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ABSTRACT 
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the setting of non Newtonian metric spaces. Also, some common fixed point theorems are proved for these mappings. 
 
KeyWords: Non Newtonian calculus, commutative maps, weakly commutative maps, compatible maps, weakly 
compatible maps, common fixed point therorems. 
 
Subject Classification: 46S99, 54E40, 54H25. 
 
 
1. INTRODUCTION 
 
The dawn of the fixed point theory starts when in 1912 Brouwer proved a fixed point result for continuous self maps on 
a closed ball. In 1922, Banach [2] gave a very useful result known as the Banach Contraction Principle. After which a 
lot of implications of Banach contraction came into existence ([1, 5, 6, 13, 14]). 
 
A major shift in the arena of fixed point theory came in 1976 when Jungck [9], defined the concept of commutative 
maps and proved the common fixed point results for such maps. After which, Sessa[17] gave the concept of weakly 
compatible, and Jungck ([10,11])gave the concepts of compatibility and weak compatibility. Certain altercations of 
commutativity and compatibility can also be found in [7, 12, 15, 16, 18]. 
 
The study of non Newtonian calculi have been started in 1972 by Grossman and Katz [8]. These provide an alternative 
to the classical calculus and they include the geometric, anageometric and bigeometric calculi, etc. In 2002 Cakmac and 
Basar [4], have introduced the concept of non Newtonian metric space. Also they have given the triangle and 
Minkowski’s inequalities in the sense of non-Newtonian calculus. Recently, Binbasioglu, et al. [3] discussed some 
topological properties of the non Newtonian metric space and also introduced the concept of fixed point theory for the 
non Newtonian Metric Space. The non-Newtonian calculi are alternatives to the classical calculus of Newton and 
Leibnitz. They provide a wide variety of mathematical tools for use in science, engineering and mathematics.  
 
2. PRELIMINARIES 
 
Now, we define the non-Newtonian real field and we give the relevant properties due to Cakmak and Basar [4].  
 
A generator is defined as an injective function with domain ℝ and the range of a generator is a subset of ℝ. Each 
generator generates one arithmetic if and only if each arithmetic is generated by one generator.  
 
Let β be an exponential function defined as 

𝛽𝛽: ℝ → ℝ+, 𝑥𝑥 ⟼ 𝛽𝛽(𝑥𝑥) = 𝑒𝑒𝑥𝑥 = 𝑦𝑦, 
where ℝ+ is the set of positive real numbers.  
 
Suppose that this function β is a generator, that is, if 𝛽𝛽 = 𝐼𝐼, 𝐼𝐼(𝑥𝑥) = 𝑥𝑥 ∀ 𝑥𝑥 ∈ ℝ, then β generates the classical arithmetic.  
 
If β is an exponential function, then β generates geometrical arithmetic.  
 
Define the set ℝ(𝑁𝑁) as  

ℝ(𝑁𝑁) ≔ {𝛽𝛽(𝑥𝑥): 𝑥𝑥 ∈ ℝ}, 
Where ℝ(𝑁𝑁) is the set of non-Newtonian real numbers. 
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All concepts of β-arithmetic have similar properties in classical arithmetic. β-zero, β-one and all β-integers are formed 
as  

… ,𝛽𝛽(−1),𝛽𝛽(0),𝛽𝛽(1), …. 
 
Take any generator β with range A. Then define the operations β-addition, β-subtraction, β-multiplication, β-division 
and β-order in the following way for 𝑥𝑥,𝑦𝑦 ∈ ℝ, respectively:  
β-addition 𝑥𝑥+̇𝑦𝑦 = 𝛽𝛽{𝛽𝛽−1(𝑥𝑥) + 𝛽𝛽−1(𝑦𝑦)}, 
β –subtraction 𝑥𝑥−̇𝑦𝑦 = 𝛽𝛽{𝛽𝛽−1(𝑥𝑥) − 𝛽𝛽−1(𝑦𝑦)}, 
β –multiplication 𝑥𝑥 ×̇ 𝑦𝑦 = 𝛽𝛽{𝛽𝛽−1(𝑥𝑥) × 𝛽𝛽−1(𝑦𝑦)}, 
β –division 𝑥𝑥/̇𝑦𝑦 = 𝛽𝛽{𝛽𝛽−1(𝑥𝑥) ÷ 𝛽𝛽−1(𝑦𝑦)}, 
β –order   𝑥𝑥 <̇ 𝑦𝑦 ⟺ 𝛽𝛽(𝑥𝑥) < 𝛽𝛽(𝑦𝑦). 
 
Proposition 2.1 [4]: (ℝ(𝑁𝑁), +̇,×̇) is a complete field.  
 
For 𝑥𝑥 ∈ 𝐴𝐴 ⊂ ℝ(𝑁𝑁), a number β-square is described by 𝑥𝑥 ×̇ 𝑥𝑥 and denoted by 𝑥𝑥2𝑁𝑁 . The symbol √𝑥𝑥

𝑁𝑁
 denotes 

𝑡𝑡 = 𝛽𝛽 ��𝛽𝛽−1(𝑥𝑥)� 
 
which is the unique β nonnegative number whose β-square is equal to 𝑥𝑥 and which means 𝑡𝑡2𝑁𝑁 = 𝑥𝑥, for each β 
nonnegative number 𝑡𝑡. Throughout this paper, 𝑥𝑥𝑝𝑝𝑁𝑁  denotes the 𝑝𝑝th non-Newtonian exponent. Thus we have 

𝑥𝑥𝑝𝑝𝑁𝑁 = 𝑥𝑥(𝑝𝑝−1)𝑁𝑁 ×̇ 𝑥𝑥 = 𝛽𝛽{[𝛽𝛽−1(𝑥𝑥)]𝑝𝑝}, 
 
We denote by |𝑥𝑥|𝑁𝑁  the β-absolute value of a number 𝑥𝑥 ∈ 𝐴𝐴 ⊂ ℝ(𝑁𝑁) defined as 𝛽𝛽(|𝛽𝛽−1(𝑥𝑥)|) and also  

�𝑥𝑥2𝑁𝑁
𝑁𝑁

= |𝑥𝑥|𝑁𝑁 = 𝛽𝛽{|𝛽𝛽−1(𝑥𝑥)|} 
Thus, 

|𝑥𝑥|𝑁𝑁 = �
𝑥𝑥,             𝑥𝑥 >̇ 𝛽𝛽(0),
𝛽𝛽(0),       𝑥𝑥 = 𝛽𝛽(0),
𝛽𝛽(0)−̇𝑥𝑥,   𝑥𝑥 <̇ 𝛽𝛽(0).

� 

 
For 𝑥𝑥1, 𝑥𝑥2 ∈ 𝐴𝐴 ⊆ ℝ(𝑁𝑁), the non-Newtonian distance |∙|𝑁𝑁 is defined as  

|𝑥𝑥1−̇𝑥𝑥2|𝑁𝑁 = 𝛽𝛽{|𝛽𝛽−1(𝑥𝑥1) − 𝛽𝛽−1(𝑥𝑥2)|}. 
 
This distance is commutative; i.e., |𝑥𝑥1−̇𝑥𝑥2|𝑁𝑁 = |𝑥𝑥2−̇𝑥𝑥1|𝑁𝑁 .  
 
Take any 𝑧𝑧 ∈ ℝ(𝑁𝑁), if 𝑧𝑧 >̇ 𝛽𝛽(0), then 𝑧𝑧 is called a positive non-Newtonian real number; if 𝑧𝑧 <̇ 𝛽𝛽(0), then z is called a 
non-Newtonian negative real number and if 𝑧𝑧 = 𝛽𝛽(0), then z is called an unsigned non-Newtonian real number. Non-
Newtonian positive real numbers are denoted by ℝ+(𝑁𝑁) and non-Newtonian negative real numbers by ℝ−(𝑁𝑁) [4].  
 
The fundamental properties provided in the classical calculus are provided in non-Newtonian calculus, too.  
 
Proposition 2.2 [4]: |𝑥𝑥 ×̇ 𝑦𝑦|𝑁𝑁 = |𝑥𝑥|𝑁𝑁 ×̇ |𝑦𝑦|𝑁𝑁  for any 𝑥𝑥,𝑦𝑦 ∈ ℝ(𝑁𝑁). 
 
Proposition 2.3 [4]: The triangle inequality with respect to non-Newtonian distance |∙|𝑁𝑁 , for any 𝑥𝑥,𝑦𝑦 ∈ ℝ(𝑁𝑁) is given 
by |𝑥𝑥+̇𝑦𝑦|𝑁𝑁 ≤ |𝑥𝑥|𝑁𝑁+̇|𝑦𝑦|𝑁𝑁 .  
 
The non-Newtonian metric spaces provide an alternative to the metric spaces introduced in [4].  
 
