ALTERING DISTANCE OF TWO VARIABLES AND ITS APPLICATION

Piyush Kumar Tripathi*

Amity University
(Deptt. of Amity School Of Engg. & Techonology)
Viraj Khand – 5 Gomti Nagar Lucknow, (U.P.), India

E-mail: piyush.tripathi2007@gmail.com

(Received on: 19-07-11; Accepted on: 03-08-11)

ABSTRACT

In this paper, we have obtained a number of fixed point theorems for self mappings defined on a complete non-Archimedean Menger probabilistic metric space satisfying a contractive inequality by using the concept of altering distance of two variables and non expansive mappings.

INTRODUCTION:

Result on the existence of fixed points for self mappings on a non- Archimedean probabilistic metric space have been obtained by Hadžić [74], Istrătescu [92], Cho, Park and Chang [32] and Cho, Ha and Chang [35] others. In 1994 Chang, Cho, and Kang [25] summarized almost all the results in "Fixed point theorem for single valued mappings in some special probabilistic metric spaces" and defined non- Archimedean Menger space of type \mathbf{C}_{g} .

Khan Swaleh and Sessa introduced the notion of altering distance [7] and proved fixed point theorems involving altering distance. Using the idea of altering distance, Binayak S. Choudhury and P. N. Dutta [2] introduced the notion of function of two variables of type A. The concept of function of type A and the results of the above authors prompted us to go for further generalization of the above results in non – Archimedean Menger probabilistic metric space of type C_g involving a two variable function of type A. We have also defined non-expansive self-mapping with respect to φ , where $\varphi:[0,\infty) \to [0,\infty)$ is a mapping is satisfying certain condition given in section 3 and using this concept we have also obtained some results on fixed point.

PRELIMINARIES:

In this section we recall some basic definitions and results of non-Archimedean probabilistic metric space. For more details we refer the reader to [1], [4], [5] and [6].

Definition: 1.1 [1] A non-Archimedean probabilistic metric space is an ordered pair (X, F), X a non empty set and $F: X \times X \to L$ a map such that,

$$(i)F_{p,q}(x)=1 \ , \forall \ x>0 \ \text{iff} \ p=q,$$

$$(ii)F_{p,q}(0)=0,$$

$$(iii)F_{p,q}(x)=F_{q,p}(x),$$

and
$$(iv)F_{p,q}(x) = 1$$
, $F_{q,r}(y) = 1 \Rightarrow F_{p,r}(\max\{x, y\}) = 1$,

where L is the set of all distribution functions and $F_{p,q}(x)$ is the value of the function $F_{p,q} = F(p,q) \in L$ at $x \in R$.

Definition: 1.2 [1], [4] A non-Archimedean Menger probabilistic metric space is a triple (X, F, t), where (X, F) is a non-Archimedean probabilistic metric space and t is a t-norm such that, $F_{p,r}(\max\{x,y\} \ge t(F_{p,q}(x),F_{q,r}(y)) \ \forall \ p,q,r \in X \ \text{and} \ x,y \ge 0$.

Corresponding author: Piyush Kumar Tripathi, *E-mail: piyush.tripathi2007@gmail.com

Definition: 1.3 Let $\Omega = \{g : g : [0,1] \to [0,\infty] \text{ is continuous, strictly decreasing s.t } g(1) = 0, g(0) < \infty \}$ is a set of functions. A probabilistic metric space is said to be of type \mathbb{C}_{σ} if $g \in \Omega$ such that,

$$g(F_{p,q}(x)) \le g(F_{p,r}(x)) + g(F_{r,q}(x)) \forall p,q,r \in X \text{ and } x \ge 0.$$

NOTE: Throughout this paper we consider (X, F, t) a complete non-Archimedean Menger probabilistic metric space of type \mathbb{C}_{g} .

In 1984 M.S. Khan, M. Swaleh and S. Sessa [7] gave the notion of altering distance between two points and proved fixed point theorems using this altering distance.

Definition: 1.4 [7] An altering distance is a mapping $\phi:[0,\infty)\to[0,\infty)$ Such that,

- (a) ϕ is increasing and continuous, and
- (b) $\phi(x) = 0$ iff x = 0.

Choudhury and Dutta [2] extended this idea to the functions of two variables which satisfy the condition of the type *A*. Following is the definition and example given in [2] which may be termed as altering distance of two variables.

