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ABSTRACT 
In this paper, we consider α – 𝛹𝛹 contractive mappings in the setting of quasi partial metric spaces and verify the 
existence of a fixed point on such spaces. Also, we present some examples of obtained results. 
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1. INTRODUCTION  
 
One of the most interesting expansions of distance function was reported by Matthews [1] by introducing the notion of 
a partial metric in which self-distance need not be zero. Matthews [1] successfully characterised the distinguished 
result, Banach contraction mapping, in the sitting of partial metric spaces. 
 
Many authors have generalised some fixed point theorems on quasi-partial metric spaces. Recently Erdal Karpinar       
et al. [11] presented α – (𝛹𝛹,∅) contractive mappings on quasi-partial metric space and investigated the existence and 
uniqueness of certain operators in the context of quasi-partial metric space. 
 
A fixed point theorem is proved in setting of such spaces and a example is given to verify the effectiveness of the main 
results. 
 
2. PRELIMINARIES 
 
Definition 1: A quasi metric on a non-empty set X is a function d: X × X → [0, +∞) such that for all x, y, z ∈ X: 

1. d(x, y) = 0 ⇔ x = y 
2. d(x, y) ≤ d(x, z) + d(z, y) 
 

A quasi-metric space is a pair (X, d) such that X is a non-empty set and d is a quasi-metric on X. 
 
Definition 2: A partial metric on a non-empty set X is a function p: X × X → [0, +∞) such that for all x, y, z ∈ X: 

1. x = y  ⇔ p(x, x) = p(x, y) = p(y, y), 
2. p(x, x) ≤ p(x, y), 
3. p(x, y) = p(y, x), 
4. p(x, y) ≤ p(x, z) + p(z; y) - p(z, z). 

 
A partial metric space is a pair (X, p) such that X is a non-empty set and p is a partial metric on X. 
 
Definition 3 [5]: A quasi-partial metric space on a non-empty set X is a function q: X × X → [0, +∞) such that for all 
x, y, z ∈ X: 

1. if q(x, x) = q(x, y) = q(y, y) then x = y (equality) 
2. q(x, x) ≤ q(x, y) (small self-distances) 
3. q(x, x) ≤ q(y, x) (small self-distances) 
4. q(x, z) + q(y, y) ≤ q(x, y) + q(y, z) (triangle inequality) 
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A quasi partial metric space is a pair (X, q) such that X is a non-empty set and q is a partial metric on X. If                
q(x, y) = q(y; x) for all x, y ∈ X, then (X, q) becomes a partial metric space. 
 
Definition 4 [5]: Let (X, q) be a quasi-partial metric space. Then, 
(i) a sequence {𝑥𝑥𝑛𝑛 } ⊂ X converges to x ∈ X if and only if 

q(x, x) =lim𝑛𝑛→+∞ 𝑞𝑞(𝑥𝑥, 𝑥𝑥𝑛𝑛 ) = lim𝑛𝑛→+∞ 𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑥𝑥); 
 

(ii) a sequence {𝑥𝑥𝑛𝑛 } ⊂ X  is called a Cauchy sequence if and only if 
lim𝑛𝑛 ,𝑚𝑚→+∞ 𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 ) 𝑎𝑎𝑛𝑛𝑎𝑎 lim𝑛𝑛 ,𝑚𝑚 →+∞ 𝑞𝑞(𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑛𝑛 ) exist (and are finite); 

 
(iii) the quasi-partial metric space is said to be complete if every Cauchy sequence {𝑥𝑥𝑛𝑛 } ⊂ X  converges, with respect to 
𝜏𝜏𝑞𝑞 , to a point x ∈ X such that 

𝑞𝑞(𝑥𝑥, 𝑥𝑥) = lim
𝑛𝑛 ,𝑚𝑚 →+∞

𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 ) 𝑎𝑎𝑛𝑛𝑎𝑎 lim
𝑛𝑛 ,𝑚𝑚 →+∞

𝑞𝑞(𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑛𝑛 ) 
 