Definition 2.4[4]: Let 𝑋𝑋 ≠ ∅ be a set. If a function 𝑑𝑑𝑁𝑁:𝑋𝑋 × 𝑋𝑋 → ℝ+(𝑁𝑁) satisfies the following axioms for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋:  
(NM1) 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) = 𝛽𝛽(0) = 0̇ if and only if 𝑥𝑥 = 𝑦𝑦,  
(NM2) 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) = 𝑑𝑑𝑁𝑁(𝑦𝑦, 𝑥𝑥),  
(NM3) 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) ≤̇ 𝑑𝑑𝑁𝑁(𝑥𝑥, 𝑧𝑧)+̇𝑑𝑑𝑁𝑁(𝑧𝑧,𝑦𝑦),  
then it is called a non-Newtonian metric on 𝑋𝑋 and the pair (𝑋𝑋,𝑑𝑑𝑁𝑁) is called a non-Newtonian metric space. 
 
Proposition 2.5 [4]: Suppose that the non-Newtonian metric 𝑑𝑑𝑁𝑁  on ℝ(𝑁𝑁) is such that 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) = |𝑥𝑥−̇𝑦𝑦|𝑁𝑁  for all 
𝑥𝑥,𝑦𝑦 ∈ ℝ(𝑁𝑁), then (ℝ(𝑁𝑁),𝑑𝑑𝑁𝑁) is a non-Newtonian metric space. 
 
Definition 2.6 [4]: Let 𝑋𝑋 be a vector space on ℝ(𝑁𝑁). If a function ‖∙‖𝑁𝑁 :𝑋𝑋 → ℝ+(𝑁𝑁) satisfies the following axioms for 
all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 and 𝜆𝜆 ∈ ℝ(𝑁𝑁):  
(NN1) ‖∙‖𝑁𝑁 = 0̇ ⇔ 𝑥𝑥 = 0̇, 
(NN2) ‖𝜆𝜆 ×̇ 𝑥𝑥‖𝑁𝑁 = |𝜆𝜆|𝑁𝑁 ×̇ ‖𝑥𝑥‖𝑁𝑁, 
(NN3) ‖𝑥𝑥+̇𝑦𝑦‖𝑁𝑁 ≤ ‖𝑥𝑥‖𝑁𝑁+̇‖𝑦𝑦‖𝑁𝑁,  
then it is called a non-Newtonian norm on 𝑋𝑋 and the pair (𝑋𝑋, ‖∙‖𝑁𝑁) is called a non-Newtonian normed space. 
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Remark 2.7 [4]: Here it is easily seen that every non-Newtonian norm ‖∙‖𝑁𝑁  on 𝑋𝑋 produces a non-Newtonian metric 𝑑𝑑𝑁𝑁  
on 𝑋𝑋 given by 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) = ‖𝑥𝑥−̇𝑦𝑦‖𝑁𝑁 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋. 
 
Now, we define some topological structures related to non-Newtonian metric spaces. 
 
Proposition 2.8 [3]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁) be a non-Newtonian metric space. Then we have the following inequality:  

|𝑑𝑑𝑁𝑁(𝑥𝑥, 𝑧𝑧) −̇ 𝑑𝑑𝑁𝑁(𝑦𝑦, 𝑧𝑧)|𝑁𝑁  ≤̇  𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋. 
 

Definition 2.9 [3]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁) be a non-Newtonian metric space, 𝑥𝑥 ∈  𝑋𝑋 and 𝜀𝜀 >̇ 0̇, we now define a set 𝐵𝐵𝜀𝜀𝑁𝑁(𝑥𝑥) =
{𝑦𝑦 ∈  𝑋𝑋 ∶  𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦)  <̇ 𝜀𝜀}, which is called a non-Newtonian open ball of radius 𝜀𝜀 with center 𝑥𝑥. Similarly, one 
describes the non-Newtonian closed ball as 𝐵𝐵�𝜀𝜀𝑁𝑁(𝑥𝑥) = {𝑦𝑦 ∈  𝑋𝑋 ∶  𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) ≤̇ 𝜀𝜀}.  
 
Example 2.10: Consider the non-Newtonian metric space (ℝ+(𝑁𝑁),𝑑𝑑𝑁𝑁∗ ). From the definition of 𝑑𝑑𝑁𝑁∗ , we can verify that 
the non-Newtonian open ball of radius 𝜀𝜀 <̇ 1̇ with center 𝑥𝑥0 appears as (𝑥𝑥0−̇𝜀𝜀, 𝑥𝑥0+̇𝜀𝜀) ⊂ ℝ+(𝑁𝑁). 
 
Definition 2.11 [3]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁) be a non-Newtonian metric space and 𝐴𝐴 ⊂ 𝑋𝑋.Then we call 𝑥𝑥 ∈ 𝐴𝐴 a non-Newtonian 
interior point of 𝐴𝐴 if there exists an 𝜀𝜀 <̇ 1̇ such that 𝐵𝐵𝜀𝜀𝑁𝑁(𝑥𝑥) ⊂ 𝐴𝐴. The collection of all interior points of 𝐴𝐴 is called the 
non-Newtonian interior of 𝐴𝐴 and is denoted by 𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁(𝐴𝐴).  
 
Definition 2.12 [3]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁) be a non-Newtonian metric space and 𝐴𝐴 ⊂ 𝑋𝑋. If every point of 𝐴𝐴 is a non-Newtonian 
interior point of 𝐴𝐴, i.e., 𝐴𝐴 =  𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁(𝐴𝐴), then 𝐴𝐴 is called a non-Newtonian open set. 
 
Lemma 2.13 [3]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁) be a non-Newtonian metric space. Each non-Newtonian open ball of 𝑋𝑋 is a non-
Newtonian open set.  
 
Definition 2.14 [3]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁) be a non-Newtonian metric space. A point 𝑥𝑥 ∈  𝑋𝑋 is said to be a non-Newtonian limit 
point of 𝑆𝑆 ⊂  𝑋𝑋 if and only if (𝐵𝐵𝜀𝜀𝑁𝑁(𝑥𝑥)\{𝑥𝑥}) ∩ 𝑆𝑆 ≠  ∅ for every 𝜀𝜀 >̇ 0̇. The set of all non-Newtonian limit points of the 
set 𝑆𝑆 is denoted by 𝑆𝑆𝑁𝑁′ .  
 
Definition 2.15 [4]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁𝑁𝑁) and (𝑌𝑌,𝑑𝑑𝑁𝑁𝑌𝑌 ) be two non-Newtonian metric spaces and let 𝑓𝑓: 𝑋𝑋 →  𝑌𝑌 be a function. If f 
satisfies the requirement that, for every 𝜀𝜀 >̇ 0̇, there exists 𝛿𝛿 >̇ 0̇ such that 𝑓𝑓(𝐵𝐵𝛿𝛿𝑁𝑁(𝑥𝑥)) ⊂  𝐵𝐵𝜀𝜀𝑁𝑁(𝑓𝑓(𝑥𝑥)), then 𝑓𝑓 is said to be 
non-Newtonian continuous at 𝑥𝑥 ∈  𝑋𝑋.  
 
Example 2.16: Given a non-Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁), define a non Newtonian metric on 𝑋𝑋 × 𝑋𝑋 by 
𝑝𝑝((𝑥𝑥1, 𝑥𝑥2), (𝑦𝑦1,𝑦𝑦2)) =  𝑑𝑑𝑁𝑁(𝑥𝑥1,𝑦𝑦1) +̇ 𝑑𝑑𝑁𝑁(𝑥𝑥2,𝑦𝑦2). Then the non Newtonian metric 𝑑𝑑𝑁𝑁 ∶  𝑋𝑋 ×  𝑋𝑋 →  (ℝ+(𝑁𝑁), | · |𝑁𝑁) is 
non Newtonian continuous on 𝑋𝑋 × 𝑋𝑋. To show this, let (𝑦𝑦1,𝑦𝑦2), (𝑥𝑥1, 𝑥𝑥2) ∈ 𝑋𝑋 × 𝑋𝑋. Since we have 
|𝑑𝑑𝑁𝑁(𝑦𝑦1,𝑦𝑦2) −̇ 𝑑𝑑𝑁𝑁(𝑥𝑥1, 𝑥𝑥2)|𝑁𝑁  ≤̇  𝑑𝑑𝑁𝑁(𝑥𝑥1,𝑦𝑦2) +̇ 𝑑𝑑𝑁𝑁(𝑥𝑥2,𝑦𝑦2), it is clear that 𝑑𝑑𝑁𝑁  is non Newtonian continuous on 𝑋𝑋 × 𝑋𝑋. 
Now, we emphasize some properties of convergent sequences in a non Newtonian metric space. 
 
