𝑋 
(b) ∥ 𝑥𝑥 ∥𝑝𝑝= 0  𝑖𝑖𝑖𝑖𝑖𝑖    𝑥𝑥 = 0 
(c) ∥ 𝑥𝑥 + 𝑦𝑦 ∥𝑝𝑝≤  ∥ 𝑥𝑥 ∥𝑝𝑝+∥ 𝑦𝑦 ∥𝑝𝑝   for  all  𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋 
(d) ∥ 𝑘𝑘𝑘𝑘 ∥𝑝𝑝= |𝑘𝑘| ∥ 𝑥𝑥 ∥𝑝𝑝   ∀   𝑘𝑘 ∈ 𝑅𝑅 

 
Then ∥. ∥𝑝𝑝  is called cone norm on 𝑋𝑋, and the pair (𝑋𝑋, ∥. ∥𝑝𝑝) is called a cone normed space (CNS). Here we observe that 
every CNS is CMS, in fact  𝑑𝑑(𝑥𝑥, 𝑦𝑦) =∥ 𝑥𝑥 − 𝑦𝑦 ∥𝑝𝑝 . 
 
We again have an important definition, which we use in this paper. 
 
Definition 1.4: Suppose (𝑋𝑋, ∥. ∥𝑝𝑝) be a CNS,  𝑥𝑥 ∈ 𝑋𝑋 and  {𝑥𝑥𝑛𝑛} be a sequence in 𝑋𝑋, then  

(i) {𝑥𝑥𝑛𝑛} Converges to  𝑥𝑥, whenever for every 𝑐𝑐 ∈ 𝐸𝐸 with 0 ≪ 𝑐𝑐, there is a natural number N, such that 
∥ 𝑥𝑥𝑛𝑛 − 𝑥𝑥 ∥𝑝𝑝≪ 𝑐𝑐 ∀ 𝑛𝑛 ≥ 𝑁𝑁. It is also denoted by 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞𝑥𝑥𝑛𝑛 = 𝑥𝑥 or    𝑥𝑥𝑛𝑛 → 𝑥𝑥 

(ii) {𝑥𝑥𝑛𝑛} is a Cauchy sequence whenever for every 𝑐𝑐 ∈ 𝐸𝐸 with 0 ≪ 𝑐𝑐, there is a natural number N, such that 
∥ 𝑥𝑥𝑛𝑛 − 𝑥𝑥 ∥𝑝𝑝≪ 𝑐𝑐 for all 𝑛𝑛,𝑚𝑚 ≥ 𝑁𝑁. 

(iii) (𝑋𝑋, ∥. ∥𝑝𝑝 ) is a complete cone normed space if every Cauchy sequence is convergent. Here complete cone 
normed spaces will be called cone Banach spaces. 

              Now we have the following lemmas and definitions. 
 

Lemma 1.5: If  (𝑋𝑋, ∥. ∥𝑝𝑝)  is a CNS, {𝑥𝑥𝑛𝑛} a sequence in X and  P, a normal cone with normed constant K,  then  
(i)  the sequence {𝑥𝑥𝑛𝑛} converges to 𝑥𝑥   𝑖𝑖𝑖𝑖𝑖𝑖  ∥ 𝑥𝑥𝑛𝑛 − 𝑥𝑥 ∥𝑝𝑝→ 0 as 𝑛𝑛 → ∞.  
(ii)  the sequence  {𝑥𝑥𝑛𝑛} is Cauchy  𝑖𝑖𝑖𝑖𝑖𝑖 ∥ 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚 ∥𝑝𝑝→ 0   as 𝑛𝑛,𝑚𝑚 → ∞  and 
(iii) If the sequence  {𝑥𝑥𝑛𝑛}  converges to 𝑥𝑥 and the sequence  {𝑦𝑦𝑛𝑛}  converges to 𝑦𝑦, then ∥ 𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛 ∥𝑝𝑝→∥ 𝑥𝑥 − 𝑦𝑦 ∥𝑝𝑝 .  

 
Proofs of the above are got by applying [8, Lemmas 11, 12 & 8]   to the cone metric space (𝑋𝑋, 𝑑𝑑)   
where   𝑑𝑑(𝑥𝑥, 𝑦𝑦) =∥ 𝑥𝑥 − 𝑦𝑦 ∥𝑝𝑝   ∀   𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋. 
 