Definition 5 [5]: Let (X; q) be a quasi-partial metric space. Then 

1. a sequence {𝑥𝑥𝑛𝑛 } in X is called a left Cauchy sequence if and only if for every 𝜖𝜖 > 0 there exists a positive 
integer   N = N(𝜖𝜖) such that 

q(xn, xm) < 𝜖𝜖 for all n > m > N; 
2. a sequence {𝑥𝑥𝑛𝑛 } in X is called a left Cauchy sequence if and only if for every  𝜖𝜖 > 0 there exists a positive 

integer   N = N(𝜖𝜖 ) such that 
q(xn, xm) < 𝜖𝜖 for all m > n > N; 

3. the quasi-partial metric space is said to be left complete if every left Cauchy sequence {𝑥𝑥𝑛𝑛 } in X is convergent. 
4. the quasi-partial metric space is said to be right complete if every right Cauchy sequence {𝑥𝑥𝑛𝑛 } in X is 

convergent. 
 

Definition 6 [6]: Let T be self-mapping on X and α: X × X → [0, +∞) be a function. We say that T is an α - admissible 
mapping if T is 

x, y ∈ X , α (x, y) ≥ 1 ) ⇒ α(Tx, Ty) ≥ 1 
 

Definition 7 [7]: Let T be self-mapping on X and α : X × X → [0,  +∞) be a function. We say that T is a triangular        
α - admissible mapping if T is α - admissible and 

x, y, z ∈ X , α(x, z) ≥ 1 and α(z, y) ≥ 1) ⇒ α(x, y) ≥ 1 
 

Definition 8 [8]: Let T: X × X be a self-mapping and α : X × X → [0,  +∞) be a function. Then T is said to be α - 
orbital admissible if 

α(x, Tx) ≥ 1 ⇒ (Tx; T2 x) ≥ 1 
 

Definition 9 [8]: Let T: X × X be a self-mapping and α: X × X → [0, +∞) be a function. Then T is said to be right- α - 
orbital-admissible if 

α(x, Tx) ≥ 1 ⇒ (Tx; T2 x) ≥ 1 and be left- α - orbital-admissible if α(Tx, x) ≥ 1 ⇒ (Tx; T2 x) ≥ 1 
Note that a mapping T is α-orbital admissible if it is both right-α-orbital admissible and left-α-orbital admissible. 
 
Definition 10 [8]: Let T: X × X be a self-mapping and α: X × X → [0, ∞) be a function. Then T is said to be triangular 
α-orbital admissible if T is α-orbital admissible and 

α(x, y) ≥ 1 and α(y, Ty) ≥ 1⇒ α(x, Ty) ≥1 
 

Definition 11 [8]: Let T: X × X be a self-mapping and α: X × X → [0,∞) be a function. Then T is said to be triangular 
α-orbital admissible if T is right-α-orbital admissible and 

α(x, y) ≥ 1 and α(y, Ty) ≥ 1⇒ α(x, Ty) ≥1 
and be triangular left-α-orbital admissible if T is a α-orbital admissible and 

α(Tx, x) ≥ 1 and α(x, y) ≥ 1⇒ α(Tx, y) ≥1 
 
Definition 12 [8]: Let (X, d) be a α-metric space, X is said α- regular if for every sequence {𝑥𝑥𝑛𝑛 } in X such 
that 𝛼𝛼(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 +1) ≥ 1 for all n and 𝑥𝑥𝑛𝑛 → 𝑥𝑥 ∈ 𝑋𝑋 as 𝑛𝑛 → ∞ there exists a subsequence �𝑥𝑥𝑛𝑛(𝑘𝑘)� of {𝑥𝑥𝑛𝑛 } such that 
𝛼𝛼(𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥) ≥ 1 for all k. 
 
Lemma 1 [5]: Let (X, q) be a quasi-partial metric space. Let (X, pq) be the corresponding partial metric space and let 
(𝑋𝑋, 𝑎𝑎𝑝𝑝𝑞𝑞 ) be the corresponding metric space. The following statements are equivalent. 