Definition 2.17 [4]: A sequence (𝑥𝑥𝑛𝑛) in a metric space 𝑋𝑋 = (𝑋𝑋,𝑑𝑑𝑁𝑁) is said to be convergent if for every given 𝜀𝜀 >̇ 0̇ 
there exist an 𝑛𝑛0  =  𝑛𝑛0(𝜀𝜀)  ∈  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑥𝑥 ∈  𝑋𝑋 such that 𝑑𝑑𝑁𝑁(𝑥𝑥𝑛𝑛 , 𝑥𝑥) <̇ 𝜀𝜀 for all 𝑛𝑛 > 𝑛𝑛0, and it is denoted by 

lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛𝑁𝑁 =  𝑥𝑥 or 𝑥𝑥𝑛𝑛  
𝑁𝑁
→  𝑥𝑥, as 𝑛𝑛 → ∞ .  

 
Definition 2.18 [3]: A sequence (𝑥𝑥𝑛𝑛) in a non-Newtonian metric space 𝑋𝑋 =  (𝑋𝑋,𝑑𝑑𝑁𝑁) is said to be non-Newtonian 
Cauchy if for every 𝜀𝜀 >̇ 0̇ there exists an 𝑛𝑛0  =  𝑛𝑛0(𝜀𝜀)  ∈ 𝑁𝑁 such that 𝑑𝑑𝑁𝑁(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 ) <̇ 𝜀𝜀 for all 𝑚𝑚,𝑛𝑛 >  𝑛𝑛0. Similarly, if 
for every non-Newtonian open ball 𝐵𝐵𝜀𝜀𝑁𝑁(𝑥𝑥), there exists a natural number 𝑛𝑛0 such that 𝑛𝑛 > 𝑛𝑛0, 𝑥𝑥𝑛𝑛  ∈  𝐵𝐵𝜀𝜀𝑁𝑁(𝑥𝑥), then the 
sequence (𝑥𝑥𝑛𝑛) is said to be non-Newtonian convergent to 𝑥𝑥. 
 
The space 𝑋𝑋 is said to be non-Newtonian complete if every non-Newtonian Cauchy sequence in X converges [4]. 
 
Proposition 2.19 [4]: Let 𝑋𝑋 = (𝑋𝑋,𝑑𝑑𝑁𝑁) be a non-Newtonian metric space. Then 
(i) a convergent sequence in 𝑋𝑋 is bounded and its limit is unique,  
(ii) a convergent sequence in 𝑋𝑋 is a Cauchy sequence in 𝑋𝑋. 
 
Lemma 2.20 [3]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁) be a non-Newtonian metric space, (𝑥𝑥𝑛𝑛) a sequence in 𝑋𝑋 and 𝑥𝑥 ∈ 𝑋𝑋. Then 𝑥𝑥𝑛𝑛  

𝑁𝑁
→ 𝑥𝑥(𝑛𝑛 → ∞)  

if and only if 𝑑𝑑𝑁𝑁(𝑥𝑥𝑛𝑛 , 𝑥𝑥)  
𝑁𝑁
→  0̇ (𝑛𝑛 → ∞).  

 
Lemma 2.21 [3]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁) be a non-Newtonian metric space and let (𝑥𝑥𝑛𝑛) be a sequence in 𝑋𝑋. If the sequence (𝑥𝑥𝑛𝑛) is 
non-Newtonian convergent, then the non-Newtonian limit point is unique.  
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Theorem 2.22 [3]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁𝑋𝑋) and (𝑌𝑌,𝑑𝑑𝑁𝑁𝑌𝑌 ) be two non-Newtonian metric spaces, 𝑓𝑓: 𝑋𝑋 →  𝑌𝑌 a mapping and (𝑥𝑥𝑛𝑛) any 
sequence in 𝑋𝑋. Then 𝑓𝑓 is non-Newtonian continuous at the point 𝑥𝑥 ∈  𝑋𝑋 if and only if 𝑓𝑓(𝑥𝑥𝑛𝑛)  

𝑁𝑁
→  𝑓𝑓(𝑥𝑥) for every 

sequence (𝑥𝑥𝑛𝑛) with 𝑥𝑥𝑛𝑛  
𝑁𝑁
→  𝑥𝑥 (𝑛𝑛 → ∞ ).  

 
Theorem 2.23 [3]: Let (𝑋𝑋,𝑑𝑑𝑁𝑁) be a non-Newtonian metric space and 𝑆𝑆 ⊂ 𝑋𝑋. Then  
(i) a point 𝑥𝑥 ∈ 𝑋𝑋 belongs to 𝑆𝑆̅ if and only if there exists a sequence (𝑥𝑥𝑛𝑛) in 𝑆𝑆 such that 𝑥𝑥𝑛𝑛  

𝑁𝑁
→ 𝑥𝑥 (𝑛𝑛 → ∞),  

(ii) the set 𝑆𝑆 is non-Newtonian closed if and only if every non-Newtonian convergent sequence in 𝑆𝑆 has a non-
Newtonian limit point that belongs to 𝑆𝑆.  

 
We now define the fixed point theorem on non-Newtonian metric spaces and give some examples. 
 
Definition 2.24 [3]: Let 𝑋𝑋 be a set and 𝑇𝑇 a map from 𝑋𝑋 to 𝑋𝑋. A fixed point of 𝑇𝑇 is a point 𝑥𝑥 ∈ 𝑋𝑋 such that 𝑇𝑇𝑇𝑇 = 𝑥𝑥. In 
other words, a fixed point of 𝑇𝑇 is a solution of the functional equation 𝑇𝑇𝑇𝑇 =  𝑥𝑥, 𝑥𝑥 ∈  𝑋𝑋.  
 
Definition 2.25 [3]: Suppose that (𝑋𝑋,𝑑𝑑𝑁𝑁) is a non-Newtonian complete metric space and 𝑇𝑇: 𝑋𝑋 →  𝑋𝑋 is any mapping. 
The mapping 𝑇𝑇 is said to satisfy a non-Newtonian Lipchitz condition with 𝑘𝑘 ∈ ℝ(𝑁𝑁) if 
𝑑𝑑𝑁𝑁(𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦))  ≤̇  𝑘𝑘 ×̇  𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) holds for all 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋.  
 
If  𝑘𝑘 <̇ 1̇, then 𝑇𝑇 is called a non-Newtonian contraction mapping.  
 
Theorem 2.26 [3]: Let 𝑇𝑇 be a non-Newtonian contraction mapping on a non Newtonian complete metric space 𝑋𝑋. Then 
𝑇𝑇 has a unique fixed point. 
 
Theorem 2.27 [3]: Let 𝑇𝑇 be a mapping on a non-Newtonian complete metric space 𝑋𝑋 into itself. Let 𝑇𝑇 be a non-
Newtonian contraction on a closed ball 𝐵𝐵�𝑟𝑟̇𝑁𝑁(𝑥𝑥0) = {𝑥𝑥 ∈ 𝑋𝑋 ∶  𝑑𝑑𝑁𝑁(𝑥𝑥, 𝑥𝑥0) ≤̇ 𝑟̇𝑟}. 
 
Suppose that 𝑑𝑑𝑁𝑁(𝑥𝑥0,𝑇𝑇𝑥𝑥0) <̇  (1̇−̇ 𝑘𝑘)𝑟̇𝑟. Then the iterative sequence defined by 𝑥𝑥𝑛𝑛 = 𝑇𝑇𝑛𝑛𝑥𝑥0 =  𝑇𝑇𝑥𝑥𝑛𝑛−1 converges to an 
𝑥𝑥 ∈ 𝐵𝐵�𝑟𝑟̇𝑁𝑁(𝑥𝑥0) and this 𝑥𝑥 is the unique fixed point of 𝑇𝑇. 
 
3. MAIN RESULTS 
 
3.1. Commutative maps 
 
Definition 3.1.1: Suppose that (𝑋𝑋,𝑑𝑑𝑁𝑁) is a non-Newtonian complete metric space and 𝑆𝑆,𝑇𝑇 ∶  𝑋𝑋 →  𝑋𝑋 be maps defined 
on 𝑋𝑋. Then 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇 are said to be commutative if 𝑆𝑆 ∘ 𝑇𝑇(𝑥𝑥) = 𝑇𝑇 ∘ 𝑆𝑆(𝑥𝑥) ∀ 𝑥𝑥 ∈ 𝑋𝑋. 
 
Proposition 3.1.2: Let 𝑇𝑇 be a mapping of 𝑋𝑋 into itself. Then 𝑇𝑇 has a fixed point iff there is a constant map 𝑆𝑆:𝑋𝑋 → 𝑋𝑋 
which commutes with 𝑇𝑇. 
 