Definition: 1.5 [2] A function $\phi: R^+ \times R^+ \to R^+$ is said to be of the type A if

- (a) ϕ is continuous and monotonic increasing in both the arguments, and
- (b) $\phi(0,0) = 0$ and $\phi(\varepsilon,0) = 0 \Rightarrow \varepsilon = 0$.

In the above definition the term used "monotonic increasing" in both the arguments Means

$$a \le b \Rightarrow \phi(a,c) \le \phi(b,c)$$
 and $a \le b \Rightarrow \phi(c,a) \le \phi(c,b)$, for all c.

Following Remark and examples are given in [2].

Remark: 1.1
$$\phi(\varepsilon, \varepsilon) = 0 \implies \varepsilon = 0$$
 because, $\phi(\varepsilon, 0) \le \phi(\varepsilon, \varepsilon) = 0 \implies \phi(\varepsilon, 0) = 0 \implies \varepsilon = 0$.

Example: 1.1 $\phi: R^+ \times R^+ \to R^+$ is defined as,

$$(i) \phi(a,b) = (a^p + b^q)^k,$$

$$(ii) \phi(a,b) = a^p.b^q + a^k,$$

where p, q and k are positive integers. Then ϕ is altering distance of two variables. Following lemma proved by Chang, [1] has been used by us in proving our results.

Lemma: 1.1 [4] Let $\{p_n\}$ be a sequence in X such that $\lim_{n\to\infty} F_{p_n,p_{n+1}}(x) = 1$ for all x > 0. If the sequence $\{p_n\}$ is not a Cauchy sequence in X, then there exists $\mathcal{E}_0 > 0$, $t_0 > 0$ and two sequence $\{m_i\}$ and $\{n_i\}$ of positive integers such that,

(i)
$$m_i > n_i + 1$$
 and $n_i \to \infty$ as $i \to \infty$,

(ii)
$$g(F_{p_{m_i},p_{n_i}}(t_0)) > g(1-\varepsilon_0)$$
 and $g(F_{p_{m_{i-1}},p_{n_i}}(t_0)) \le g(1-\varepsilon_0)$.

Remark: 1.2 If sequence $\{p_n\}$ is not a Cauchy sequence and $\lim_{n\to\infty} g(F_{p_n,P_{n,1}}(x)) = 0$.

Then,

$$g(1-\varepsilon_0) < g(F_{p_{m_i},p_{n_i}}(t_0)) \le g(F_{p_{m_i},p_{m_{i-1}}}(t_0)) + g(F_{p_{m_{i-1}},p_{n_i}}(t_0)) \text{ and } \lim_{i \to \infty} g(F_{p_{m_i},p_{n_i}}(t_0)) = g(1-\varepsilon_0). \tag{1.1}$$

Again,

$$g(F_{p_{m_i},p_{n_i}}(t_0)) \leq g(F_{p_{m_i},p_{m_{i-1}}}(t_0)) + g(F_{p_{m_{i-1}},p_{n_{i-1}}}(t_0)) + g(F_{p_{n_{i-1}},p_{n_i}}(t_0))$$

and

$$g(F_{p_{m_{i-1}},p_{n_{i-1}}}(t_0)) \le g(F_{p_{m_{i-1}},p_{m_i}}(t_0)) + g(F_{p_{m_i},p_{n_i}}(t_0)) + g(F_{p_{n_i},p_{n_{i-1}}}(t_0)).$$

Hence.

$$\lim_{i \to \infty} g(F_{p_{m_{i-1}}, p_{n_{i-1}}}(t_0)) = g(1 - \mathcal{E}_0)$$
(1.2)

Also.

$$g(F_{p_{n_{i-1}},p_{m_{i+1}}}(t_0)) \leq g(F_{p_{n_{i-1}},p_{n_i}}(t_0)) + g(F_{p_{n_i},p_{m_i}}(t_0)) + g(F_{p_{m_i},p_{m_{i+1}}}(t_0))$$

and

$$g(F_{p_{m_i},p_{n_i}}(t_0)) \leq g(F_{p_{n_i},p_{n_{i-1}}}(t_0)) + g(F_{p_{n_{i-1}},p_{m_{i+1}}}(t_0)) + g(F_{p_{m_{i+1}},p_{m_i}}(t_0)) \,.$$

Therefore, from (1), (2) we have,

$$\lim_{i \to \infty} g(F_{p_{m,1}, p_{m,1}}(t_0)) = g(1 - \mathcal{E}_0) \dots$$
 (1.3)