1. The sequence{𝑥𝑥𝑛𝑛 } is Cauchy in (X, q). 
2. The sequence{𝑥𝑥𝑛𝑛 } is Cauchy in (X, pq). 
3. The sequence {𝑥𝑥𝑛𝑛 } is Cauchy in (X, 𝑎𝑎𝑝𝑝𝑞𝑞 ). 
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Lemma 2 [5]: Let (X, q) be a quasi-partial metric space. Let (X, pq) be the corresponding partial metric space and let 
(X, 𝑎𝑎𝑝𝑝𝑞𝑞 ) be the corresponding metric space. The following statements are equivalent: 

1. (X, q) is complete. 
2. (X, pq) is complete. 
3. (X, 𝑎𝑎𝑝𝑝𝑞𝑞  ) is complete. 

Moreover,  
lim𝑛𝑛→∞ 𝑎𝑎𝑝𝑝𝑞𝑞 (𝑥𝑥, 𝑥𝑥𝑛𝑛 ) = 0 ⇔ 𝑝𝑝𝑞𝑞 (𝑥𝑥, 𝑥𝑥) = lim𝑛𝑛→∞ 𝑝𝑝𝑞𝑞 (𝑥𝑥, 𝑥𝑥𝑛𝑛 ) = lim𝑛𝑛 ,𝑚𝑚→∞ 𝑝𝑝𝑞𝑞 (𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 )                                           (1) 
 
⇔ 𝑞𝑞(𝑥𝑥, 𝑥𝑥) = lim𝑛𝑛 ,𝑚𝑚 →∞ 𝑞𝑞(𝑥𝑥, 𝑥𝑥𝑛𝑛 ) = lim𝑛𝑛 ,𝑚𝑚→∞ 𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 )                                                                                         (2)  
 

                                = lim𝑛𝑛→∞ 𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑥𝑥) = lim𝑛𝑛→∞ 𝑞𝑞(𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑛𝑛 )                                                                                                    (3) 
 
In this paper, we shall handle definition 5 in the following way. 
 
Lemma 3 [8]: Let T: X × X be a triangular α-orbital admissible mapping. Assume that there exists x0 ∈ X such that 
α(x0, Tx0) ≥1. Define a sequence {𝑥𝑥𝑛𝑛 }  by 𝑥𝑥𝑛𝑛 +1 = 𝑇𝑇𝑥𝑥𝑛𝑛  for each n ∈ N0. Then we have 𝛼𝛼(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 ) ≥ 1 for all m, n ∈ N 
with n < m. 
 
Lemma 4 [11]: Let T: X × X be a triangular α- orbital admissible mapping. Assume that there exists 𝑥𝑥0 ∈ 𝑋𝑋 such that 
α(Tx0,x0). Define a sequence {𝑥𝑥𝑛𝑛 }  by 𝑥𝑥𝑛𝑛 +1 = 𝑇𝑇𝑥𝑥𝑛𝑛 , for each n ∈ N0. Then we have 𝛼𝛼(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 ) ≥ 1  for all m, n ∈ N with 
n < m. 
 
Definition 13 [11]: Let ^ be set of functions. 𝛷𝛷: [0, +∞) ⇒ [0; +1) such that 𝛷𝛷−1(0) = 0; 𝛹𝛹 = {𝛹𝛹 ∈  ˄is continuous, 
non- decreasing } and Φ = {𝜑𝜑 ∈∶  𝜑𝜑 is lower semi-continuous}. Let (X, q) be a quasi-partial metric space. We consider 
the following expressions: 

M(x; y) = max {q(x, y), q(x, Tx), q(y, Ty)}                                                                                                       (4) 
 
