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ABSTRACT 
The purpose of this paper is to define and study a new class of set called Nano (1,2)* regular-generalized closed sets 
in nano bitopological spaces. Basic properties of nano (1,2)* regular-generalized closed sets are analyzed. Also we 
introduce the new notions of nano (1,2)* regular-generalized closure and their relation with already existing well 
known  sets are also investigated. 
 
Keywords: Nano (1,2)* Regular-Generalized Closed sets, Nano (1,2)* Regular-Closure, Nano (1,2)* Regular-Interior, 
Nano (1,2)* regular closed sets. 
 
 
1. INTRODUCTION  
 
In 1970, Levine [5] introduced the concept of generalized closed sets as a generalization of closed sets in topological 
spaces. Later on N.Palaniappan [7] studied the concept of regular generalized closed set in a topological space. In 2011, 
Sharmistha Bhattacharya [8] have introduced the notion of generalized regular closed sets in topological space. The 
notion of nano topology was introduced by Lellis Thivagar[6]. In 1963, J.C.Kelly[4] initiated the study of  
bitopological spaces. In 2014 K.Bhuvaneswari et al., [1, 2] have introduced the notion of nano regular generalized and 
generalized regular closed sets in nano topological spaces and Nano bitopological spaces. In this paper, we have 
introduced a new class of sets on nano bitopological spaces called nano (1,2)* regular generalized closed sets and the 
relation of these new sets with the existing sets. 
 
2. PRELIMINARIES 
 
Definition 2.1 [7]: A subset A of a topological space ( , )X τ is called a regular open set if [ ( )]A Int cl A= . The 
complement of a regular open set of a space X is called regular closed set in X. 
 
Definition 2.2 [7]: A regular-closure of a subset A of X is the intersection of all regular closed sets that contains A and 
it is denoted by rcl(A). 
 
Definition 2.3 [7]: The union of all regular open subsets of  X contained in A is called regular-interior of A and it is 
denoted by ( )rInt A . 
 
Definition 2.4 [7]: A subset A of ( , )X τ is called a regular generalized closed set (briefly rg-closed) if ( )rcl A U⊆  
whenever A U⊆ and U is regular-open in X. 
 
Definition 2.5 [7]: The regular-generalized closure of a subset A of a space X is the intersection of all regular-
generalized closed sets containing A and is denoted by rgcl(A). The regular-generalized interior of a subset A of a 
space X is the union of all regular generalized open sets contained in A and is denoted by rgInt(A).   
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Definition 2.6 [6]: Let U be the universe, R be an equivalence relation on U and ( ) { , , ( ) ( ), ( )},R RR R

X U X X XUL Bφτ =  

where X U⊆ . Then, ( )R Xτ  satisfies the following axioms:   

• U and ( )R XτΦ∈  

• The union of the elements of any sub-collection of  ( )R Xτ  is in ( )R Xτ  

• The intersection of  the elements of any finite sub collection  of ( )R Xτ  is in ( )R Xτ  

Then ( )R Xτ  is a topology on U called the nano topology on U with respect to X. ( , ( ))RU Xτ  is called the 
nano topological  space. Elements of the nano topology are known as nano open sets in U. Elements of  

[ ( )]C

R Xτ  are called nano closed sets in ( )R Xτ . 

 
Definition 2.7 [6]: If  ( , ( ))RU Xτ  is a nano topological space with respect to X where X U⊆  and if A U⊆ , then  

• The nano interior of the set A is defined as the union of all nano open subsets contained in A and is denoted by 
NInt(A). NInt(A) is the largest nano open subset of A. 

• The nano closure of the set A is defined as the intersection of all nano closed sets containing A and  is denoted 
by Ncl(A). Ncl(A) is the smallest nano closed set containing A. 