Proof: By hypothesis there exists 𝑎𝑎 ∈ 𝑋𝑋 and 𝑆𝑆:𝑋𝑋 → 𝑋𝑋 such that 𝑆𝑆(𝑥𝑥) = 𝑎𝑎 and 𝑆𝑆�𝑇𝑇(𝑥𝑥)� = 𝑇𝑇�𝑆𝑆(𝑥𝑥)� for all 𝑥𝑥 ∈ 𝑋𝑋. We 
can therefore write 𝑇𝑇(𝑎𝑎) = 𝑇𝑇�𝑆𝑆(𝑎𝑎)� = 𝑆𝑆�𝑇𝑇(𝑎𝑎)� = 𝑎𝑎, so that 𝑎𝑎 fixed point of 𝑇𝑇. 
 
The condition of necessity is proved along with theorem 3.1.4. 
 
Lemma 3.1.3: Let {𝑦𝑦𝑛𝑛 } be a sequence of complete non Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁). If there exists 𝛼𝛼 ∈ (0,1) such 
that 𝑑𝑑𝑁𝑁(𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑛𝑛) ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁(𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛−1) for all 𝑛𝑛, then {𝑦𝑦𝑛𝑛} converges to a point in 𝑋𝑋. 
 
Proof: Direct consequence of Theorem 2.26. 
 
Theorem 3.1.4: Let 𝑇𝑇 be a continuous mapping of a complete non Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁) into itself. Then 𝑇𝑇 
has a fixed point in 𝑋𝑋 if and only if there exists an 𝛼𝛼 ∈ �0̇, 1̇� and a mapping 𝑆𝑆:𝑋𝑋 → 𝑋𝑋 which commutes with 𝑇𝑇 and 
satisfies  

𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋                 (1) 
Indeed 𝑇𝑇 and 𝑆𝑆 have a unique common fixed point if (1) holds. 
 
Proof: To see that the condition stated is necessary, suppose that 𝑇𝑇(𝑎𝑎) = 𝑎𝑎 for some 𝑎𝑎 ∈ 𝑋𝑋. Define 𝑆𝑆:𝑋𝑋 → 𝑋𝑋 by 
𝑆𝑆(𝑥𝑥) = 𝑎𝑎 for all 𝑥𝑥 ∈ 𝑋𝑋. Then 𝑆𝑆�𝑇𝑇(𝑥𝑥)� = 𝑎𝑎 and 𝑇𝑇�𝑆𝑆(𝑥𝑥)� = 𝑇𝑇(𝑎𝑎) = 𝑎𝑎 (∀𝑥𝑥 ∈ 𝑋𝑋), so 𝑆𝑆�𝑇𝑇(𝑥𝑥)� = 𝑇𝑇�𝑆𝑆(𝑥𝑥)� for all 𝑥𝑥 ∈ 𝑋𝑋 
and 𝑇𝑇 commutes with 𝑆𝑆. Moreover, 𝑆𝑆(𝑥𝑥) = 𝑎𝑎 = 𝑇𝑇(𝑎𝑎) for all 𝑥𝑥 ∈ 𝑋𝑋 so that 𝑆𝑆(𝑥𝑥) ⊂ 𝑇𝑇(𝑋𝑋). Finally, for any 𝛼𝛼 ∈ �0̇, 1̇� we 
have for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, 

𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� = 𝑑𝑑𝑁𝑁(𝑎𝑎, 𝑎𝑎) = 0̇ ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)�. 
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Thus, (1) holds. 
 
On the other hand, suppose there is a map 𝑆𝑆 of 𝑋𝑋 into itself which commutes with 𝑇𝑇 and for which (1) holds. We show 
that the condition is sufficient to ensure that 𝑇𝑇 and 𝑆𝑆 have a unique fixed point. 
 
To this end, let 𝑥𝑥0 ∈ 𝑋𝑋 and let 𝑥𝑥1 be such that 

𝑇𝑇(𝑥𝑥1) = 𝑆𝑆(𝑥𝑥0). In general, choose 𝑥𝑥𝑛𝑛  so that 
𝑇𝑇(𝑥𝑥𝑛𝑛) = 𝑆𝑆(𝑥𝑥𝑛𝑛−1)                                                                              (2) 

 
We can do this since 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). The relation (1) and (2) imply that 𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥𝑛𝑛+1),𝑇𝑇(𝑥𝑥𝑛𝑛)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥𝑛𝑛),𝑇𝑇(𝑥𝑥𝑛𝑛−1)� 
for all 𝑛𝑛. The lemma yields 𝑡𝑡 ∈ 𝑋𝑋 such that 

𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁
→ 𝑡𝑡                                                                (3) 

 
But then (2) implies that  

𝑆𝑆(𝑥𝑥𝑛𝑛)
𝑁𝑁
→ 𝑡𝑡                                                                (4) 

 
Now since 𝑇𝑇 is continuous, (1) implies that both 𝑆𝑆 and 𝑇𝑇 are continuous. Hence, (3) and (4) demand that 
𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)�

𝑁𝑁
→𝑆𝑆(𝑡𝑡). But 𝑆𝑆 and 𝑇𝑇 commute so that 𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)� = 𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)� for all 𝑛𝑛. Thus 𝑆𝑆(𝑡𝑡) = 𝑇𝑇(𝑡𝑡), and consequently 

𝑇𝑇�𝑇𝑇(𝑡𝑡)� = 𝑇𝑇�𝑆𝑆(𝑡𝑡)� = 𝑆𝑆�𝑆𝑆(𝑡𝑡)� by commutativity. We can therefore infer 
𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑡𝑡), 𝑆𝑆�𝑆𝑆(𝑡𝑡)�� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁 �𝑇𝑇(𝑡𝑡),𝑇𝑇�𝑆𝑆(𝑡𝑡)�� = 𝛼𝛼𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑡𝑡),𝑆𝑆�𝑆𝑆(𝑡𝑡)��. 

 
Hence, 𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑡𝑡), 𝑆𝑆�𝑆𝑆(𝑡𝑡)�� (1 − 𝛼𝛼) ≤̇ 0. Since 𝛼𝛼 ∈ (0,1), 𝑆𝑆(𝑡𝑡) = 𝑆𝑆�𝑆𝑆(𝑡𝑡)�. Since 𝛼𝛼 ∈ (0,1), 𝑆𝑆(𝑡𝑡) = 𝑆𝑆�𝑆𝑆(𝑡𝑡)� =
𝑇𝑇�𝑆𝑆(𝑡𝑡)�; i.e. 𝑆𝑆(𝑡𝑡) is common fixed point of 𝑇𝑇 and 𝑆𝑆. 
 
To see that 𝑇𝑇 and 𝑆𝑆 can have only one common fixed point, suppose that 𝑥𝑥 = 𝑇𝑇(𝑥𝑥) = 𝑆𝑆(𝑥𝑥) and 𝑦𝑦 = 𝑇𝑇(𝑦𝑦) = 𝑆𝑆(𝑦𝑦). 
Then (1) implies that 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) = 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� = 𝛼𝛼𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦), or 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦)(1 − 𝛼𝛼) ≤̇ 0. Since 
𝛼𝛼 <̇ 1, 𝑥𝑥 = 𝑦𝑦. 
 
Corollary 3.1.5: Let 𝑇𝑇 and 𝑆𝑆 be commuting mappings of a complete non Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁) into itself. 
Suppose that 𝑇𝑇 is continuous and 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). If there exists 𝛼𝛼 ∈ (0,1) and a positive integer 𝑘𝑘 such that (i) 
𝑑𝑑𝑁𝑁�𝑆𝑆𝑘𝑘(𝑥𝑥), 𝑆𝑆𝑘𝑘(𝑦𝑦)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� for all 𝑥𝑥 and 𝑦𝑦 in 𝑋𝑋, then 𝑇𝑇 and 𝑆𝑆 have a common fixed point. 
 
Proof: Clearly, 𝑆𝑆𝑘𝑘  commutes with 𝑇𝑇 and 𝑆𝑆𝑘𝑘(𝑋𝑋) ⊂ 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). Thus the theorem pertains to 𝑆𝑆𝑘𝑘  and 𝑇𝑇, so there exists 
a unique 𝑎𝑎 ∈ 𝑋𝑋 such that 𝑎𝑎 = 𝑇𝑇(𝑎𝑎) = 𝑆𝑆𝑘𝑘(𝑎𝑎). But then, since 𝑇𝑇 and 𝑆𝑆 commute, we can write 𝑆𝑆(𝑎𝑎) = 𝑇𝑇�𝑆𝑆(𝑎𝑎)� =
𝑆𝑆𝑘𝑘�𝑆𝑆(𝑎𝑎)�, which says that 𝑆𝑆(𝑎𝑎) is a c.f.p. of 𝑇𝑇 and 𝑆𝑆𝑘𝑘 . The uniqueness of 𝑎𝑎 implies 𝑎𝑎 = 𝑆𝑆(𝑎𝑎) = 𝑇𝑇(𝑎𝑎). 
 