Lastly.

$$g(F_{p_{m_i},p_{n_i}}(t_0)) \le g(F_{p_{m_i},p_{n_{i-1}}}(t_0)) + g(F_{p_{n_{i-1}},p_{n_i}}(t_0))$$

and

$$g(F_{p_{m_i},p_{n_{i-1}}}(t_0)) \le g(F_{p_{m_i},p_{n_i}}(t_0)) + g(F_{p_{n_i},p_{n_{i-1}}}(t_0)).$$

Hence from (1), (2) we have

$$\lim_{t \to \infty} g(F_{p_m, p_{n-1}}(t_0)) = g(1 - \mathcal{E}_0)$$
(1.5)

2. MAIN RESULTS

In this section a unique fixed point theorem in complete non-Archimedean Menger space for a class of self mappings satisfying certain inequality involving function of two variables has been derived.

Theorem: 2.1 Suppose (X, F; t) is a complete non-Archimedean Menger probabilistic metric space. Let $T: X \to X$ be a self mapping on X satisfying,

$$\phi \Big(g(F_{T_{p},T_{q}}(x), g(F_{p,T_{p}}(x)) + \phi \Big(g(F_{q,T_{q}}(x), g(F_{q,T^{2}_{p}}(x)) \Big) \\
\leq \phi \Big(g(F_{p,q}(x), g(F_{p,T_{p}}(x)) + \beta \phi \Big(g(F_{q,T_{q}}(x), g(F_{q,T_{p}}(x)) \Big) \\$$
(2.1)

where $0 < \alpha < 1$, $0 < \beta \le 1$ and ϕ is a function of the type A. Then there exists unique fixed point of T in X.

Proof: In fact using the condition (1) we shall get a Cauchy sequence in *X* whose limit point will turn out to be unique fixed point of *T*. Following is the procedure for finding the Cauchy sequence in *X*.

Picking $p_0 \in X$, we construct a sequence $\{p_n\}$ inductively as

$$p_n = Tp_{n-1}$$
, $(n = 1, 2, 3 \dots)$.

Putting q = Tp in (2.1) we get,

$$\phi\Big(g(F_{T_{p,T^{2}p}}(x),g(F_{p,T_{p}}(x))) + \phi\Big(g(F_{T_{p,T^{2}p}}(x),g(F_{T_{p,T^{2}p}}(x))\Big)$$

$$\leq \alpha \phi \Big(g(F_{p,Tp}(x), g(F_{p,Tp}(x)) + \beta \Big(g(F_{Tp,T^2p}(x), g(F_{Tp,Tp}(x)) \Big) + \beta \Big(g(F_{Tp,Tp}(x), g(F_{Tp,Tp}(x)) + \beta \Big) \Big) \Big) \Big)$$

Since, $0 < \beta \le 1$ hence from (3) we get,

$$\beta\phi\Big(g(F_{T_p,T^2_p}(x),0\Big) \le \beta\phi\Big(g(F_{T_p,T^2_p}(x),g(F_{T_p,T^2_p}(x))\Big) \le \phi\Big(g(F_{T_p,T^2_p}(x),g(F_{T_p,T^2_p}(x))\Big),$$

hence.

$$\phi\Big(g(F_{T_p,T^2p}(x),g(F_{p,T_p}(x))) \leq \alpha\phi\Big(g(F_{p,T_p}(x),g(F_{p,T_p}(x)))$$

. (2.3)

(2.2)

1256

$$\leq \phi \left(g(F_{p,Tp}(x), g(F_{p,Tp}(x)) \right)$$

i.e.
$$\phi(g(F_{T_p,T_p^2}(x),g(F_{p,T_p}(x))) \le \phi(g(F_{p,T_p}(x),g(F_{p,T_p}(x)))$$
 (2.4)

or
$$g(F_{T_p,T^2_p}(x)) \le g(F_{p,T_p}(x))$$
 (2.5)

Putting $p = p_{n-1}$ in (2.5) we get,

$$g(F_{p_n, p_{n+1}}(x)) \le g(F_{p_{n-1}, p_n}(x)) \tag{2.6}$$

This shows that the sequence $\{g(F_{p_n,p_{n+1}}(x))\}$ is monotonic decreasing and bounded below. So, $g(F_{p_n,p_{n+1}}(x)) \to a \in X$ as $n \to \infty$ (2.7)

Again putting $p = p_{n-1}$ in (2.4) we get,

$$\phi(g(F_{p_{n-1},p_n}(x),g(F_{p_{n-1},p_n}(x)) \le \alpha \phi(g(F_{p_{n-1},p_n}(x),g(F_{p_{n-1},p_n}(x)).$$

Making $n \to \infty$ and using continuity of ϕ we get,

 $\phi(a,a) \le \alpha \phi(a,a)$.