 
Definition 2.8 [6]: Let ( , ( ))RU Xτ  be a nano topological space and A U⊆ . Then A is said to be  

• Nano regular open if [ ( )]A NInt Ncl A⊆  
• Nano regular closed if  [ ( )]Ncl NInt A A⊆  

NRO(U,X), NRC(U,X) respectively denote the families of all nano regular open, nano regular closed subsets of U. 
 
Definition 2.9 [6]: If  ( , ( ))RU Xτ  is a nano topological space with respect to X where X U⊆  and if A U⊆ , 
Then 

(i) The nano regular-closure of A is defined as the intersection of all nano regular closed sets containing A and it 
is denoted by Nrcl(A). Nrcl(A) is the smallest nano regular closed set containing A. 

(ii) The nano regular-interior of A is defined as the union of all nano regular open subsets of A contained in A and 
it is denoted by NrInt(A). NrInt(A) is the largest nano  regular open subset of A. 

 
Definition 2.10 [1]: A subset A of  ( , ( ))RU Xτ  is called nano regular-generalized closed set (briefly Nrg-closed) if 

( )Nrcl A V⊆  whenever A V⊆  and V is nano regular open in  ( , ( ))RU Xτ . 
 
Definition 2.11 [3]:  Let 

1,2
( , )X τ  be a bitopological space and A U⊆ . Then A is said to be 

• (1,2)* Regular open if 
1,2 1,2

[ ( )]A Int cl Aτ τ⊆  

• (1,2)* Regular closed if 
1,2 1,2

[ ( )]cl Int A Aτ τ ⊆  

  (1,2)*RO(X), (1,2)*RC(X) respectively denote the families of all (1,2)* regular open, (1,2)* regular closed 
subsets of  X. 
 
Definition 2.12 [3]:  If  

1,2
( , )X τ  is a bitopological space with respect to X where X U⊆  and if A U⊆ , then  

(i) The (1,2)* regular-closure of A is defined as the intersection of all (1,2)* regular closed sets containing A and 
it is denoted by 

1,2τ rcl(A). 
1,2τ rcl(A) is the smallest (1,2)*  regular closed set containing A. 

(ii) The (1,2)* regular-interior of A is defined as the union of all (1,2)* regular open subsets of A contained in A 
and it is denoted by 

1,2τ rInt(A). 
1,2τ rInt(A) is the largest (1,2)*regular open subset of A. 

 
Definition 2.13 [3]: A subset A of  

1,2
( , )X τ  is called (1, 2)* regular-generalized closed set (briefly (1,2)* rg-closed) 

if 
1,2

( )rcl A Uτ ⊆  whenever A U⊆  and U is (1,2)* regular open in  
1,2

( , )X τ . 
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Definition 2.14 [2]: Let U be the universe, R be an equivalence relation on U and 

1,2 1 2
( ) { ( ), ( )}X X XR R Rτ τ τ=   where ( ) { , , ( ), ( ), ( )}R RR RX U X X XUL Bφτ =  and X U⊆  Then 

( )R Xτ satisfies the following axioms:   

• U and ( )R XτΦ∈  

• The union of the elements of any sub-collection of ( )R Xτ   is in ( )R Xτ .     

• The intersection of  the elements of any finite sub collection  of ( )R Xτ  is in ( )R Xτ .      

Then  
1,2

( , ( ))U XRτ  is called the nano bitopological space. Elements of the nano bitopology are known as 

nano (1, 2)* open sets in U. Elements of 
1,2

( )][ cX
Rτ  are called nano (1, 2)* closed sets in

1,2
( )XRτ . 

 
Definition 2.15 [2]: If 

1,2
( , ( ))U XRτ  is a nano bitopological space with respect to X where X U⊆  and if A U⊆

, then 
• The nano (1, 2)* closure of A is defined as the intersection of all nano (1, 2)* closed sets containing A and it is 

denoted by
1,2

( )N cl Aτ . 
1,2

( )N cl Aτ  is the smallest nano (1, 2)* closed set containing A. 

• The nano (1, 2)* interior of A is defined as the union of all nano (1, 2)* open subsets of A contained in A and 
it is denoted by

1,2
( )N Int Aτ . 