Lemma 1.6 [1, 2]: Suppose  (𝑋𝑋, ∥. ∥𝑝𝑝) be a CNS over a cone P in E.  Then we have the following four results: 

(a) 𝑖𝑖𝑖𝑖𝑖𝑖. (𝑃𝑃) + 𝑖𝑖𝑖𝑖𝑖𝑖. (𝑃𝑃) ⊆ 𝑖𝑖𝑖𝑖𝑖𝑖. (𝑃𝑃)  and  𝜆𝜆. 𝑖𝑖𝑖𝑖𝑖𝑖. (𝑃𝑃) ⊆ 𝑖𝑖𝑖𝑖𝑖𝑖. (𝑃𝑃);  𝜆𝜆 > 0 
(b) If 𝑐𝑐 ≫ 0, then there exists a 𝛿𝛿 > 0 such that ∥ 𝑏𝑏 ∥< 𝛿𝛿 implies that 𝑏𝑏 ≪ 𝑐𝑐. 
(c) For any given 𝑐𝑐 ≫ 0 and  𝑐𝑐0 ≫ 0, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝑛𝑛0 ∈ 𝑁𝑁 such that 𝑐𝑐0 𝑛𝑛0� ≪ 𝑐𝑐. 
(d) If {𝑎𝑎𝑛𝑛} , {𝑏𝑏𝑛𝑛} are two sequences in E such that 𝑎𝑎𝑛𝑛 → 𝑎𝑎,   𝑏𝑏𝑛𝑛 → 𝑏𝑏 and  𝑎𝑎𝑛𝑛 ≤ 𝑏𝑏𝑛𝑛  for all   𝑛𝑛 then  𝑎𝑎 ≤ 𝑏𝑏. 
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Definition 1.7: P is called minihedral cone if sup{𝑥𝑥, 𝑦𝑦} exists for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐸𝐸, and strongly minihedral  if  every subset 
of  E which  is bounded above  has a supremum. 
 
Lemma 1.8 [2]: Every strongly minihedral normal cone is regular. 
 
Definition 1.9: Suppose C be a closed and convex subset of a Cone Banach Space with the norm ∥ 𝑥𝑥 ∥𝑝𝑝= 𝑑𝑑(𝑥𝑥, 0) and 
𝑇𝑇: 𝐶𝐶 → 𝐶𝐶  be a mapping which satisfies the condition 

1
2
∥ 𝑥𝑥 − 𝑇𝑇𝑇𝑇 ∥𝑝𝑝  ≤ ∥ 𝑥𝑥 − 𝑦𝑦 ∥𝑝𝑝 . This implies that implies 

∥ 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 ∥𝑝𝑝≤  ∥ 𝑥𝑥 − 𝑦𝑦 ∥𝑝𝑝                                                                                                                (1.3) 
for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐶𝐶. Then T is said to satisfy the condition (C).  For 𝑇𝑇:𝑋𝑋 → 𝑋𝑋, the set of fixed points of T  is denoted by 

𝐹𝐹(𝑇𝑇) = {𝑧𝑧 ∈ 𝑋𝑋: 𝑇𝑇𝑇𝑇 = 𝑧𝑧}. 
 
Definition 1.10 [15]: Suppose C be a closed and convex subset of a Cone Banach Space with the norm                          
∥ 𝑥𝑥 ∥𝑝𝑝=  𝑑𝑑(𝑥𝑥, 0) and  𝑇𝑇: 𝐶𝐶 → 𝐶𝐶  be a mapping.  Consider the conditions  

∥ 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 ∥𝑝𝑝≤ ∥ 𝑥𝑥 − 𝑧𝑧 ∥𝑝𝑝      ∀ 𝑥𝑥, 𝑧𝑧 ∈ 𝐶𝐶                                                                                           (1.4) 
∥ 𝑇𝑇𝑇𝑇 − 𝑧𝑧 ∥𝑝𝑝≤  ∥ 𝑥𝑥 − 𝑧𝑧 ∥𝑝𝑝   ∀  𝑥𝑥 ∈ 𝐶𝐶 ;   𝑧𝑧 ∈ 𝐹𝐹(𝑇𝑇)                                                                              (1.5) 

then T is called non-expansive if it satisfies the condition (1.4) . 
 