N(x; y) = min{ 𝛼𝛼𝑚𝑚

𝑞𝑞 (𝑥𝑥, 𝑇𝑇𝑥𝑥), 𝛼𝛼𝑚𝑚
𝑞𝑞 (𝑦𝑦, 𝑇𝑇𝑦𝑦), 𝛼𝛼𝑚𝑚

𝑞𝑞 (𝑥𝑥, 𝑇𝑇𝑦𝑦), 𝛼𝛼𝑚𝑚
𝑞𝑞 (𝑦𝑦, 𝑇𝑇𝑥𝑥)}      for all x, y ∈ X.                                           (5) 

 
Definition 14 [11]: Let (X; q) be a quasi-partial metric space. Where X is a non-empty set. we say that X is said to be 
α-left-regular if for every sequence {𝑥𝑥𝑛𝑛 } in X such that 𝛼𝛼(𝑥𝑥𝑛𝑛 +1, 𝑥𝑥𝑛𝑛 ) ≥ 1 for all n and 𝑥𝑥𝑛𝑛 → 𝑥𝑥 ∈ 𝑋𝑋 as 𝑛𝑛 → ∞, there 
exists a subsequence �𝑥𝑥𝑛𝑛(𝑘𝑘)�  of {𝑥𝑥𝑛𝑛 } such that 𝛼𝛼(𝑥𝑥, 𝑥𝑥𝑛𝑛 (𝑘𝑘)) ≥ 1 for all k. Analogously, a quasi-partial metric space X is 
said to be an α-right-regular if for every sequence {𝑥𝑥𝑛𝑛 }  in X such that 𝛼𝛼(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 +1) ≥ 1 for all n and  𝑥𝑥𝑛𝑛 → 𝑥𝑥 ∈ 𝑋𝑋 as 
𝑛𝑛 → ∞, there exists a subsequence�𝑥𝑥𝑛𝑛 (𝑘𝑘)�  of {𝑥𝑥𝑛𝑛 } such that 𝛼𝛼(𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥) ≥ 1 for all k. We say that X is regular if it is 
both α-left-regular and α-right-regular. 
 
Theorem 1 [11]: Let (X, q) be a complete quasi partial metric space. 
 
Let T: X → X be a self-mapping. Assuming that there exists   𝜓𝜓 ∈ Ψ, 𝜑𝜑 ∈ 𝛷𝛷, L ≥ 0 and a function α: X × X →  [0, ∞) 
such that for all x, y ∈ X, 

α(x, y) ψ((Tx; Ty)) ≤  ψ(M(x, y)) - 𝜑𝜑(M(x, y)) + LN(x, y).                                                                               (6) 
 
Also suppose that the following assertions hold: 

(i) T is triangular α-orbitable admissible. 
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0 ) ≥ 1. 
(iii) T is continuous or X is α-regular. 

Then T has a fixed point u ∈ X and q(u, u)=0. 
 
3 MAIN RESULTS 
 
Theorem 2: Let (X, q) be a complete quasi partial metric space. Let T: X →X be a self-mapping .Assuming that there 
exists 𝜓𝜓 ∈ Ψ and a function α: X × X → [0,∞) such that for all x, y ∈ X, 

α(x, y)q(Tx; Ty)≤  ψ(M(x; y))                                                                                                                            (7) 
Also suppose that the following assertions hold: 

(i) T is triangular α-orbitable admissible. 
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1. 
(iii) T is continuous or X is α-regular. 
       Then T has a fixed point u ∈ X and q(u, u)=0. 

 
Proof: We construct a sequence f  in X in the following way: 

xn = Txn-1 for all n ∈ N. 



Dr. U. Karuppiah1, A. Mary Priya Dharsini*2 /  
Some Theorems on α −𝜳𝜳  Quasi Contractive on Quasi Partial Metric Space / IJMA- 7(10), Oct.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                      188  

 
If 𝑞𝑞�𝑥𝑥𝑛𝑛0 , 𝑥𝑥𝑛𝑛0+1� = 0 for some n0 ≥ 0, then we have 𝑥𝑥𝑛𝑛0 = 𝑥𝑥𝑛𝑛0+1 = 𝑇𝑇𝑥𝑥𝑛𝑛0 ,  (ie) 𝑥𝑥𝑛𝑛0  is the fixed point of T. Consequently, 
we suppose that 𝑞𝑞�𝑥𝑥𝑛𝑛0 , 𝑥𝑥𝑛𝑛0+1�  > 0 for all n ∈ N0. 
 