1,2
( )N Int Aτ  is the largest nano (1, 2)* open subset of A. 

 
3. NANO (1,2)* REGULAR GENERALIZED CLOSED SETS  
 
In this section, the definition of nano (1,2)* regular closed sets and nano (1,2)* regular-generalized closed sets are 
introduced and studied some of its properties. 
 
Definition 3.1: A subset A of 

1,2
( , ( ))U XRτ  is called nano (1,2)* regular open set if 

1,2 1,2
[ ( )]A N Int N cl Aτ τ⊆ .  

The complement of a nano (1, 2)* regular open set of  a space U  is called nano (1,2)* regular closed set in 

1,2
( , ( ))U XRτ . 

 
Definition 3.2: If  

1,2
( , ( ))U XRτ  is a nano bitopological space with respect to X where X U⊆  and if A U⊆ , 

then 
(i) The  nano (1,2)* regular-closure of A is defined as the intersection of all nano (1,2)* regular closed sets 

containing A and it is denoted by 
1,2

( )N rcl Aτ . 
1,2

( )N rcl Aτ  is the smallest nano (1,2)* regular 

closed set containing A. 
(ii) The nano (1,2)* regular-interior of A is defined as the union of all nano (1,2)* regular open subsets of A 

contained in A and it is denoted by 
1,2

( )N rInt Aτ . 
1,2

( )N rInt Aτ  is the largest nano (1,2)* regular 

open subsets of A. 
 
Definition 3.3: A subset A of  

1,2
( , ( ))U XRτ  is called nano (1,2)* regular-generalized closed set (briefly N(1,2)*rg-

closed) if 
1,2

( ))N rcl A Vτ ⊆ whenever A V⊆  and V is nano (1,2)* regular open in 
1,2

( , ( ))U XRτ . 

 
Example 3.4: Let  { , , , }U a b c d=  with / {{ },{ },{ , }}U R c d a b=   

         1 { , }a cX =  and  
1
( ) { , ,{ },{ , , },{ , }}X U c a b c a bR φτ =  

         2 { , }a dX =  and 
2
( ) { , ,{ },{ , , },{ , }}X U d a b d a bR φτ =  

Then 
1,2

( ) { , ,{ },{ },{ , },{ , , },{ , , }}X U c d a b a b c a b dR φτ =  which are (1,2)* open sets. 
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The nano (1,2)* closed sets = { , ,{ },{ },{ , },{ , , },{ , , }}U c d c d a b c a b dφ . 
 
The nano (1,2)* regular closed sets = { , ,{ },{ },{ , },{ , },{ , , },{ , , }}U c d a b c d a b c a b dφ  
 
The nano (1,2)* regular open sets = { , ,{ , , },{ , , },{ , },{ , },{ },{ }}U a b d a b c c d a b d cφ  
 
The nano (1,2)* regular-generalized open sets are  
  { , ,{ }{ },{ },{ },{ , },{ , },{ , },{ , },{ , },{ , },{ , , },U a b c d a b a c a d b c b d c d a b cφ        
                                     { , , },{ , , },{ , , }}a b d a c d b c d          .  
 
The nano (1,2)* regular-generalized closed sets are  
             { , ,{ }{ },{ },{ },{ , },{ , },{ , },{ , },{ , },{ , },{ , , },U a b c d a b a c a d b c b d c d a b cφ              
                                                                         { , , },{ , , },{ , , }}a b d a c d b c d .   
 
Theorem 3.5: Let 

1,2
( , ( ))U XRτ  be a nano bitopological space. If a subset A of a nano bitopological space

1,2
( , ( ))U XRτ  is nano (1,2)* closed set in 

1,2
( , ( ))U XRτ , then A is  a nano (1,2)*regular closed set in 

1,2
( , ( ))U XRτ . 