Since $0 < \alpha < 1$, therefore $\phi(a,a) = 0$, otherwise, $\phi(a,a) < \phi(a,a)$, so from the remark 1.1, a = 0. Therefore, $\lim_{n \to \infty} g(F_{p_n,p_{n+1}}(x)) = 0$. (2.8)

Next we show that $\{p_n\}$ is a Cauchy sequence. Suppose, on the contrary, $\{p_n\}$ is not a Cauchy sequence. Then by Lemma 1.1 there exists $\mathcal{E}_0 > 0$, $t_0 > 0$ and sets of positive integer $\{m_i\}$, $\{n_i\}$ such that,

(i)
$$m_i > n_i + 1$$
 and $n_i \to \infty$ as $i \to \infty$,
$$(2.9)$$

(ii)
$$g(F_{p_{m_i}, p_{n_i}}(t_0)) > g(1 - \varepsilon_0)$$
 and $g(F_{p_{m_{i-1}}, p_{n_i}}(t_0)) \le g(1 - \varepsilon_0)$.

Now,

$$g(1-\mathcal{E}_0) < g(F_{p_{m_i},p_{n_i}}(t_0)) \leq g(F_{p_{m_i},p_{m_{i-1}}}(t_0)) + g(F_{p_{m_{i-1}},p_{n_i}}(t_0)).$$

Making $i \to \infty$,

$$\lim_{i \to \infty} g(F_{p_m, p_m}(t_0)) = g(1 - \mathcal{E}_0)$$
(2.10)

© 2011, IJMA. All Rights Reserved

Again,

$$g(F_{p_{m_{i}},p_{n_{i}}}(t_{0})) \leq g(F_{p_{m_{i}},p_{m_{i-1}}}(t_{0})) + g(F_{p_{m_{i-1}},p_{n_{i-1}}}(t_{0})) + g(F_{p_{n_{i-1}},p_{n_{i}}}(t_{0}))$$

and

$$g(F_{p_{m_{i-1}},p_{n_{i-1}}}(t_0)) \le g(F_{p_{m_{i-1}},p_{m_i}}(t_0)) + g(F_{p_{m_i},p_{n_i}}(t_0)) + g(F_{p_{n_i},p_{n_{i-1}}}(t_0)).$$

Hence

$$\lim_{i \to \infty} g(F_{p_{m-1}, p_{m-1}}(t_0)) = g(1 - \mathcal{E}_0)$$
(2.11)

Also.

$$g(F_{p_{n_{i-1}},p_{m_{i+1}}}(t_0)) \le g(F_{p_{n_{i-1}},p_{n_i}}(t_0)) + g(F_{p_{n_i},p_{m_i}}(t_0)) + g(F_{p_{m_i},p_{m_{i+1}}}(t_0))$$

and

$$g(F_{p_{n_i},p_{n_i}}(t_0)) \leq g(F_{p_{n_i},p_{n_{i-1}}}(t_0)) + g(F_{p_{n_{i-1}},p_{m_{i+1}}}(t_0)) + g(F_{p_{m_{i+1}},p_{m_i}}(t_0)) \,.$$

Therefore from (2.8), (2.10) we have,

$$\lim_{i \to \infty} g(F_{p_{m,i}, p_{m,i}}(t_0)) = g(1 - \mathcal{E}_0)$$
(2.12)

Thus.

$$g(F_{p_{m_i},p_{n_i}}(t_0)) \le g(F_{p_{m_i},p_{n_{i-1}}}(t_0)) + g(F_{p_{n_{i-1}},p_{n_i}}(t_0))$$

and

$$g(F_{p_{m_i},p_{n_{i-1}}}(t_0)) \le g(F_{p_{m_i},p_{n_i}}(t_0)) + g(F_{p_{n_i},p_{n_{i-1}}}(t_0)).$$