Now we have the main results and their proofs. 
 
2. MAIN RESULTS 
 
Here in main results we represent a Cone Banach Space by 𝑋𝑋 = (𝑋𝑋, ∥. ∥𝑝𝑝), a  normal cone with constant  K  by  P and  a 
self-mapping operator defined on a subset  C of  X  by   T.  
 
Theorem 2.1: Suppose 𝑎𝑎 ∈ 𝑅𝑅,  𝑎𝑎 > 1; (𝑋𝑋, 𝑑𝑑) be a complete cone metric space and  𝑇𝑇: 𝑋𝑋 → 𝑋𝑋, an onto mapping which 
satisfies the condition  

𝑑𝑑(𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇) ≥ 𝑎𝑎. 𝑑𝑑(𝑥𝑥, 𝑦𝑦)                                                                                                                      (2.1) 
then T has a unique fixed point. 
 
Proof of 2.1: If  𝑥𝑥 ≠ 𝑦𝑦 and 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇, then from  (2.1), we see  that 0 ≥ 𝑎𝑎. 𝑑𝑑(𝑥𝑥, 𝑦𝑦) which is a contradiction. Then T is 
one-to-one and it has an inverse, say S. Thus we have   

𝑑𝑑(𝑥𝑥, 𝑦𝑦) ≥ 𝑎𝑎. 𝑑𝑑(𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆) ⟺ 𝑑𝑑(𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆) ≤ 1
𝑎𝑎
𝑑𝑑(𝑥𝑥, 𝑦𝑦)                                                                            (2.2)    

 
By [8, theorem 1], S has a unique fixed point which in other words means that T has a unique fixed point. This proves 
theorem 2.1. 
 
Now we have the two propositions:  
 
Proposition 2.2: Every non-expansive mapping satisfies the condition (C), this statement is a consequence of definition 
(1.9). 
 
Proposition 2.3: If T satisfy the condition (C) and 𝐹𝐹(𝑇𝑇) ≠ 𝜑𝜑, then T is a quasi-non-expansive. 
 
Proof of 2.3: Let 𝑧𝑧 ∈ 𝐹𝐹(𝑇𝑇)𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 ∈ 𝐶𝐶. Since 1

2
∥ 𝑧𝑧 − 𝑇𝑇𝑇𝑇 ∥𝑝𝑝= 0 ≤  ∥ 𝑧𝑧 − 𝑥𝑥 ∥𝑝𝑝  and satisfies the condition (C), 

∥ 𝑧𝑧 − 𝑇𝑇𝑇𝑇 ∥𝑝𝑝=∥ 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 ∥𝑝𝑝   ≤   ∥ 𝑧𝑧 − 𝑥𝑥 ∥𝑝𝑝                                                                                        (2.3) 
 
This proves proposition (2.3). 
 
Now we prove one more theorem. 
 
Theorem 2.4: Let C be a closed and convex subset of a Cone Banach Space 𝑋𝑋 with the norm ∥ 𝑥𝑥 ∥𝑝𝑝= 𝑑𝑑(𝑥𝑥, 0) and   
𝑇𝑇: 𝐶𝐶 → 𝐶𝐶  be a mapping which satisfies the condition  

𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑇𝑇) ≤ 𝑞𝑞. 𝑑𝑑(𝑥𝑥, 𝑦𝑦)                                                                                                     (2.4)               
for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐶𝐶, where 2 ≤ 𝑞𝑞 < 4. Then T has at least one fixed point. 
 