 
Proof: Let A be a nano (1,2)* closed set in X such that A U⊆ ; whenever U is (1,2)* regular open. That is 

1,2
( )N cl A Aτ = . To prove that 

1,2 1,2
( ( ))N cl N Int A Aτ τ ⊆ . Since A is nano  (1,2)* regular open in U.  

 
Therefore 

1,2
( )N cl A Aτ =  which implies 1,2 1,2 1,2

( ( )) ( )N cl N Int A N cl A Aτ τ τ= = .  

 
Hence A is a nano (1,2)* regular closed set. Also every nano (1,2)* open set is nano (1,2)* regular open set. 
 
The converse of the above Theorem 3.5 is not true from the following example. 
 
Example 3.6: Let { , , , }U a b c d=  with / {{ },{ },{ , }}U R c d a b=   

           1 { , }X a c=  and  
1
( ) { , ,{ },{ , , },{ , }}X U c a b c a bR φτ =  

          2 { , }a dX =  and 
2
( ) { , ,{ },{ , , },{ , }}X U d a b d a bR φτ =  

Then 
1,2

( ) { , ,{ },{ },{ , },{ , , },{ , , }}X U c d a b a b c a b dR φτ =  which are (1,2)* open sets. 

 
The nano (1,2)* closed sets = { , ,{ },{ },{ , },{ , , },{ , , }}U c d c d a b c a b dφ . 
 
The nano (1,2)* regular closed sets = { , ,{ },{ },{ , },{ , },{ , , },{ , , }}U c d a b c d a b c a b dφ  
 
Let A={c, d} be a nano (1,2)* closed set. 

1,2
( ) { , }N cl A c dτ = . 

1,2 1,2
( ( )) { , }N Int N cl A c dτ τ = which implies 

1,2 1,2
( ( ))N Int N cl A Aτ τ ⊆ . 

Hence every nano (1,2)* closed set is a nano (1,2)* regular closed set. 
 
Here {a, b} is nano (1,2)* regular closed sets but it is not nano (1,2)* closed set. 
Theorem 3.7: Let 

1,2
( , ( ))U XRτ  be a nano bitopological space. If a subset A of a nano bitopological space 

1,2
( , ( ))U XRτ  is nano (1,2)* regular closed set in 

1,2
( , ( ))U XRτ , then A is  a nano (1,2)* regular-generalized 

closed set in 
1,2

( , ( ))U XRτ . 
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Proof: Let A be a nano (1, 2)* regular closed set in X and A V⊆ , V is nano (1, 2)* regular open in U. That is

1,2 1,2
[ ( )]N cl N Int A Aτ τ = . Since A is nano (1,2)* regular open, 

1,2
( )N Int A Aτ =  .  Every nano (1,2)* 

open set is nano (1,2)* regular open. Therefore 1,2
( )N cl A A Vτ = ⊆ implies 1,2

( )N cl A Vτ ⊆ . Since

A V⊆ then 
1,2

( )N cl A Vτ ⊆  whenever V is nano (1,2)* regular open in U. Hence  A is a nano (1,2)* regular 

generalized closed set. 
 
The converse of the above Theorem 3.7 is not true from the following example. 
 
Example 3.8: Let { , , , }U a b c d=  with / {{ },{ },{ , }}U R c d a b=   

         1 { , }X a c=  and  
1
( ) { , ,{ },{ , , },{ , }}X U c a b c a bR φτ =  

         2 { , }a dX =  and 
2
( ) { , ,{ },{ , , },{ , }}X U d a b d a bR φτ =  

Then 
1,2

( ) { , ,{ },{ },{ , },{ , , },{ , , }}X U c d a b a b c a b dR φτ =  which are (1,2)* open sets. 

 
Here {{a},{b},{a, c},{a, d},{b, c},{b, d},{a, c, d},{b, c, d}}are nano (1,2)* regular generalized closed sets but it is not 
nano (1,2)* regular closed. 
 