By (ii), we have α(x0, Tx0) ≥ 1 and α(x0, Tx0) ≥ 1 on account of (i), we derive that 

α(x0 , x1) = α(x0, Tx0) ≥ 1 ⇒ α(x1, x2) = α(Tx0, Tx1) ≥ 1,  
α(x1, x0) = α(Tx0, x0) ≥ 1 ⇒ α(x2, x1) = α(Tx1, Tx0) ≥ 1,  

 
Recursively, we obtain that 

α(xn , xn+1) ≥ 1 and α(xn+1, xn) ≥1 for all n ∈ N0                                                                                                  (7) 
 
Regarding (6) and (7), we find that 

q( xn , xn+1) = q( Txn-1, xn) 
                  ≤ α (xn-1, xn ) q( Txn-1, Txn) 
                  ≤ ψ (M (xn-1, xn))                                                                                                                                (8) 

 
where M (xn-1, xn) = max {q (xn-1, xn),  q (xn-1, Txn-1), q (xn, Txn)} 
                             = max{q (xn-1, xn),  q (xn-1, xn), q (xn, xn+1)} 
                             = max{q (xn-1, xn), q (xn, xn+1)}.                                                                                                            (9) 
 
Thus we conclude from (8) that 

q (xn, xn+1) ≤ ψ (max {q (xn-1, xn), q (xn, xn+1)})                                                                                                 (10) 
 
By taking (9) into account 
 
If for some n we have max {q (xn-1, xn), q (xn, xn+1) = q (xn, xn+1), then (10) yields that 

q (xn, xn+1) ≤ ψ (q (xn, xn+1)) 
 
Hence, equation (8) turns into q (xn, xn+1) ≤ ψ (q (xn-1, xn)) for all n ∈ N. 
 
Due to the property of the auxiliary function, we have 

q (xn, xn+1) ≤ q (xn-1, xn) for all n ∈ N.                                                                                                                (11) 
 
Eventually, we observe that the sequence {q(xn, xn+1)} is non-increasing. So there exists 𝛿𝛿 > 0 such that 
lim𝑛𝑛→∞ 𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) = 𝛿𝛿. If 𝛿𝛿 > 0, taking lim sup n → +∞ in inequality (10), by keeping (9) in the mind, we obtain that 

lim
𝑛𝑛→+∞

𝑠𝑠𝑠𝑠𝑝𝑝 𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) ≤ lim
𝑛𝑛→+∞

𝑠𝑠𝑠𝑠𝑝𝑝 𝜓𝜓(𝑞𝑞(𝑥𝑥𝑛𝑛 −1, 𝑥𝑥𝑛𝑛 )) 
 
By continuity of ψ, we obtain 𝛿𝛿 ≤ 𝜓𝜓 (𝛿𝛿), which is a contradiction. So, 

lim𝑛𝑛→∞ 𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1) = 0                                                                                                                                    (12) 
 
Analogously, we derive that 

lim𝑛𝑛→∞ 𝑞𝑞(𝑥𝑥𝑛𝑛 +1, 𝑥𝑥𝑛𝑛 ) = 𝛿𝛿                                                                                                                                   (13) 
 
Now, we shall show that {𝑥𝑥𝑛𝑛 }  is a Cauchy sequence in the quasi-partial metric space (X, q), that is, the sequence {𝑥𝑥𝑛𝑛 } 
is left-Cauchy and right Cauchy. 
 