Proof of theorem 2.4: Let  𝑥𝑥0 be an arbitrary point in 𝐶𝐶, we define a sequence {𝑥𝑥𝑛𝑛} as follows;  

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛+𝑇𝑇(𝑥𝑥𝑛𝑛 )
2

,         𝑛𝑛 = 0,1,2, …                                                                                                  (2.5) 
We note that  

𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛 = 2{𝑥𝑥𝑛𝑛 − �𝑥𝑥𝑛𝑛+𝑇𝑇𝑥𝑥𝑛𝑛
2

�}  = 2(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛+1)                                                                             (2.6)     
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which gives  

𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛) =∥ 𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛 ∥𝑝𝑝= 2 ∥ 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛+1 ∥𝑝𝑝  
                   = 2 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 =  0,1,2, …                                                                                (2.7) 

 
Combining this observation with the condition (2.4), then we get   

2𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) + 2𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) ≤ 𝑞𝑞. 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛)                                                                               (2.8) 
 
Hence,  𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) ≤ 𝑘𝑘. 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) where 𝑘𝑘 = 𝑞𝑞−2

2
< 1. 

 
Thus, {𝑥𝑥𝑛𝑛} is a Cauchy sequence in C and thus converges to some point 𝑧𝑧 ∈ 𝐶𝐶. 
 
Regarding the inequality  

𝑑𝑑(𝑧𝑧, 𝑇𝑇𝑇𝑇𝑛𝑛) ≤ 𝑑𝑑(𝑧𝑧, 𝑥𝑥𝑛𝑛) + 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛) = 𝑑𝑑(𝑧𝑧, 𝑥𝑥𝑛𝑛) + 2𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1)                                                     (2.9) 
and with  the help of  lemma 1.5 (iii), we  have  

𝑇𝑇𝑇𝑇𝑛𝑛 → 𝑧𝑧                                                                                                                                            (2.10) 
 
Considering (2.6) and (2.4) and putting 𝑥𝑥 = 𝑧𝑧 and 𝑦𝑦 = 𝑥𝑥𝑛𝑛  implies that 

𝑑𝑑(𝑧𝑧, 𝑇𝑇𝑇𝑇) + 2𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) ≤ 𝑞𝑞. 𝑑𝑑(𝑧𝑧, 𝑥𝑥𝑛𝑛)                                                                                           (2.11) 
 
Hence, if 𝑛𝑛 → ∞, we can have   𝑑𝑑(𝑧𝑧, 𝑇𝑇𝑇𝑇) ≤ 0 ⇒ 𝑇𝑇𝑇𝑇 = 𝑧𝑧. This prove theorem 2.4. 
 
We observe that the identity mapping 𝐼𝐼(𝑥𝑥) = 𝑥𝑥,  satisfies the condition (2.4). Thus maps that satisfy the condition (2.4) 
many have fixed points. We have by triangle inequality that  

𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑇𝑇) ≤ 𝑑𝑑(𝑥𝑥, 𝑦𝑦) + 𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦, 𝑥𝑥) + 𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑇𝑇)                                                (2.12) 
 
By (2.4), we have 

𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑇𝑇) ≤ 2 𝑑𝑑(𝑥𝑥, 𝑦𝑦) + 𝑞𝑞 𝑑𝑑(𝑥𝑥, 𝑦𝑦) = (2 + 𝑞𝑞) 𝑑𝑑(𝑥𝑥, 𝑦𝑦), 2 ≤ 𝑞𝑞 < 4                              (2.13)  
 
We put  𝑝𝑝 = 2 + 𝑞𝑞 and obtain  

𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑇𝑇) ≤ 2𝑑𝑑(𝑥𝑥, 𝑦𝑦) + 𝑞𝑞. 𝑑𝑑(𝑥𝑥, 𝑦𝑦) = 𝑝𝑝. 𝑑𝑑(𝑥𝑥, 𝑦𝑦),                                                                   (2.14) 
 
Due to this, we have the following new theorem. 
 
Theorem 2.5: If C is a closed and convex subset of a Cone Banach Space with the norm ∥ 𝑥𝑥 ∥𝑝𝑝= 𝑑𝑑(𝑥𝑥, 0) and 𝑇𝑇: 𝐶𝐶 → 𝐶𝐶  
is a mapping which satisfies the condition                                 

𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑇𝑇) ≤ 𝑝𝑝. 𝑑𝑑(𝑥𝑥, 𝑦𝑦)                                                                                                 (2.15) 
for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐶𝐶, where 0 ≤ 𝑝𝑝 < 2. Then T has a fixed point. 
 