Corollary 3.1.6: Let 𝑛𝑛 be a positive integer and let 𝐾𝐾 be a real number >̇ 1. If 𝑆𝑆 is a continuous mapping of a complete 
non Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁) onto itself such that 𝑑𝑑𝑁𝑁�𝑆𝑆𝑛𝑛(𝑥𝑥), 𝑆𝑆𝑛𝑛(𝑦𝑦)� ≥ 𝐾𝐾𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) for 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, then 𝑆𝑆 has a 
unique fixed point. 
 
Example 3.1.7: Let us consider an exponential calculus 𝑋𝑋, i.e., 𝛽𝛽 =  𝑒𝑒𝑒𝑒𝑒𝑒, 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) = 𝑒𝑒𝑥𝑥∀𝑥𝑥 ∈ ℝ. Consider the maps 
𝑇𝑇, 𝑆𝑆:𝑋𝑋 → 𝑋𝑋 defined as, 𝑇𝑇(𝑥𝑥) = �𝑥𝑥/̇𝛽𝛽(2)�+̇𝛽𝛽(3) and 𝑆𝑆(𝑥𝑥) = �𝑥𝑥/̇𝛽𝛽(3)�+̇𝛽𝛽(4). Clearly, 𝑆𝑆�𝑇𝑇(𝑥𝑥)� = �𝑥𝑥/̇𝛽𝛽(6)�+̇𝛽𝛽(5) =
𝑇𝑇�𝑆𝑆(𝑥𝑥)�. Also, 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� ≤̇ 𝛽𝛽 �2

3
� ×̇ 𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)�. So, these maps satisfy all the hypothesis of theorem 3.1.4.  

So, 𝑆𝑆 and 𝑇𝑇 has a common fixed point. The common fixed point of 𝑆𝑆 and 𝑇𝑇 is 𝑥𝑥 = 𝛽𝛽(6) = 𝑒𝑒6. 
 
3.2. Weakly commutative maps 
 
Definition 3.2.1: The self maps 𝑆𝑆 and 𝑇𝑇 of a non Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁) are said to be weakly commutative 
iff 𝑑𝑑𝑁𝑁 �𝑆𝑆�𝑇𝑇(𝑥𝑥)�,𝑇𝑇�𝑆𝑆(𝑥𝑥)�� ≤̇ 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥),𝑇𝑇(𝑥𝑥)� for all 𝑥𝑥 ∈ 𝑋𝑋. 
 
Remark 3.2.2: Every pair of commutative maps is weakly commutative but the converse is not true. Moreover, the 
weakly commutative maps commute on the coincidences points. 
 
If 𝑡𝑡 ∈ 𝑋𝑋, be the coincidence point of commutative maps 𝑆𝑆 and 𝑇𝑇, i.e., 𝑆𝑆(𝑡𝑡) = 𝑇𝑇(𝑡𝑡). Then, 
𝑑𝑑𝑁𝑁 �𝑆𝑆�𝑇𝑇(𝑡𝑡)�,𝑇𝑇�𝑆𝑆(𝑡𝑡)�� ≤̇ 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑡𝑡),𝑇𝑇(𝑡𝑡)� ⇒ 𝑑𝑑𝑁𝑁 �𝑆𝑆�𝑇𝑇(𝑡𝑡)�,𝑇𝑇�𝑆𝑆(𝑡𝑡)�� ≤̇ 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑡𝑡), 𝑆𝑆(𝑡𝑡)� ⇒ 𝑆𝑆�𝑇𝑇(𝑡𝑡)� = 𝑇𝑇�𝑆𝑆(𝑡𝑡)�. 
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Theorem 3.2.3: Let 𝑇𝑇 be a mapping of a complete non Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁) into itself. Then 𝑇𝑇 has a fixed 
point in 𝑋𝑋 if and only if there exists an 𝛼𝛼 ∈ �0̇, 1̇� and a mapping 𝑆𝑆:𝑋𝑋 → 𝑋𝑋 which commutes weakly with 𝑇𝑇 and 
satisfies  

𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋                 (5) 
Indeed 𝑇𝑇 and 𝑆𝑆 have a unique common fixed point if (5) holds. 
 
Proof: To see that the condition stated is necessary, suppose that 𝑇𝑇(𝑎𝑎) = 𝑎𝑎 for some 𝑎𝑎 ∈ 𝑋𝑋. Define 𝑆𝑆:𝑋𝑋 → 𝑋𝑋 by 
𝑆𝑆(𝑥𝑥) = 𝑎𝑎 for all 𝑥𝑥 ∈ 𝑋𝑋. Then 𝑆𝑆�𝑇𝑇(𝑥𝑥)� = 𝑎𝑎 and 𝑇𝑇�𝑆𝑆(𝑥𝑥)� = 𝑇𝑇(𝑎𝑎) = 𝑎𝑎 (∀𝑥𝑥 ∈ 𝑋𝑋), so 𝑆𝑆�𝑇𝑇(𝑥𝑥)� = 𝑇𝑇�𝑆𝑆(𝑥𝑥)� for all 𝑥𝑥 ∈ 𝑋𝑋 
and 𝑇𝑇 commutes with 𝑆𝑆. So, 𝑆𝑆 and 𝑇𝑇 are weakly commutative. Moreover, 𝑆𝑆(𝑥𝑥) = 𝑎𝑎 = 𝑇𝑇(𝑎𝑎) for all 𝑥𝑥 ∈ 𝑋𝑋 so that 
𝑆𝑆(𝑥𝑥) ⊂ 𝑇𝑇(𝑋𝑋). Finally, for any 𝛼𝛼 ∈ �0̇, 1̇� we have for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, 

𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� = 𝑑𝑑𝑁𝑁(𝑎𝑎, 𝑎𝑎) = 0̇ ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)�. 
Thus, (5) holds. 
 
On the other hand, suppose there is a map 𝑆𝑆 of 𝑋𝑋 into itself which commutes weakly with 𝑇𝑇 and for which (5) holds.  
 
We show that the condition is sufficient to ensure that 𝑇𝑇 and 𝑆𝑆 have a unique fixed point. 
 
To this end, let 𝑥𝑥0 ∈ 𝑋𝑋 and let 𝑥𝑥1 be such that 𝑇𝑇(𝑥𝑥1) = 𝑆𝑆(𝑥𝑥0). In general, choose 𝑥𝑥𝑛𝑛  so that  

𝑇𝑇(𝑥𝑥𝑛𝑛) = 𝑆𝑆(𝑥𝑥𝑛𝑛−1)                                                                              (6) 
 

We can do this since 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). The relation (5) and (6) imply that 𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥𝑛𝑛+1),𝑇𝑇(𝑥𝑥𝑛𝑛)� ≤ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥𝑛𝑛),𝑇𝑇(𝑥𝑥𝑛𝑛−1)� 
for all 𝑛𝑛. The lemma yields 𝑡𝑡 ∈ 𝑋𝑋 such that 

𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁
→ 𝑡𝑡                                                                (7) 

 
But then (6) implies that  

𝑆𝑆(𝑥𝑥𝑛𝑛)
𝑁𝑁
→ 𝑡𝑡                                                                (8) 

 
Now, from the definition of weakly commutative 
                    𝑑𝑑𝑁𝑁 �𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)�, 𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)�� ≤̇ 𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥𝑛𝑛), 𝑆𝑆(𝑥𝑥𝑛𝑛)� 

⇒ 𝑑𝑑𝑁𝑁�𝑇𝑇(𝑡𝑡), 𝑆𝑆(𝑡𝑡)� ≤̇ 𝑑𝑑𝑁𝑁(𝑡𝑡, 𝑡𝑡) ⇒ 𝑇𝑇(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) 
 
So, 𝑡𝑡 is a coincidence point of 𝑆𝑆 and 𝑇𝑇. So, 𝑇𝑇�𝑆𝑆(𝑡𝑡)� = 𝑆𝑆�𝑇𝑇(𝑡𝑡)� = 𝑆𝑆�𝑆𝑆(𝑡𝑡)�. We can therefore infer 

𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑡𝑡), 𝑆𝑆�𝑆𝑆(𝑡𝑡)�� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁 �𝑇𝑇(𝑡𝑡),𝑇𝑇�𝑆𝑆(𝑡𝑡)�� = 𝛼𝛼𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑡𝑡),𝑆𝑆�𝑆𝑆(𝑡𝑡)��. 
 
Hence, 𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑡𝑡), 𝑆𝑆�𝑆𝑆(𝑡𝑡)�� (1 − 𝛼𝛼) ≤̇ 0. Since 𝛼𝛼 ∈ (0,1), 𝑆𝑆(𝑡𝑡) = 𝑆𝑆�𝑆𝑆(𝑡𝑡)� = 𝑇𝑇�𝑆𝑆(𝑡𝑡)�, i.e. 𝑆𝑆(𝑡𝑡) is common fixed point 
of 𝑆𝑆 and 𝑇𝑇. 
 