Suppose that 𝑥𝑥𝑛𝑛  is not a left-Cauchy sequence in (X, q). Then there is 𝜀𝜀 > 0 such that for each integer k there exists 
integers n(k) > m(k) > k such that 

𝑞𝑞(𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)) ≥ 𝜀𝜀                                                                                                                                           (14) 
 
Further, corresponding to m(k), we can choose n(k) so that it is the smallest integer with n(k) > m(k) satisfying (14), 
consequently, we have 

𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)� < 𝜀𝜀                                                                                                                                       (15) 
 
Due to the triangle inequality, we have 

𝜀𝜀 ≤  𝑞𝑞(𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)) 
   ≤  𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥𝑛𝑛(𝑘𝑘)−1� + 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)� − 𝑞𝑞(𝑥𝑥𝑛𝑛 (𝑘𝑘)−1, 𝑥𝑥𝑛𝑛(𝑘𝑘)−1) 
   <  𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥𝑛𝑛 (𝑘𝑘)−1� + 𝜀𝜀                                                                                                                                 (16) 

 
Letting k→ ∞ and taking (12) into account, we get that 

lim𝑘𝑘→∞ 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)� = 𝜀𝜀                                                                                                                              (17) 
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On the other hand, again by the triangle inequality, we find that 

𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)� ≤  𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑥𝑥𝑛𝑛(𝑘𝑘)−1� + 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1� − 𝑞𝑞�𝑥𝑥𝑚𝑚 (𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)� 
−𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘)−1, 𝑥𝑥𝑛𝑛(𝑘𝑘)−1� − 𝑞𝑞�𝑥𝑥𝑚𝑚 (𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1� 

                          ≤ 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥𝑛𝑛(𝑘𝑘)−1� + 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1� − 𝑞𝑞�𝑥𝑥𝑚𝑚 (𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)�                                           (18) 
And 

𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1�  ≤  𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘)−1, 𝑥𝑥𝑛𝑛(𝑘𝑘)� +  𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)� 
                                                      + 𝑞𝑞�𝑥𝑥𝑚𝑚 (𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1� −  𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑥𝑥𝑛𝑛 (𝑘𝑘)� − 𝑞𝑞�𝑥𝑥𝑚𝑚 (𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)� 
                                  ≤ 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑛𝑛 (𝑘𝑘)� + 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)� + 𝑞𝑞�𝑥𝑥𝑚𝑚 (𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1�                                           (19) 

 
Letting k → ∞ and taking (12), (13), (17), (18), (19) into account, we derive that 

lim𝑘𝑘→∞ 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1� = 𝜀𝜀                                                                                                                      (20) 
𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)�  ≤ 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑛𝑛(𝑘𝑘)� +  𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)� − 𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑥𝑥𝑛𝑛 (𝑘𝑘)� 
                              ≤ 𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘)−1, 𝑥𝑥𝑛𝑛(𝑘𝑘)� +  𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)�                                                                                (21) 

 
Letting k → ∞ and taking (12), (16), (18), (21) into account, we derive that 

lim𝑘𝑘→∞ 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)� = 𝜀𝜀                                                                                                                          (22) 
 
Since T is triangular, α- orbital admissible, from lemma 3 and lemma 4, we derive that  

α(xn , xn+1) ≥ 1 and α(xm, xn) ≥1 for all n > m ∈ N0                                                                                            (23) 
 
Regarding (6) and (23), we find that 

𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)� = 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1� 
                         ≤ 𝛼𝛼�𝑥𝑥𝑛𝑛 (𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1�𝑞𝑞�𝑇𝑇𝑥𝑥𝑛𝑛 (𝑘𝑘)−1, 𝑇𝑇𝑥𝑥𝑚𝑚 (𝑘𝑘)−1� 
                         ≤ 𝜓𝜓(𝑀𝑀�𝑥𝑥𝑛𝑛 (𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1�)                                                                                                       (24) 

Where 
𝑀𝑀�𝑥𝑥𝑛𝑛 (𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1� = max {𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1�, 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘)−1, 𝑥𝑥𝑛𝑛 (𝑘𝑘)�, 𝑞𝑞�𝑥𝑥𝑚𝑚 (𝑘𝑘), 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1�}                            (25) 
 