Making $i \to \infty$ and noting (2.8), (2.10), we have,

$$\lim_{t \to \infty} g(F_{p_m, p_{n-1}}(t_0)) = g(1 - \mathcal{E}_0)$$
(2.13)

Now putting $p = p_{m_{i-1}}$, $q = p_{n_{i-1}}$ and $x = t_0 > 0$ in (2.1) we get,

$$\phi(g(F_{p_{m,-},p_{n_{i}}}(t_{0}),g(F_{p_{m,-},p_{m_{i}}}(t_{0}))) + \phi(g(F_{p_{n,-},p_{n_{i}}}(t_{0}),g(F_{p_{n,-},p_{m_{i+1}}}(t_{0})))$$

$$\leq \alpha \phi(g(F_{P_{m_{-1}},P_{m_{-1}}}(t_0),g(F_{P_{m_{-1}},P_{m_{0}}}(t_0))) + \beta \phi(g(F_{P_{m_{-1}},P_{m_{0}}}(t_0),g(F_{P_{m_{-1}},P_{m_{0}}}(t_0))).$$

Making $i \to \infty$ using (8), (10) – (13) and the continuity of ϕ , we get,

$$\phi(g(1-\varepsilon_0),0)) + \phi(0,g(1-\varepsilon_0)) \le \alpha\phi(g(1-\varepsilon_0),0)) + \beta\phi(0,g(1-\varepsilon_0))$$
.

Since
$$0 < \beta \le 1$$
, $\beta \phi(0, g(1-\varepsilon_0)) \le \phi(0, g(1-\varepsilon_0))$, it follows that,

$$\phi(g(1-\varepsilon_0),0)) \leq \alpha\phi(g(1-\varepsilon_0),0)$$
.

This is possible only when $\phi(g(1-\mathcal{E}_0),0)=0$ (follows from the condition on α , \mathcal{E} and g). Therefore $\{p_n\}$ is a Cauchy sequence.

Since (X, F; t) is complete so $\{p_n\} \to z \in X$. Putting q = z, $p = p_n$ in (1), we get,

$$\phi(g(F_{p_{n+1},Tz}(x)),g(F_{p_n,p_{n+1}}(x))) + \phi(g(F_{z,Tz}(x)),g(F_{z,p_{n+2}}(x)))$$

$$\leq \alpha \phi \Big(g(F_{p_n,z}(x)), g(F_{p_n,p_{n+1}}(x)) \Big) + \beta \phi \Big(g(F_{z,Tz}(x)), g(F_{z,p_{n+1}}(x)) \Big).$$

Making $i \to \infty$,

$$\phi(g(F_{z,Tz}(x)),0)+\phi(g(F_{z,Tz}(x)),0)$$

$$\leq \alpha \phi(0,0) + \beta \phi(g(F_{z,T_z}(x)),0).$$

Since
$$0 < \beta \le 1$$
, so, $\phi(g(F_{z,Tz}(x)), 0) \le \alpha\phi(0,0) = 0$

i. e.
$$\phi(g(F_{z,Tz}(x)),0)=0$$
 which implies that $g(F_{z,Tz}(x))=0$.

Therefore, z = Tz. Hence z is a fixed point of T.

For uniqueness, suppose z_1, z_2 are fixed points of T i.e. $Tz_1 = z_1$ and $Tz_2 = z_2$.

Putting $p = z_1$ and $q = z_2$ in (1) we get,

$$\phi(g(F_{z_1,z_2}(x)),g(F_{z_1,z_1}(x))) + \phi(g(F_{z_2,z_2}(x)),g(F_{z_2,z_1}(x)))$$

$$\leq \alpha \phi \Big(g(F_{z_1,z_2}(x)), g(F_{z_1,z_2}(x)) \Big) + \beta \phi \Big(g(F_{z_2,z_2}(x)), g(F_{z_2,z_1}(x)) \Big),$$

i.e

$$\phi\Big(g(F_{z_1,z_2}(x)),0\Big) + \phi\Big(0,g(F_{z_2,z_1}(x))\Big)$$

$$\leq \alpha \phi (g(F_{z_1,z_2}(x)),0) + \beta \phi (0,g(F_{z_2,z_1}(x))).$$

Since
$$0 < \beta \le 1$$
 so we get $\phi(g(F_{z_1,z_2}(x)), 0) \le \alpha \phi(g(F_{z_1,z_2}(x)), 0)$. Since $0 < \alpha < 1$,

hence
$$\phi(g(F_{z_1,z_2}(x)),0) < \phi(g(F_{z_1,z_2}(x)),0)$$
. This is possible only when $z_1 = z_2$.

