
������������	
������	
�
�����������	
�������������
�����
�����
��� ������
�����	�!	�
��	���
�������
"""#�$��#���

�������������	
��

������������	
������	
�
�����������	
��������
�
����
������
�
����

��� �

 AN EMPIRICAL STUDY ON K-SORT FOR BINOMIAL INPUTS

Kiran Kumar Sundararajan
1
, Mita Pal

2
, Soubhik Chakraborty

3*
, Bijeeta Pal

4

&

 N. C. Mahanti
5

1
Barclays Bank PLC, United Arab Emirates, Dubai

2,3, 5
Department of Applied Mathematics, Birla Institute of Technology, Mesra, Ranchi-835215, India

4
Department of Computer Engineering, Institute of Technology, Banaras Hindu University,

Varanasi, India

*Corresponding author email: soubhikc@yahoo.co.in

(Received on: 21-07-11; Accepted on: 03-08-11)

--

ABSTRACT

The present paper examines the behavior of a new version of Quick sort, which we call K-sort, when the sorting

elements follow a Binomial distribution.

Key words: K-sort; parameterized complexity; statistics; factorial experiments.

--

1. 1 INTRODUCTION

The present paper examines the behavior of K-sort (a new version of Quick sort) for binomial distribution inputs and is

in continuation of our earlier work on this new algorithm for uniform U[0, 1] inputs [5] with the acknowledgement that

here the focus will be on how the parameters of Binomial distribution affect the average sorting time. In other words,

this is a work in parameterized complexity [4]. Use is made of factorial experiments when the n observations to be

sorted come independently from binomial distribution B (m, p). To investigate the individual effect of number of

sorting elements (n), binomial distribution parameters (m and p which give the fixed number of trials and the fixed

probability of success in a single trial) and also their interaction effects, a 3-cube factorial experiment is conducted with

three levels of each of the three factors n, m and p. Further, we have obtained some interesting patterns showing how

the Binomial parameters influence the average sorting time. We have attempted a justification for the same. The next

section describes our K-sort.

1.2 K-sort

The steps of K-sort are given below:-

Step-1: Initialize the first element of the array as the key element and i as left, j as (right+1), k = p where p is (left+1).

Step-2: Repeat step-3 till the condition (j-i) ≥ 2 is satisfied.

Step-3: Compare a[p] and key element. If key ≤ a[p] then

Step-3.1: if (p is not equal to j and j is not equal to (right + 1))

then set a[j] = a[p]

else if (j equals (right + 1)) then

set temp = a[p] and flag = 1

decrease j by 1 and assign p = j

else (if the comparison of step-3 is not satisfied i.e. if key > a[p])

Step-3.2: assign a[i] = a[p] , increase i and k by 1 and set p = k

Step-4: set a[i] = key

if (flag = = 1) then

assign a[i+1] = temp

--

����������	
����������Soubhik Chakraborty
3*
������
���soubhikc@yahoo.co.in�

Kiran Kumar Sundararajan1 et al./ An Empirical Study on K-sort for Binomial Inputs / IJMA- 2(8), August-2011,

Page: 1274-1278

!
�����
����"
�		
#�����
#������$

���%
�

Step-5: if (left < i - 1) then

Split the array into sub array from start to i-th element and repeat steps 1-4 with the sub array

Step-6: if (left > i + 1) then

Split the array into sub array from i-th element to end element and repeat steps 1-4 with the sub array

2. EMPIRICAL RESULTS

Our first study examines the behavior of K sort for varying p with fixed n and m.

Table - 1 gives the average run time y (average taken over 30 readings) for different values of the argument p for fixed

n=50000 and m=100.

Table – 1

Average sorting time

P average sorting time in sec�

0.1 �������

0.2 ������

0.3 ���	

0.4 ����
��

0.5 �������

0.6 ������

0.7 ���
�
�

0.8 ������

0.9 �������

Fig-1 Average sorting time versus p: quadratic fit

Kiran Kumar Sundararajan1 et al./ An Empirical Study on K-sort for Binomial Inputs / IJMA- 2(8), August-2011,

Page: 1274-1278

!
�����
����"
�		
#�����
#������$

���&
�

. `

Fig 2 Average sorting time versus p: cubic fit

Comparing Figures 1 and 2, based on the experimental results given in table1, we find that a second degree polynomial

is the adequate fit to represent the average sorting time in terms of p for binomial distribution input for fixed no. of

trials m and array size n. The cubic and quadratic fits are equally good meaning thereby that cubic term is not

contributing anything to the model.

In our second study, we keep p and n fixed and observe average sorting time for varying m.

Table - 2 gives the average run time y (average taken over 30 readings) for different values of the argument m for

fixed n=150000 and p=0.5

Table 2: Avg sorting time vs m

For fixed p= 0. 5

 Fig-3: Avg sorting time vs m: fit of polynomial of deg four

m Observed sorting

time in sec

100 2.0516

500 0.9249

1000 0.6563

1500 0.5422

2000 0.4674

Kiran Kumar Sundararajan1 et al./ An Empirical Study on K-sort for Binomial Inputs / IJMA- 2(8), August-2011,

Page: 1274-1278

!
�����
����"
�		
#�����
#������$

����
�

Figure 3, based on the experimental results given in table 2, suggests a forth degree polynomial fit for binomial

distribution input to predict the average sorting time in terms of m for fixed p and n. It is clear from table 2 that average

sorting time decreases as m increases. This is because as m increases the number of ties decreases. Why this happens is

discussed later (sec. 3).