To see that 𝑆𝑆 and 𝑇𝑇 can have only one common fixed point, suppose that 𝑥𝑥 = 𝑇𝑇(𝑥𝑥) = 𝑆𝑆(𝑥𝑥) and 𝑦𝑦 = 𝑇𝑇(𝑦𝑦) = 𝑆𝑆(𝑦𝑦).  
 
Then (5) implies that 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) = 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� = 𝛼𝛼𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦), or 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦)(1 − 𝛼𝛼) ≤̇ 0. Since 
𝛼𝛼 <̇ 1, 𝑥𝑥 = 𝑦𝑦. 
 
Corollary 3.2.4: Let 𝑇𝑇 and 𝑆𝑆 be weakly commuting mappings of a complete non Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁) into 
itself. Suppose, 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). If there exists 𝛼𝛼 ∈ (0,1) and a positive integer 𝑘𝑘 such that (i) 
𝑑𝑑𝑁𝑁�𝑆𝑆𝑘𝑘(𝑥𝑥), 𝑆𝑆𝑘𝑘(𝑦𝑦)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� for all 𝑥𝑥 and 𝑦𝑦 in 𝑋𝑋, then 𝑇𝑇 and 𝑆𝑆 have a unique common fixed point. 
 
Proof: Clearly, 𝑆𝑆𝑘𝑘  commutes weakly with 𝑇𝑇 and 𝑆𝑆𝑘𝑘(𝑋𝑋) ⊂ 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). Thus the theorem pertains to 𝑆𝑆𝑘𝑘  and 𝑇𝑇, so 
there exists a unique 𝑎𝑎 ∈ 𝑋𝑋 such that 𝑎𝑎 = 𝑇𝑇(𝑎𝑎) = 𝑆𝑆𝑘𝑘(𝑎𝑎). But then, since 𝑇𝑇 and 𝑆𝑆 commute weakly, we can write  
𝑆𝑆(𝑎𝑎) = 𝑇𝑇�𝑆𝑆(𝑎𝑎)� = 𝑆𝑆𝑘𝑘�𝑆𝑆(𝑎𝑎)�, which says that 𝑆𝑆(𝑎𝑎) is a c.f.p. of 𝑇𝑇 and 𝑆𝑆𝑘𝑘 . The uniqueness of 𝑎𝑎 implies 𝑎𝑎 = 𝑆𝑆(𝑎𝑎) =
𝑇𝑇(𝑎𝑎). 
 
Corollary 3.2.5: Let 𝑛𝑛 be a positive integer and let 𝐾𝐾 be a real number >̇ 1. If 𝑆𝑆 is a self map of a complete non 
Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁) such that 𝑑𝑑𝑁𝑁�𝑆𝑆𝑛𝑛(𝑥𝑥), 𝑆𝑆𝑛𝑛(𝑦𝑦)� ≥̇ 𝐾𝐾𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) for 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, then 𝑆𝑆 has a unique fixed 
point. 
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3.3. Compatible Maps 
 
Definition 3.3.1: The self maps 𝑆𝑆 and 𝑇𝑇 of a non Newtonian metric space are said to be compatible iff 
lim𝑛𝑛 𝑑𝑑𝑁𝑁 �𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)�,𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)�� = 0 whenever {𝑥𝑥𝑛𝑛 } is a sequence in 𝑋𝑋 such that lim𝑛𝑛 𝑆𝑆(𝑥𝑥𝑛𝑛) = lim𝑛𝑛 𝑇𝑇(𝑥𝑥𝑛𝑛) = 𝑡𝑡 for some 
𝑡𝑡 in 𝑋𝑋. 
 
Remark 3.3.2: Now, maps which are commutative are clearly compatible but the converse is not true. 
 
Lemma 3.3.3: Let 𝑆𝑆,𝑇𝑇: (𝑋𝑋,𝑑𝑑𝑁𝑁) → (𝑋𝑋,𝑑𝑑𝑁𝑁) be continuous, and let 𝐹𝐹 = {𝑥𝑥 ∈ 𝑋𝑋|𝑆𝑆(𝑥𝑥) = 𝑇𝑇(𝑥𝑥) = 𝑥𝑥}. Then 𝑆𝑆 and 𝑇𝑇 are 
compatible if any one of the following conditions is satisfied: 

(a) if 𝑆𝑆(𝑥𝑥𝑛𝑛),𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁
→ 𝑡𝑡(∈ 𝑋𝑋), then 𝑡𝑡 ∈ 𝐹𝐹. 

(b) 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥𝑛𝑛),𝑇𝑇(𝑥𝑥𝑛𝑛)� → 0 implies 𝐷𝐷(𝑆𝑆(𝑥𝑥𝑛𝑛),𝐹𝐹)
𝑁𝑁
→0. 

where 𝐷𝐷(𝑥𝑥,𝐹𝐹) = max𝑦𝑦∈𝐹𝐹{𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦)} 
 
Proof: Suppose that lim𝑛𝑛 𝑆𝑆(𝑥𝑥𝑛𝑛) = lim𝑛𝑛 𝑇𝑇(𝑥𝑥𝑛𝑛) = 𝑡𝑡 for some 𝑡𝑡 ∈ 𝑋𝑋                                                         (10) 
 
If (a) holds, 𝑆𝑆(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) = 𝑡𝑡. Then, the continuity of 𝑆𝑆 and 𝑇𝑇 on 𝐹𝐹 imply 𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)�

𝑁𝑁
→𝑆𝑆(𝑡𝑡) = 𝑡𝑡 and 

𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)�
𝑁𝑁
→𝑇𝑇(𝑡𝑡) = 𝑡𝑡, so that, 𝑑𝑑𝑁𝑁 �𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)�,𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)��

𝑁𝑁
→0 as desired. 

 
If (b) holds, the compatibility of 𝑆𝑆 and 𝑇𝑇 follow easily from (a) and (10) upon noting that 𝐹𝐹 is closed since 𝑆𝑆 and 𝑇𝑇 are 
continuous.  
 
Corollary 3.3.4: Suppose that 𝑆𝑆 and 𝑇𝑇 are continuous self maps of  ℝ such that 𝑆𝑆 − 𝑇𝑇 is strictly increasing. If 𝑆𝑆 and 𝑇𝑇 
have a common fixed point, then 𝑆𝑆 and 𝑇𝑇 are compatible. 
 
Proof: Immediate, as 𝑆𝑆(𝑥𝑥𝑛𝑛),𝑇𝑇(𝑥𝑥𝑛𝑛)

𝑁𝑁
→ 𝑡𝑡 implies that 𝐹𝐹 = {𝑡𝑡}. 

 
Lemma 3.3.5: Let, 𝑆𝑆,𝑇𝑇: (𝑋𝑋,𝑑𝑑𝑁𝑁) → (𝑋𝑋,𝑑𝑑𝑁𝑁) be compatible. 

(1) If 𝑆𝑆(𝑡𝑡) = 𝑇𝑇(𝑡𝑡), then 𝑆𝑆�𝑇𝑇(𝑡𝑡)� = 𝑇𝑇�𝑆𝑆(𝑡𝑡)�. 
(2) Suppose that lim𝑛𝑛 𝑆𝑆(𝑥𝑥𝑛𝑛) = lim𝑛𝑛 𝑇𝑇(𝑥𝑥𝑛𝑛) = 𝑡𝑡, for some 𝑡𝑡 ∈ 𝑋𝑋. 
(a) If 𝑆𝑆 is continuous at 𝑡𝑡, lim𝑛𝑛 𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)� = 𝑆𝑆(𝑡𝑡). 
(b) If 𝑆𝑆 and 𝑇𝑇 are continuous at 𝑡𝑡, then, 𝑆𝑆(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) and 𝑆𝑆�𝑇𝑇(𝑡𝑡)� = 𝑇𝑇�𝑆𝑆(𝑡𝑡)�. 

Proof: Suppose that 𝑆𝑆(𝑡𝑡) = 𝑇𝑇(𝑡𝑡), and let 𝑥𝑥𝑛𝑛 = 𝑡𝑡 for 𝑛𝑛 in ℕ. Then, 𝑆𝑆(𝑥𝑥𝑛𝑛),𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁
→𝑆𝑆(𝑡𝑡), so that, 

𝑑𝑑𝑁𝑁 �𝑆𝑆�𝑇𝑇(𝑡𝑡)�,𝑇𝑇�𝑆𝑆(𝑡𝑡)�� = 𝑑𝑑𝑁𝑁 �𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)�,𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)��
𝑁𝑁
→ 0 by compatibility. Consequently, 𝑑𝑑𝑁𝑁 �𝑆𝑆�𝑇𝑇(𝑡𝑡)�,𝑇𝑇�𝑆𝑆(𝑡𝑡)�� = 0 

and 𝑆𝑆�𝑇𝑇(𝑡𝑡)� = 𝑇𝑇�𝑆𝑆(𝑡𝑡)�, proving (1). 
 