Therefore T has unique fixed point.

3. MAIN RESULTS

In this section we have introduced the concept of non-expansiveness of a self mapping with respect to φ , using which we have proved two theorems in non-Archimedean Menger probabilistic metric space of type C_{σ} .

Definition: 3.1 Suppose (X, F; t) is a non-Archimedean probabilistic space and f is a self mapping defined on X. Then f is said to be non expansive with respect to φ if $g(F_{fp,fq}(x)) \le \varphi(g(F_{p,q}(x)))$, $\forall x > 0$, where φ is a function on $[0,\infty)$ such that it is upper semi continuous from the right and $\varphi(t) < t$ for all t > 0 [4].

We need the following Lemma proved by Cho, Ha and Chang [2].

Lemma: 3.1 [1], [4]. If $\varphi:[0,\infty) \to [0,\infty)$ is a function such that φ is upper semi continuous from the right and $\varphi(t) < t$ for all t > 0, then

- (a) For all $t \ge 0$, $\lim_{n \to \infty} \varphi^n(t) = 0$, where $\varphi^n(t)$ is the n-th iteration of $\varphi(t)$.
- (b) If $\{t_n\}$ is a non-decreasing sequence of real numbers and

$$t_{n+1} \le \varphi(t_n), \ n = 1, 2, \ldots,$$

then $\lim_{n\to\infty} t_n = 0$. In particular, if $t \le \varphi(t)$ for all $t \ge 0$, then t = 0.

Theorem: 3.1 Suppose (X, F; t) is a non-Archimedean Menger probabilistic metric space of type \mathbb{C}_g and f a self mapping on X such that f is non expansive with respect to φ . Then there exists a unique fixed point of f.

Proof: Picking $P_0 \in X$, we construct a sequence $\{P_n\}$ inductively as $P_n = fp_{n-1}$.

Now,

$$g(F_{p_n,p_{n-1}}(x)) = g(F_{fp_{n-1},fp_n}(x)) \le \varphi(g(F_{p_{n-1},p_n}(x))).$$

Hence by lemma 3.1,

$$\lim_{n\to\infty} g(F_{p_n,p_{n+1}}(x)) = 0.$$

Next we prove that $\{P_n\}$ is a Cauchy sequence.

If, on the contrary, $\{P_n\}$ is not a Cauchy sequence, then by Lemma 1.1 there exists $\mathcal{E}_0 > 0$, $t_0 > 0$ and sets of positive integer $\{m_i\}$, $\{n_i\}$ such that,

(i)
$$m_i > n_i + 1$$
 and $n_i \to \infty$ as $i \to \infty$

(ii)
$$g(F_{p_{m_i}, p_{n_i}}(t_0)) > g(1 - \mathcal{E}_0)$$
 and $g(F_{p_{m_{i-1}}, p_{n_i}}(t_0) \le g(1 - \mathcal{E}_0)$

Now since
$$g(F_{p_{m.},p_{ni}}(t_0)) \le g(F_{p_{m.},p_{m-1}}(t_0)) + g(F_{p_{m-1},p_{ni}}(t_0)),$$

hence

$$\lim_{n\to\infty}g(F_{p_{m_i},p_{n_i}}(t_0))=g(1-\varepsilon_0).$$

Again,

$$g(1-\mathcal{E}_0) < g(F_{p_m, p_{n_i}}(t_0)) \le g(F_{p_n, p_{n_{i+1}}}(t_0)) + g(F_{p_{n_i+1}p_{n_i}}(t_0)),$$

making $i \to \infty$,

$$\lim_{n\to\infty} g(F_{p_{n_i}p_{n_i+1}}(t_0)) = g(1-\varepsilon_0)$$

i.e.
$$g(F_{p_{n_i}p_{n_i+1}}(t_0)) = g(F_{p_{n_i}p_{m_i-1}}(t_0)) \le \varphi(g(F_{p_{n_i}p_{m_i-1}}(t_0))$$

again making $i \to \infty$,

$$g(1-\varepsilon_0) \le \varphi(g(1-\varepsilon_0)) < g(1-\varepsilon_0)$$

i.e. $g(1-\varepsilon_0) < g(1-\varepsilon_0)$, a contradiction.