In our last study, Table 3 gives the data for factorial experiments to accomplish our study on parameterized complexity.

Table 3: Data for 3
3
 factorial experiment for K- sort

K- sort times in second Binomial (m , p) distribution input for various n (50000, 100000, 150000) , m (100 , 1000,

1500) and p (0.2, 0.5, 0.8).

n = 50000

m p=0.2 p=0.5 p=0.8

100 0.2862 0.2298 0.286

1000 0.094 0.0748 0.0937

1500 0.0751 0.0623 0.078

n=100000

m p=0.2 p=0.5 p=0.8

100 1.1422 0.9109 1.1407

1000 0.3671 0.2936 0.3655

1500 0.3014 0.2421 0.3014

n = 150000

m p=0.2 p=0.5 p=0.8

100 2.5658 2.0516 2.5673

1000 0.8205 0.6563 0.8158

1500 0.672 0.5422 0.6704

Table 4 gives the results using MINITAB statistical package version 15.

Table-4: Results of 3

3
 factorial experiment on K-sort

General Linear Model: y versus n, m, p

Factor Type Levels Values

n fixed 3 1, 2, 3

m fixed 3 1, 2, 3

p fixed 3 1, 2, 3

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

n 2 17.3422 17.3422 8.6711 879434.48 0.000

m 2 14.0687 14.0687 7.0343 713429.94 0.000

p 2 0.3512 0.3512 0.1756 17807.22 0.000

n*m 4 7.0538 7.0538 1.7635 178851.85 0.000

m*p 4 0.1445 0.1445 0.0361 3663.67 0.000

n*p 4 0.1721 0.1721 0.0430 4363.81 0.000

n*m*p 8 0.0716 0.0716 0.0090 908.08 0.000

Error 54 0.0005 0.0005 0.0000

Total 80 39.2047

S = 0.00314005 R-Sq = 100.00% R-Sq(adj) = 100.00%

Kiran Kumar Sundararajan1 et al./ An Empirical Study on K-sort for Binomial Inputs / IJMA- 2(8), August-2011,

Page: 1274-1278

!
�����
����"
�		
#�����
#������$

����
�

3. DISCUSSION

K- sort is highly affected by the main effects n, m and p. When we consider the interaction effects, interestingly we find

that all interactions are significant in K- sort. Strikingly, even the three factor interaction n*m*p cannot be neglected. It

is observed that y decreases for increasing p up to 0.5 in fig. 1 and then increases for increasing p. The only justification

that can be readily given is that as p gets away from 0.5, either the lower values of the variate (p<0.5) or the higher

values of the variate (p>0.5) are more likely resulting in greater number of ties. If interchanges were involved, greater

number of ties would result in fewer interchanges leading to lesser sorting time. The question of interest is: when

interchanges are not involved, why does an increase in the ties lead to an increase in the sorting time (in this case at

least)? The answer is that the construction of the algorithm is such that more computations are required for “if

(key<=a[p])” (step 3) than for “if (key>a[p])”. The crux of the debate lies in that the case of equality resulting in ties is

attached with the less than type (<) operator. If it were attached with the greater than type (>) operator, the story would

be the other way round.

4. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

Three-cube factorial experiments conducted on K-sort reveal that for certain algorithms such as sorting, the parameters

of the input distribution singularly as well as interactively are important factors, besides the size of input, for evaluating

time complexity more precisely. While, our results will definitely pose an intellectual challenge for the theoretical

analysts, we do emphasize here that cheap and efficient prediction [3] is the objective in computer experiments such as

the ones conducted here. A computer experiment is a series of runs of a code for various inputs. Our study in

parameterized complexity in algorithms also emphasizes the important role that ties play. Ties have been explored also

in [6].

K-sort, however, has one drawback. The algorithm fails to take advantage of an already sorted array or sub array.

Modern programmers keep bubble sort, which has this facility, as a subroutine to Quick sort and its different variations.

We too propose the same in the case of K-sort.

Remark: It may be of interest to know that the first version of K-sort which used an auxiliary array was proposed by

Sundararajan and Chakraborty [1] and called a new sorting algorithm. Khreisat [2] made a comparative study of several

versions of Quicksort in terms of speed. The new sorting algorithm was also tested and found to be competing well

with SedgewickFast, Singleton sort and Bsort, three of the fast versions of Quicksort, for number of sorting elements

ranging from 3000 to 2, 00,000.

REFERENCES

[1] K. K. Sundararajan , S. Chakraborty , A New Sorting Algorithm, Applied Math. and Compu., vol. 188(1), 2007, p.

1037-1041

[2] L. Khreisat, QuickSort A Historical Perspective and Empirical Study, International Journal of Computer Science

and Network Security, VOL.7 No.12, December 2007, p. 54-65

[3] J. Sacks, W. Weltch, T.Mitchel, H. Wynn, Design and Analysis of Computer Experiments, Statistical Science 4 (4),

1989

[4] M. Pal, S. Chakraborty and N. C. Mahanti, How does the Shift-insertion Sort behave when the sorting elements

follow a Normal distribution?, Annals Computer Science Series, Vol. VIII, Fasc. 2, 2010, 93-98.

�

[5] K. K. Sundararajan, M. Pal, S. Chakraborty and N. C. Mahanti, K-sort: A new sorting algorithm that beats Heap

sort for n ≤ 70 lakhs! ��������������������������

[6] S. Chakraborty, S. K. Sourabh, M. Bose and K. Sushant, Replacement sort revisited: The “gold standard”

unearthed! , Applied Math. and Compu. ,vol. 189(2), 2007, p. 384-394.