To prove (2)(a), note that if 𝑇𝑇(𝑥𝑥𝑛𝑛)

𝑁𝑁
→ 𝑡𝑡, 𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)�

𝑁𝑁
→𝑆𝑆(𝑡𝑡) by the continuity of 𝑆𝑆. But if 𝑆𝑆(𝑥𝑥𝑛𝑛)

𝑁𝑁
→ 𝑡𝑡, also since 

𝑑𝑑𝑁𝑁 �𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)�, 𝑆𝑆(𝑡𝑡)� ≤ 𝑑𝑑𝑁𝑁 �𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)�, 𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)�� + 𝑑𝑑𝑁𝑁 �𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)�, 𝑆𝑆(𝑡𝑡)� the compatibility of 𝑆𝑆 and 𝑇𝑇 require that, 

𝑑𝑑𝑁𝑁 �𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)�, 𝑆𝑆(𝑡𝑡)�
𝑁𝑁
→0; i.e., 𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)�

𝑁𝑁
→𝑆𝑆(𝑡𝑡). 

 
We prove (2)(b) by noting that 𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)�

𝑁𝑁
→𝑆𝑆(𝑡𝑡) by the continuity of 𝑆𝑆, whereas, 𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)�

𝑁𝑁
→𝑇𝑇(𝑡𝑡) by the continuity of 

𝑇𝑇. Thus, 𝑆𝑆(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) by the uniqueness of limit, and therefore 𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)� = 𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)� by part (1). 
 
Theorem 3.3.6: Let 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇 be non Newtonian continuous compatible maps of a complete non Newtonian metric 
space (𝑋𝑋,𝑑𝑑𝑁𝑁) into itself. Then 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇 have a unique common fixed point in 𝑋𝑋 if there exists an 𝛼𝛼 ∈ �0̇, 1̇� and they 
satisfy  

𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋                            (11) 
 
Proof: Suppose there is a map 𝑆𝑆 of 𝑋𝑋 into itself which is compatible with 𝑇𝑇 and for which (11) holds. We show that the 
condition is sufficient to ensure that 𝑇𝑇 and 𝑆𝑆 have a unique fixed point. 
 
To this end, let 𝑥𝑥0 ∈ 𝑋𝑋 and let 𝑥𝑥1 be such that 𝑇𝑇(𝑥𝑥1) = 𝑆𝑆(𝑥𝑥0). In general, choose 𝑥𝑥𝑛𝑛  so that  

𝑇𝑇(𝑥𝑥𝑛𝑛) = 𝑆𝑆(𝑥𝑥𝑛𝑛−1)                                                                            (12) 
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We can do this since 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). The relation (11) and (12) imply that 𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥𝑛𝑛+1),𝑇𝑇(𝑥𝑥𝑛𝑛)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥𝑛𝑛),𝑇𝑇(𝑥𝑥𝑛𝑛−1)� 
for all 𝑛𝑛. The lemma yields 𝑡𝑡 ∈ 𝑋𝑋 such that 

𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁
→ 𝑡𝑡                                                              (13) 

 
But then (12) implies that  

𝑆𝑆(𝑥𝑥𝑛𝑛)
𝑁𝑁
→ 𝑡𝑡                                                              (14) 

 
Now, from the definition of compatibility, 

lim
𝑛𝑛
𝑑𝑑𝑁𝑁 �𝑆𝑆�𝑇𝑇(𝑥𝑥𝑛𝑛)�,𝑇𝑇�𝑆𝑆(𝑥𝑥𝑛𝑛)�� = 0̇ 

 
Now, by continuity of 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇 and the lemma, 𝑆𝑆(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) and 𝑆𝑆�𝑇𝑇(𝑡𝑡)� = 𝑇𝑇�𝑆𝑆(𝑡𝑡)�. We can therefore infer 

𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑡𝑡), 𝑆𝑆�𝑆𝑆(𝑡𝑡)�� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁 �𝑇𝑇(𝑡𝑡),𝑇𝑇�𝑆𝑆(𝑡𝑡)�� = 𝛼𝛼𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑡𝑡),𝑆𝑆�𝑇𝑇(𝑡𝑡)�� = 𝛼𝛼𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑡𝑡), 𝑆𝑆�𝑆𝑆(𝑡𝑡)��. 
 
Hence, 𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑡𝑡), 𝑆𝑆�𝑆𝑆(𝑡𝑡)�� (1 − 𝛼𝛼) ≤̇ 0̇. Since 𝛼𝛼 ∈ �0̇, 1̇�, 𝑆𝑆(𝑡𝑡) = 𝑆𝑆�𝑆𝑆(𝑡𝑡)� = 𝑇𝑇�𝑆𝑆(𝑡𝑡)�, i.e. 𝑆𝑆(𝑡𝑡) is common fixed point 
of 𝑆𝑆 and 𝑇𝑇. 
 
To see that 𝑆𝑆 and 𝑇𝑇 can have only one common fixed point, suppose that 𝑥𝑥 = 𝑇𝑇(𝑥𝑥) = 𝑆𝑆(𝑥𝑥) and 𝑦𝑦 = 𝑇𝑇(𝑦𝑦) = 𝑆𝑆(𝑦𝑦). 
Then (11) implies that 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) = 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� = 𝛼𝛼𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦), or 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦)(1 − 𝛼𝛼) ≤̇ 0̇. Since, 
𝛼𝛼 <̇ 1̇, so we infer that 𝑥𝑥 = 𝑦𝑦. 
 
Corollary 3.3.7: Let 𝑇𝑇 and 𝑆𝑆 be continuous compatible maps of a complete non Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁) into 
itself. Suppose, 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). If there exists 𝛼𝛼 ∈ (0,1) and a positive integer 𝑘𝑘 such that (i) 𝑑𝑑𝑁𝑁�𝑆𝑆𝑘𝑘(𝑥𝑥), 𝑆𝑆𝑘𝑘(𝑦𝑦)� ≤
𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� for all 𝑥𝑥 and 𝑦𝑦 in 𝑋𝑋, then 𝑇𝑇 and 𝑆𝑆 have a common fixed point. 
 
Proof: Clearly, 𝑆𝑆𝑘𝑘  is compatible with 𝑇𝑇 and 𝑆𝑆𝑘𝑘(𝑋𝑋) ⊂ 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). Thus, the theorem pertains to 𝑆𝑆𝑘𝑘  and 𝑇𝑇, so there 
exists a unique 𝑎𝑎 ∈ 𝑋𝑋 such that 𝑎𝑎 = 𝑇𝑇(𝑎𝑎) = 𝑆𝑆𝑘𝑘(𝑎𝑎). But then, since 𝑇𝑇 and 𝑆𝑆 are compatible, we can write  𝑆𝑆(𝑎𝑎) =
𝑇𝑇�𝑆𝑆(𝑎𝑎)� = 𝑆𝑆𝑘𝑘�𝑆𝑆(𝑎𝑎)�, which says that 𝑆𝑆(𝑎𝑎) is a c.f.p. of 𝑇𝑇 and 𝑆𝑆𝑘𝑘 . The uniqueness of 𝑎𝑎 implies 𝑎𝑎 = 𝑆𝑆(𝑎𝑎) = 𝑇𝑇(𝑎𝑎). 
 
Example 3.3.8: Let us consider an exponential calculus 𝑋𝑋, i.e., 𝛽𝛽 =  𝑒𝑒𝑒𝑒𝑒𝑒, 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) = 𝑒𝑒𝑥𝑥∀𝑥𝑥 ∈ ℝ. Consider the maps, 
𝑆𝑆,𝑇𝑇:𝑋𝑋 → 𝑋𝑋 defined as 𝑆𝑆(𝑥𝑥) = 𝛽𝛽(2)−̇𝑥𝑥2𝑁𝑁  and 𝑇𝑇(𝑥𝑥) = 𝑥𝑥2𝑁𝑁 . Now, |𝑆𝑆(𝑥𝑥𝑛𝑛) − 𝑇𝑇(𝑥𝑥𝑛𝑛)|𝑁𝑁 = 𝛽𝛽(2) ×̇ �1̇−̇𝑥𝑥2𝑁𝑁 �

𝑁𝑁

𝑁𝑁
→ 0̇ iff 

𝑥𝑥𝑛𝑛 = ±1̇ and lim𝑛𝑛 𝑆𝑆(𝑥𝑥𝑛𝑛) = lim𝑛𝑛 𝑇𝑇(𝑥𝑥𝑛𝑛) = 1̇. So, these are compatible but clearly not weakly commutative, e.g. 𝑥𝑥 = 0̇. 
Now, 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� ≤̇ 𝛽𝛽 �1

2
� ×̇ 𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)�. Hence, 𝑆𝑆 and 𝑇𝑇 satisfy all the hypotheses of the theorem 3.3.6 and 

hence have a unique common fixed point. The fixed point of these two mappings is 𝑥𝑥 = 1̇ = 𝑒𝑒.  
 