We get,    lim
𝑘𝑘→∞

𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘)−1, 𝑥𝑥𝑚𝑚 (𝑘𝑘)−1� = 𝜀𝜀                                                                                                                          (26) 
 
From the above observation, letting k → ∞  in (26), we obtain 𝜀𝜀 ≤ 𝜓𝜓(𝜀𝜀) which is the contradiction. Thus {𝑥𝑥𝑛𝑛 } is a left-
Cauchy sequence in the metric space (X, q). Analogously, we derive that {𝑥𝑥𝑛𝑛 } is a right-Cauchy sequence in the metric 
space (X, q). Since (X, q) is complete, then from lemma 2, (X, 𝑎𝑎𝑝𝑝𝑞𝑞 ) is a complete metric space. Therefore the 
sequence {𝑥𝑥𝑛𝑛 } converges to a point u ∈ X in (X, 𝑎𝑎𝑝𝑝𝑞𝑞 ).  

(i.e), lim𝑛𝑛→∞ 𝑎𝑎𝑝𝑝𝑞𝑞 �𝑥𝑥𝑛𝑛 ,𝑠𝑠� = 0.  
        lim𝑛𝑛→∞ 𝑎𝑎𝑝𝑝𝑞𝑞 �𝑥𝑥𝑛𝑛 ,𝑠𝑠� = 0. 

 
Again from lemma 2 

𝑝𝑝𝑞𝑞 (𝑠𝑠, 𝑠𝑠) = lim
𝑛𝑛→∞

𝑝𝑝𝑞𝑞 (𝑥𝑥𝑛𝑛 , 𝑠𝑠) = lim
𝑛𝑛→∞

𝑝𝑝𝑞𝑞 (𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 ) 
 
On the other hand, by (12) and the condition (QPM2) from definition 3, lim𝑛𝑛→∞ 𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 )                                         (27)  
 
So, it follows that 

𝑞𝑞(𝑠𝑠, 𝑠𝑠) =  lim
𝑛𝑛→∞

1
2

[𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑠𝑠) + (𝑠𝑠, 𝑥𝑥𝑛𝑛 )] 

             = lim𝑛𝑛→∞
1
2

𝑞𝑞(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 ) = 0                                                                                                                    (28) 
 
Now for proving fixed point of T, first we suppose that T is continuous, then we have 

𝑇𝑇𝑠𝑠 = lim
𝑛𝑛→∞

𝑇𝑇𝑥𝑥𝑛𝑛 =  lim
𝑛𝑛→∞

𝑇𝑇𝑥𝑥𝑛𝑛+1 = 𝑠𝑠 
 
So u is a fixed point of T. As the last step, suppose that X is α-regular. 
 
Hence it is α - right regular, then there exists a subsequence �𝑥𝑥𝑛𝑛(𝑘𝑘)�  of {𝑥𝑥𝑛𝑛 } such that 𝛼𝛼(𝑥𝑥𝑛𝑛 , 𝑠𝑠) ≥ 1 for all k. Now, we 
show that q(u, Tu) = 0. Assume that this is not true, from (1), we obtain 

𝜓𝜓(𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘)+1, 𝑇𝑇𝑠𝑠� = 𝜓𝜓�𝑇𝑇𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑇𝑇𝑠𝑠� 
                              ≤ 𝛼𝛼�𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑠𝑠�𝜓𝜓�𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑇𝑇𝑠𝑠� 
                              ≤ 𝜓𝜓 (𝑀𝑀 �𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑠𝑠�) 



Dr. U. Karuppiah1, A. Mary Priya Dharsini*2 /  
Some Theorems on α −𝜳𝜳  Quasi Contractive on Quasi Partial Metric Space / IJMA- 7(10), Oct.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                      190  