Theorem 2.6: If C is a closed and convex subset of a Cone Banach Space with the norm ∥ 𝑥𝑥 ∥𝑝𝑝= 𝑑𝑑(𝑥𝑥, 0) and 𝑇𝑇: 𝐶𝐶 → 𝐶𝐶 
is a mapping which satisfies the condition 

𝑑𝑑(𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑇𝑇) ≤ 𝑟𝑟. 𝑑𝑑(𝑥𝑥, 𝑦𝑦)                                                                              (2.16)  
for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐶𝐶, where 2 ≤ 𝑟𝑟 < 5. Then T has at least one fixed point. 
 
Proof of Theorem 2.6: We form a sequence {𝑥𝑥𝑛𝑛} as in the proof of theorem 2.4, i.e. (2.5), (2.6) and also  

𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛−1 =
𝑥𝑥𝑛𝑛−1+𝑇𝑇𝑥𝑥𝑛𝑛−1

2
− 𝑇𝑇𝑥𝑥𝑛𝑛−1 =

𝑥𝑥𝑛𝑛−1+𝑇𝑇𝑥𝑥𝑛𝑛−1

2
 

𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛−1) =∥ 𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛−1 ∥𝑝𝑝= 1
2
∥ 𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛−1 ∥𝑝𝑝= 1

2
𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑇𝑇𝑥𝑥𝑛𝑛−1)                                   (2.17) 

hold.  
 
Thus, by triangle inequality, we have    

𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛) ≤ 𝑑𝑑(𝑇𝑇𝑥𝑥𝑛𝑛−1, 𝑇𝑇𝑥𝑥𝑛𝑛) +𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛−1), that is 
𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛) − 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛−1) ≤ 𝑑𝑑(𝑇𝑇𝑥𝑥𝑛𝑛−1, 𝑇𝑇𝑥𝑥𝑛𝑛)                                                                               (2.18) 

 
We have the inequality (by 2.7 & 2.17) 

2𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) − 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1) ≤ 𝑑𝑑(𝑇𝑇𝑥𝑥𝑛𝑛−1, 𝑇𝑇𝑥𝑥𝑛𝑛)                                                                               (2.19) 
 
Putting 𝑥𝑥 = 𝑥𝑥𝑛𝑛−1 and  𝑦𝑦 = 𝑥𝑥𝑛𝑛  in (2.16), we have (by 2.19 & 2.7) that  

2𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) + 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1) − 2𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1) + 2𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) ≤ 𝑟𝑟. 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛)                            (2.20)  
 
Which further gives that  

𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) ≤ {𝑟𝑟−1
4

} 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1). 
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Since 1 ≤ 𝑟𝑟 < 5, the sequence {𝑥𝑥𝑛𝑛} is a Cauchy sequence that converges to some point 𝑧𝑧 ∈ 𝐶𝐶. Since {𝑇𝑇𝑇𝑇𝑛𝑛} also 
converges to  𝑧𝑧   as in the proof of theorem 2.4, the inequality (2.16) (with the assumption 𝑥𝑥 = 𝑧𝑧, 𝑦𝑦 = 𝑥𝑥𝑛𝑛) by the help of 
lemma (1.5) (iii) yields that  

d( 𝑇𝑇𝑇𝑇, 𝑧𝑧) + 𝑑𝑑(𝑧𝑧, 𝑇𝑇𝑇𝑇) ≤ 0 which  implies  that 𝑇𝑇𝑇𝑇 = 𝑧𝑧. Hence  theorem (2.6) is proved. 
 
Now we prove the last theorem in this paper. 
 
Theorem 2.7: Let C be a closed and convex subset of a Cone Banach Space with the norm ∥ 𝑥𝑥 ∥𝑝𝑝= 𝑑𝑑(𝑥𝑥, 0). If there 
exists elements  𝑎𝑎, 𝑏𝑏, 𝑠𝑠 and a mapping  𝑇𝑇: 𝐶𝐶 → 𝐶𝐶 which satisfies two conditions  

0 ≤ 𝑠𝑠 + |𝑎𝑎| − 2𝑏𝑏 < 2(𝑎𝑎 + 𝑏𝑏)                                                                                                         (2.21)   
and 

𝑎𝑎. 𝑑𝑑(𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇) + 𝑏𝑏{𝑑𝑑(𝑥𝑥, 𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦, 𝑇𝑇𝑇𝑇)} ≤ 𝑠𝑠. 𝑑𝑑(𝑥𝑥, 𝑦𝑦)                                                                     (2.22) 
for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐶𝐶. Then T has at least one fixed point. 
 