Theorem 3.9: The union of two nano (1,2)* regular-generalized closed sets in 

1,2
( , ( ))RU Xτ  is also a nano (1,2)* 

regular-generalized closed set in 
1,2

( , ( ))RU Xτ . 

 
Proof: Let A and B be two nano (1,2)* regular-generalized closed sets in 

1,2
( , ( ))RU Xτ . Let V be any nano (1,2)* 

regular open set in U such that A V⊆  and B V⊆ . Then we have A B V⊆ . As A and B are nano (1,2)* regular-

generalized closed sets in 
1,2

( , ( ))RU Xτ . Therefore 
1,2

( )N rcl A Vτ ⊆  and 
1,2

( )N rcl B Vτ ⊆ .  

 
Now 

1,2 1,2 1,2
( ) ( ) ( )N rcl A B N rcl A N rcl B Vτ τ τ= ⊆  . Thus we have 

1,2
( )N rcl A B Vτ ⊆  whenever 

A B V⊆ , V is nano (1,2)* regular open set in 
1,2

( , ( ))RU Xτ  which implies A B  is a nano (1,2)* regular-

generalized closed set in 
1,2

( , ( ))RU Xτ . 

 
Theorem 3.10: The intersection of any two subsets of nano (1,2)* regular-generalized closed sets in 

1,2
( , ( ))RU Xτ is 

nano (1,2)* regular-generalized closed set in 
1,2

( , ( ))RU Xτ . 

 
Proof: Let A and B are any two nano (1,2)* regular-generalized closed sets. A V⊆ ; V is an  nano (1,2)* regular open  

and B V⊆  ; V is nano (1,2)* regular open. Then
1,2

( )N rcl A Vτ ⊆  and 
1,2

( )N rcl B Vτ ⊆ . Therefore 

1,2
( )N rcl A B Vτ ⊆ . V is nano (1,2)* regular open in X. Since A and B nano (1,2)* regular generalized closed 

sets. Hence A B  is a nano (1,2)* regular generalized closed set. 
 
Theorem 3.11: If a set A is nano (1,2)* regular generalized closed set iff 

1,2
( )N rcl A Aτ −  contains no non-empty, 

nano (1,2)* regular closed set. 
 
Proof:   
Necessity: Let F be a nano (1,2)* regular closed set in 

1,2
( , ( ))RU Xτ  such that 

1,2
( )F N rcl A Aτ⊆ − . Then 

A X F⊆ − . Since A is nano (1,2)* regular generalized closed set and X-F is nano (1,2)* regular open then 

1,2
( )N rcl A X Fτ ⊆ − . That is 

1,2
( )F X N rcl Aτ⊆ − . So 

1,2 1,2
( ( )) ( ( ) )F X N rcl A N rcl A Aτ τ⊆ − − . 

Therefore F ϕ= . 
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Sufficiency: Let us assume that  

1,2
( )N rcl A Aτ −  contains no non empty nano (1,2)* regular closed set. Let 

A V⊆ ; V is nano (1,2)* regular open. 
 

Suppose that 
1,2

( )N rcl Aτ  is not contained in V, 
1,2

( ) cN rcl A Vτ  is non empty, nano (1,2)* regular closed 

set of 
1,2

( )N rcl A Aτ −  which is contradiction therefore 
1,2

( )N rcl A Vτ ⊆ . Hence A is nano (1,2)* regular 

generalized closed.  
 
Theorem 3.12: If A is both nano (1,2)* regular open and nano (1,2)* regular generalized closed set in X, then A is 
nano (1,2)* regular closed set. 
 
Proof: Since A is nano (1,2)* regular open and nano (1,2)* regular generalized closed in X, 1,2

( )N rcl A Vτ ⊆  But 

1,2
( )A N rcl Aτ⊆ . Therefore A=

1,2
( )N rcl Aτ . Since A is nano (1,2)* closed 

1,2
( )N Int A Aτ = . Implies 

1,2
( )N rcl A Aτ = . Hence A is nano (1,2)* regular closed. 
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