Hence, $\{P_n\}$ is a Cauchy sequence. Since (X, F; t) is complete so $\{p_n\} \to z \in X$.

Now,

$$g(F_{f_z,p_{n+1}}(x)) = g(F_{f_z,fp_n}(x)) \le \varphi(g(F_{z,p_n}(x)))$$
 as $n \to \infty$

$$g(F_{fz,z}(x)) \le \varphi(g(F_{z,z}(x))),$$

i.e. $g(F_{fz,z}(x)) = 0$, so z = fz. Thus z is a fixed point of f. For uniqueness, suppose z, z' are fixed points of f. Then $g(F_{z,z'}(x)) = g(F_{fz,fz'}(x)) \le \varphi(g(F_{z,z'}(x)))$,

i.e. $g(F_{z,z'}(x)) < g(F_{z,z'}(x))$, which is possible only if z = z'. This proves the uniqueness.

Theorem: 3.2 Let (X, F; t) be a complete non-Archimedean Menger probabilistic metric space and $f: X \to X$ a self mapping satisfying for all $p, q \in X$,

$$g(F_{p,fa}(x)) \le \varphi(\max\{g(F_{p,a}(x)), g(F_{p,fb}(x)), g(F_{a,fa}(x)), g(F_{a,fa}(x))\}), \forall x > 0.$$

Then f has a unique fixed point.

Proof: Picking $p_0 \in X$, we construct a sequence $\{P_n\}$ inductively as $P_n = fp_{n-1}$,

$$\begin{aligned} & n = 1, 2... \text{ Then,} \\ & g(F_{p_n, p_{n+1}}(x)) \leq \varphi(\max\{g(F_{p_{n-1}, p_n}(x)), g(F_{p_{n-1}, p_n}(x)), g(F_{p_n, p_{n+1}}(x)), g(F_{p_n, p_n}(x))\}) \end{aligned}$$

i.e.
$$g(F_{p_n,p_{n+1}}(x)) \le \varphi(\max\{g(F_{p_{n-1},p_n}(x)),g(F_{p_n,p_{n+1}}(x))\}).$$

If
$$g(F_{p_{n-1},p_n}(x)) \le g(F_{p_n,p_{n+1}}(x))$$
, then by Lemma 3.1, $\lim_{n\to\infty} g(F_{p_n,p_{n+1}}(x)) = 0$.

Again, if
$$g(F_{p_{n-1},p_n}(x)) \ge g(F_{p_n,p_{n+1}}(x))$$
 then $g(F_{p_n,p_{n+1}}(x)) \le \varphi(g(F_{p_{n-1},p_n}(x)))$, hence by Lemma 3.1, $\lim_{n\to\infty} g(F_{p_n,p_{n+1}}(x)) = 0$.

Next we claim that $\{P_n\}$ is a Cauchy sequence, otherwise, if $\{P_n\}$ is not Cauchy Sequence, then by 1.1 $\exists \mathcal{E}_0 > 0$, $t_0 > 0$ and sets of positive integer $\{m_i\}, \{n_i\}$ such that,

(i)
$$m_i > n_i + 1$$
 and $n_i \to \infty$ as $i \to \infty$,

and (ii)
$$g(F_{p_{m_i}, p_{n_i}}(t_0)) > g(1 - \varepsilon_0)$$
 and $g(F_{p_{m_{i-1}}, p_{n_i}}(t_0) \le g(1 - \varepsilon_0)$.

Now,

$$g(F_{p_{m_i},p_{n_i}}(t_0)) \le g(F_{p_{m_i},p_{m_i-1}}(t_0)) + g(F_{p_{m_i-1},p_{n_i}}(t_0))$$

i.e.
$$g(F_{p_{m_i}, p_{n_i}}(t_0)) \le g(1 - \mathcal{E}_0) + g(F_{p_{m_i}, p_{m_i-1}}(t_0))$$
, as $i \to \infty$

or
$$\lim_{i\to\infty} g(F_{p_{m_i},p_{n_i}}(t_0)) = g(1-\mathcal{E}_0).$$

Also,

$$g(1-\mathcal{E}_0) < g(F_{p_m,p_m}(t_0)) \le g(F_{p_m,p_{m+1}}(t_0)) + g(F_{p_{m+1},p_m}(t_0)), \text{ hence}$$