Proof of theorem 2.7: For the proof of this theorem we make a sequence {𝑥𝑥𝑛𝑛} as in the proof of theorem 2.4 and we 
claim that the inequality (2.22) for 𝑥𝑥 = 𝑥𝑥𝑛𝑛−1, 𝑦𝑦 = 𝑥𝑥𝑛𝑛  implies that  

2𝑎𝑎. 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) − |𝑎𝑎|. 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) + 2𝑏𝑏{𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) + 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1)} ≤ 𝑠𝑠. 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛)               (2.23) 
for all 𝑎𝑎 , 𝑏𝑏, 𝑠𝑠 that satisfy (2.21). For the proof of the claim, we have from (2.7) that  

�𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑇𝑇𝑥𝑥𝑛𝑛−1) = 2𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛)
𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛)         = 2𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1)�                                                                                                    (2.24) 

 
The case when 𝑎𝑎 ≥ 0 is trivially true. In fact, on considering (2.22) with 𝑥𝑥 = 𝑥𝑥𝑛𝑛−1 and 𝑦𝑦 = 𝑥𝑥𝑛𝑛  together with (2.24) and 
(2.19), we can show  

2𝑎𝑎. 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) − 𝑎𝑎. 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) + 2𝑏𝑏{𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) + 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1)} ≤ 𝑠𝑠. 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛)                 (2.25) 
 
which is equivalent to (2.23) , since |𝑎𝑎| = 𝑎𝑎.  
 
For the case 𝑎𝑎 < 0, we consider the inequality 

𝑑𝑑(𝑇𝑇𝑇𝑇𝑛𝑛−1, 𝑇𝑇𝑥𝑥𝑛𝑛) ≤ 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛) + 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛−1) which is equivalent to 
𝑎𝑎{𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛) + 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛−1)} ≥ 𝑎𝑎. 𝑑𝑑(𝑇𝑇𝑥𝑥𝑛𝑛−1, 𝑇𝑇𝑥𝑥𝑛𝑛)                                                                    (2.26) 

 
By putting  𝑥𝑥 = 𝑥𝑥𝑛𝑛−1 and 𝑦𝑦 = 𝑥𝑥𝑛𝑛  in (2.22) together with (2.24), (2.26) and (2.17), we can show that  

2𝑎𝑎. 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) + 𝑎𝑎. 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) + 2𝑏𝑏{𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) + 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1)} ≤ 𝑠𝑠. 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛)                 (2.27) 
 
which is clearly  equivalent to (2.23) since |𝑎𝑎| = −𝑎𝑎. Hence our claim is proved. 
 
From (2.23), we can have 

𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) ≤ |𝑎𝑎|−2𝑏𝑏+𝑠𝑠
2(𝑎𝑎+𝑏𝑏)

 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛)                                                                                                 (2.28) 
 
By (2.21), we have 

0 ≤ |𝑎𝑎|−2𝑏𝑏+𝑠𝑠
2(𝑎𝑎+𝑏𝑏)

< 1. 
 
Hence, the sequence {𝑥𝑥𝑛𝑛} is a Cauchy sequence that converges to some point 𝑧𝑧 ∈ 𝐶𝐶. By replacing 𝑥𝑥 with 𝑧𝑧 and 𝑦𝑦 with  
𝑥𝑥𝑛𝑛   in (2.22), we can prove that  

a.d(𝑇𝑇𝑇𝑇, 𝑧𝑧) + 𝑏𝑏. 𝑑𝑑(𝑧𝑧, 𝑇𝑇𝑇𝑇) ≤ 0  as 𝑛𝑛 → ∞                                                                                          (2.29) 
 
From (2.29), we have  𝑇𝑇𝑇𝑇 = 𝑧𝑧  as (𝑎𝑎 + 𝑏𝑏) > 0  which prove theorem (2.7) completely. 
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