3.4. Weakly Compatible Maps: 
 
Definition 3.4.1: Two maps 𝑆𝑆 and 𝑇𝑇 are said to be weakly compatible if they commute at coincidence points. 
 
Remark 3.4.2: Commutative ⇒ weakly commutative ⇒ compatible ⇒ weakly compatible. But the converse of the 
above implications does not hold. 
 
Theorem 3.4.3: Let 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇 be weakly compatible maps of a complete non Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁) into itself. 
Then 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇 have a unique common fixed point in 𝑋𝑋 if there exists an 𝛼𝛼 ∈ �0̇, 1̇� and they satisfy the following two 
conditions: 

𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋                                          (15) 
Any one of the subspace 𝑆𝑆(𝑋𝑋) or 𝑇𝑇(𝑋𝑋) is complete                                                                                                       (16) 
 
Proof: Suppose, there is a map 𝑆𝑆 of 𝑋𝑋 into itself which is weakly compatible with 𝑇𝑇 and for which (15) holds. We 
show that the condition is sufficient to ensure that 𝑇𝑇 and 𝑆𝑆 have a unique fixed point. 
 
To this end, let 𝑥𝑥0 ∈ 𝑋𝑋 and let 𝑥𝑥1 be such that 

𝑇𝑇(𝑥𝑥1) = 𝑆𝑆(𝑥𝑥0). In general, choose 𝑥𝑥𝑛𝑛  so that 
𝑇𝑇(𝑥𝑥𝑛𝑛) = 𝑆𝑆(𝑥𝑥𝑛𝑛−1)                                                                            (17) 

 
We can do this since 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). The relation (15) and (16) imply that 𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥𝑛𝑛+1),𝑇𝑇(𝑥𝑥𝑛𝑛)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥𝑛𝑛),𝑇𝑇(𝑥𝑥𝑛𝑛−1)� 
for all 𝑛𝑛. The lemma yields 𝑡𝑡 ∈ 𝑋𝑋 such that 

𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁
→ 𝑡𝑡                                                              (18) 
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But then (17) implies that  

𝑆𝑆(𝑥𝑥𝑛𝑛)
𝑁𝑁
→ 𝑡𝑡                                                              (19) 

 
Since, either 𝑆𝑆(𝑋𝑋) or 𝑇𝑇(𝑋𝑋) is complete, for certainty assume that 𝑇𝑇(𝑋𝑋) is complete subspace of 𝑋𝑋 then the subsequence 
of {𝑥𝑥𝑛𝑛} must get a limit in 𝑇𝑇(𝑋𝑋). Call it be 𝑡𝑡. Let 𝑢𝑢 ∈ 𝑇𝑇−1(𝑡𝑡). Then 𝑇𝑇(𝑢𝑢) = 𝑡𝑡 as {𝑥𝑥𝑛𝑛 } is a Cauchy sequence containing 
a convergent subsequence, therefore the sequence {𝑥𝑥𝑛𝑛 } also convergent implying thereby the convergence of 
subsequence of the convergent sequence. Now, we show that 𝑆𝑆(𝑢𝑢) = 𝑡𝑡. 
 
On setting 𝑥𝑥 = 𝑥𝑥𝑛𝑛 ,𝑦𝑦 = 𝑢𝑢 in (15), we have 

𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥𝑛𝑛), 𝑆𝑆(𝑢𝑢)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥𝑛𝑛),𝑇𝑇(𝑢𝑢)� 
 
Proceeding limit as 𝑛𝑛 → ∞, we get 𝑑𝑑𝑁𝑁�𝑡𝑡, 𝑆𝑆(𝑢𝑢)� ≤̇ 𝛼𝛼𝛼𝛼𝑁𝑁�𝑡𝑡,𝑇𝑇(𝑢𝑢)� ⇒ 𝑑𝑑𝑁𝑁�𝑡𝑡, 𝑆𝑆(𝑢𝑢)� ≤̇ 0̇ ⇒ 𝑆𝑆(𝑢𝑢) = 𝑡𝑡. Thus, 𝑢𝑢 is a 
coincidence point of 𝑆𝑆 and 𝑇𝑇. Since 𝑆𝑆 and 𝑇𝑇 are weakly compatible, it follows that 𝑆𝑆�𝑇𝑇(𝑢𝑢)� = 𝑇𝑇�𝑆𝑆(𝑢𝑢)�. 
 
We can therefore infer 

𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑢𝑢), 𝑆𝑆�𝑆𝑆(𝑢𝑢)�� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁 �𝑇𝑇(𝑢𝑢),𝑇𝑇�𝑆𝑆(𝑢𝑢)�� = 𝛼𝛼𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑢𝑢), 𝑆𝑆�𝑇𝑇(𝑢𝑢)�� = 𝛼𝛼𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑢𝑢), 𝑆𝑆�𝑆𝑆(𝑢𝑢)��. 
 
Hence, 𝑑𝑑𝑁𝑁 �𝑆𝑆(𝑢𝑢), 𝑆𝑆�𝑆𝑆(𝑢𝑢)�� (1 − 𝛼𝛼) ≤̇ 0̇. Since 𝛼𝛼 ∈ (0,1), 𝑆𝑆(𝑢𝑢) = 𝑆𝑆�𝑆𝑆(𝑢𝑢)� = 𝑇𝑇�𝑆𝑆(𝑢𝑢)�, i.e. 𝑆𝑆(𝑢𝑢) is common fixed 
point of 𝑆𝑆 and 𝑇𝑇. 
 
To see that 𝑆𝑆 and 𝑇𝑇 can have only one common fixed point, suppose that 𝑥𝑥 = 𝑇𝑇(𝑥𝑥) = 𝑆𝑆(𝑥𝑥) and 𝑦𝑦 = 𝑇𝑇(𝑦𝑦) = 𝑆𝑆(𝑦𝑦). 
Then (11) implies that 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦) = 𝑑𝑑𝑁𝑁�𝑆𝑆(𝑥𝑥), 𝑆𝑆(𝑦𝑦)� ≤ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� = 𝛼𝛼𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦), or 𝑑𝑑𝑁𝑁(𝑥𝑥,𝑦𝑦)(1 − 𝛼𝛼) ≤ 0̇. Since, 
𝛼𝛼 < 1, 𝑥𝑥 = 𝑦𝑦. 
 
Corollary 3.4.4: Let 𝑇𝑇 and 𝑆𝑆 be weakly compatible maps of a complete non Newtonian metric space (𝑋𝑋,𝑑𝑑𝑁𝑁) into 
itself. Suppose, 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). If there exists 𝛼𝛼 ∈ �0̇, 1̇� and a positive integer 𝑘𝑘 such that (i) 
𝑑𝑑𝑁𝑁�𝑆𝑆𝑘𝑘(𝑥𝑥), 𝑆𝑆𝑘𝑘(𝑦𝑦)� ≤̇ 𝛼𝛼𝑑𝑑𝑁𝑁�𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦)� for all 𝑥𝑥 and 𝑦𝑦 in 𝑋𝑋, (ii) either 𝑆𝑆𝑘𝑘(𝑋𝑋) 𝑜𝑜𝑜𝑜 𝑇𝑇(𝑋𝑋) is complete subspace in 𝑋𝑋, then 
𝑇𝑇 and 𝑆𝑆 have a common fixed point. 
 
Proof: Clearly, 𝑆𝑆𝑘𝑘  is compatible with 𝑇𝑇 and 𝑆𝑆𝑘𝑘(𝑋𝑋) ⊂ 𝑆𝑆(𝑋𝑋) ⊂ 𝑇𝑇(𝑋𝑋). Thus, the theorem pertains to 𝑆𝑆𝑘𝑘  and 𝑇𝑇, so there 
exists a unique 𝑎𝑎 ∈ 𝑋𝑋 such that 𝑎𝑎 = 𝑇𝑇(𝑎𝑎) = 𝑆𝑆𝑘𝑘(𝑎𝑎). But then, since 𝑇𝑇 and 𝑆𝑆 are compatible, we can write  𝑆𝑆(𝑎𝑎) =
𝑇𝑇�𝑆𝑆(𝑎𝑎)� = 𝑆𝑆𝑘𝑘�𝑆𝑆(𝑎𝑎)�, which says that 𝑆𝑆(𝑎𝑎) is a c.f.p. of 𝑇𝑇 and 𝑆𝑆𝑘𝑘 . The uniqueness of 𝑎𝑎 implies 𝑎𝑎 = 𝑆𝑆(𝑎𝑎) = 𝑇𝑇(𝑎𝑎). 
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