$$g(1-\varepsilon_0) = \lim_{t \to \infty} g(F_{p_{n,\perp 1}, p_{m}}(t_0)),$$

i.e.
$$g(F_{p_{n_i+1},p_{m_i}}(t_0)) = g(F_{fp_{n_i},fp_{m_i-1}}(t_0))$$

$$\leq \varphi(\max\{g(F_{p_m,p_{m-1}}(t_0)),g(F_{p_{m+1},p_m}(t_0)),g(F_{p_m,p_{m-1}}(t_0)),g(F_{p_{m-1},p_{m-1}}(t_0))\})$$

$$\text{or} \quad g(F_{p_{n_i+1},p_{m_i}}(t_0)) \leq \varphi(\max\{g(F_{p_{n_i},p_{m_{i-1}}}(t_0)),g(F_{p_{n_i+1},p_{n_i}}(t_0)),g(F_{p_{m_i},p_{m_{i-1}}}(t_0)),(g(F_{p_{m_i-1},p_{n_i}}(t_0))+g(F_{p_{n_i+1},p_{n_i}}(t_0)))\}).$$

Hence $g(1-\varepsilon_0) \le \varphi(\max\{g(1-\varepsilon_0), g(1-\varepsilon_0)\})$ (by taking limit)

i.e.
$$g(1-\varepsilon_0) \le \varphi(g(1-\varepsilon_0))$$
 i.e. $g(1-\varepsilon_0) < g(1-\varepsilon_0)$.

This is not possible. Hence $\{P_n\}$ is Cauchy sequence. Since (X, F; t) is complete, $\{p_n\} \rightarrow z \in X$. We claim that z = fz, otherwise, if $z \neq fz$, then

$$g(F_{fz,p_{n+1}}(x)) = g(F_{fz,fp_n}(x)) \le \varphi(\max\{g(F_{z,p_n}(x)), g(F_{z,fz}(x)), g(F_{p_n,p_{n+1}}(x)), g(F_{p_n,fz}(x))\}),$$

i.e.
$$g(F_{fz,z}(x)) \le \varphi(\{g(F_{z,z}(x)), g(F_{z,fz}(x)), g(F_{z,z}(x)), g(F_{z,z}(x))\})$$
 (by taking limit as $n \to \infty$)

i.e.
$$g(F_{f_{z,z}}(x)) \le \varphi(g(F_{z,f_{z}}(x)) < g(F_{z,f_{z}}(x)).$$

This is not possible, hence z = fz, i.e. z is a fixed point of f. For uniqueness suppose z, z' are fixed points of f. Then $g(F_{x,y'}(x)) = g(F_{f_x,f_y'}(x)) \le \varphi(\{g(F_{x,y'}(x)), g(F_{y,y'}(x)), g(F_{y,y'}(x)), g(F_{y,y'}(x))\})$

i.e. $g(F_{z,z'}(x)) \le \varphi(g(F_{z,z'}(x))) < g(F_{z,z'}(x))$, which is possible only if z = z'.

This proves the uniqueness.

REFERENCES:

- [1] Chang S. S., Cho Y. J., Kang S. M. *Probabilistic metric spacs and nonlinearoperator theory*, Sichuan Univ. Press, Chengdu, China, (1994).
- [2] Chaudhary B.S. and Dutta P.N. A unified fixed point theorem in metric space involving a true variable function, Filomat 14 (2000), 43-48.
- [3] Cho Y. J., Park K. S. and Chang S. S. Fixed point theorems in metric spaces and probabilistic metric spaces, Internat. J. Math. Math. Sci. 19 (1996), 243-12.
- [4] Cho Y. J., Ha K. S. and Chang S. S. Common fixed point theorems for compatible mappings of type (A) in non-Archimedean Menger PM-spaces, Math. Japon. 46 (1) (1997), 169-179.
- [5] Hadžić O. A note on I. Istrătescu's fixed point theorem in non-Archimedean Menger probabilistic spaces, Bull. Math. Soc. Sci. Math. Rep. Soc. Roum. T 24 (72) 3 (1980), 277-280.
- [6] Istrătescu I. On some fixed point theorem for mapping on non-Archimedean probabilistic metric space, Seminarul de Teoria probabilitatiler si applicatii 73 (1985), 1-11.
- [7] Khan M. S., Swaleh M. and Sessa S. Fixed point theorem by altering distance between two points, Bull Austral. Soc. 2 (1984), 1-9.