 
Where 

𝑀𝑀 �𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑠𝑠� = max{ 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑠𝑠�, 𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘)�, 𝑞𝑞(𝑠𝑠, 𝑇𝑇𝑠𝑠)}                                                                        (29) 
                      = max{ 𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑠𝑠�, 𝑞𝑞�𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑥𝑥𝑛𝑛(𝑘𝑘)+1�, 𝑞𝑞(𝑠𝑠, 𝑇𝑇𝑠𝑠)}                                                                      (30) 

 
It is obvious that 

lim
𝑘𝑘→+∞

𝑞𝑞�𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑇𝑇𝑠𝑠� = 𝑞𝑞(𝑠𝑠, 𝑇𝑇𝑠𝑠). 
 
Therefore by using (12) and (28), we deduce that 

lim
𝑘𝑘→+∞

𝑀𝑀�𝑥𝑥𝑛𝑛 (𝑘𝑘), 𝑠𝑠� ≤ max{0,0, 𝑞𝑞(𝑠𝑠, 𝑇𝑇𝑠𝑠)}. 
                                            = 𝑞𝑞(𝑠𝑠, 𝑇𝑇𝑠𝑠) 
 
Because (12), (13) and (27) give 

lim
𝑘𝑘→+∞

𝑎𝑎𝑚𝑚
𝑞𝑞 �𝑥𝑥𝑛𝑛(𝑘𝑘), 𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘)� = 0. 

 
Now by using the property of 𝜓𝜓 and taking the upper limit as lim n → ∞ 
 
We obtain 𝜓𝜓 ((u, Tu)) ≤ 𝜓𝜓(q(u, Tu)), that is q(u, Tu) = 0 and so Tu = u. 
 
Now we conclude that T has a fixed point u ∈ X and q(u, u) = 0. 
 
Example: Let X = [0, ∞) and q(x, y) =|x-y| + x for all x, y ∈ X. Then (X, q) is a complete quasi-partial metric space. 
Consider T: X →X defined by 

𝑇𝑇𝑥𝑥 =
1
3

 
 
Take  𝜓𝜓 (t) = 2𝑡𝑡

3
  for all t ≥ 0. Note that 𝜓𝜓 ∈ 𝜓𝜓 . Take x ≤ y, then 

α(x, y)q(Tx, Ty) = α(x, y) (| Tx-Ty| +Tx) = ��𝑥𝑥
3

− 𝑦𝑦
3

� + 𝑥𝑥
3
� 

                           = 𝑦𝑦
3
 

                           = 𝜓𝜓(𝑦𝑦
2
)  since M(x, y) = (𝑦𝑦

2
) 

                           ≤ 𝜓𝜓 (M(x, y)) 
 
Now let y < x then 

α(x, y)q(Tx, Ty) = α(x, y) (| Tx-Ty| +Tx) = 3
2

��𝑥𝑥
3

− 𝑦𝑦
3
� + 𝑥𝑥

3
� 

                           = 2𝑥𝑥−𝑦𝑦
2

 
 
We have two possibilities for M(x, y) 
 
Case (i): If M(x, y) =3(2𝑥𝑥−𝑦𝑦 )

4
, then  

α(x, y)q(Tx, Ty) = 2𝑥𝑥−𝑦𝑦
2

 = 𝜓𝜓 �3(2𝑥𝑥−𝑦𝑦)
2

� ≤ 𝜓𝜓 �𝑀𝑀(𝑥𝑥, 𝑦𝑦)� 
 
Case (ii): If M(x, y) = 𝑥𝑥

2
, then  

α(x, y)q(Tx, Ty) = 9
4

𝑥𝑥 − 2
9

𝑦𝑦 = 2
3

�2
3

𝑥𝑥 − 𝑦𝑦
3

� ≤ 𝜓𝜓 �𝑀𝑀(𝑥𝑥, 𝑦𝑦)� 
 
Moreover, T is triangular α-orbital, α(0, T0) ≥1 and α(T0, 0) ≥ 1 . Thus by applying theorem 2, n has a fixed point, 
which is u = 0. 
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