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ABSTRACT 
In this paper, we introduce a new class of sets namely, µψ-closed sets and their properties. Applying these sets, we 
introduce and study some seven new spaces namely, T µψ, α T µψ,   s T µψ,  p T µψ, spT µψ  ,µ T µψ and  ψ T µψ-spaces 
and some interrelationships between these spaces. 
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1. INTRODUCTION 
 
N. Levine [4] introduced the class of g–closed sets in 1970. Andrijevic [1], N. Levine [4], Mashoor et.al [7], have 
respectively introduced semipre-closed sets, semi-closed sets, pre-closed sets which are some weak forms of closed 
sets. 
 
M. K. R. S. Veerakumar has introduced several generalized closed sets namely, g*-closed sets, *g–closed sets,        
α*g–closed sets, *gs–closed sets, αg-closed sets, ψ-closed sets, μ-closed sets, μs–closed sets and μp–closed sets. In this 
paper we introduce µψ -closed sets and applying these sets seven new spaces namely T µψ, α T µψ,  s T µψ,  p T µψ,      
spT µψ,  µ T µψ, ψ T µψ are introduced. 
  
2. PRELIMINARIES  
 
Throughout this paper, we consider spaces on which no separation axioms are assumed unless explicity stated. For       
A ⊂ X, the closure and interior of A is denoted by cl(A) and int(A) respectively. The complement of A is denoted by 
AC, the power set of X is denoted by P(X).  
 
Definition 2.1: A subset A of a topological space (X, τ) is called  

1. a pre-open set [6] if A ⊆ int(cl(A)) and pre-closed if cl(int(A)) ⊆ A. 
2. a semi-open set [3] if A ⊆ cl(int(A)) and a semi-closed set if int(cl(A)) ⊆ A. 
3. an α-open set [7] if A ⊆ int(cl(int(A)) and α-closed set if cl(int(cl(A))) ⊆ A. 
4. a semipre-open set [1] if A ⊆ cl(int(cl(A))) and a semipre-closed set if (cl(int(A))) ⊆ A. 
5. a regular open set [9] if A = int(cl(A)) and a regular closed set [19] if cl(int(A)) = A. 

 
The intersection of all semiclosed (resp. preclosed, semipreclosed, α-closed) sets containing a subset A of X is called 
semiclosure (resp. preclosure, semipreclosure,  α-closure) of A is denoted by scl(A) (resp. pcl(A), spcl(A), αcl(A)).  
 
The union of all semiopen sets containted in A is called semiinterior of A and is denoted by sint (A). 
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Definition 2.2: A subset A of a topological space (X, τ) is called   

1. a generalized closed set (briefly g–closed [4] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).  
2. an α-generalized closed set (briefly αg–closed) [6] if αcl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).  
3. a semi generalized closed set (briefly sg–closed) [2] if scl(A) ⊆ U whenever A ⊆ U and U is semi-open in    

(X, τ). 
4. a gˆ -closed set [11] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in (X, τ). 
5. a *g–closed set [12] if cl(A) ⊆ U whenever A ⊆ U and U is gˆ-open in (X, τ). 
6. a g*-closed set [12] if cl(A) ⊆ U whenever A ⊆ U and U is g-open in (X, τ).  
7. a g*-preclosed set (briefly g*p–closed) [13] if pcl(A) ⊆ U whenever A ⊆ U and U is g–open in (X, τ). 
8. a *g- semiclosed set [17] (briefly *gs-closed) if scl(A) ⊆ U whenever A ⊆ U and U is g^ -open in (X, τ). 
9. a α*g-closed set [17] if αcl(A) ⊆ U whenever A ⊆ U, and U is g^ -open in (X, τ).  
10. a gα*-closed set [5] if αcl(A) ⊆ int (U) whenever A ⊆ U and U is α-open in (X, τ).  
11. a ψ-closed set [15] if scl(A) ⊆ U whenever A ⊆ U and U is sg–open in (X, τ).  
12. a g* ψ-closed set [15] if ψ cl(A) ⊆ U whenever A ⊆ U and U is g–open in (X, τ).  
13. a μ-closed set [16] if cl(A) ⊆ U whenever A ⊆ U and U is gα*-open in (X, τ). 
14. a μ-preclosed set (briefly μp–closed ) [17] if pcl(A) ⊆ U whenever A ⊆ U and U is gα*- open in (X, τ). 
15. a μ-semiclosed set (briefly μs–closed) [18] if scl(A) ⊆ U whenever A ⊆ U and U is gα*-open in (X, τ).  

 
Notations 2.3  

1. αC(X, τ) is the class of α-closed subsets of (X, τ).  
2. sC(X, τ) is the class of semi-closed subsets of (X, τ).  
3. pC(X, τ) is the class of pre-closed subsets of (X, τ).  
4. spC(X, τ) is the class of semipre-closed subsets of (X, τ). 
5. µC(X, τ) is the class of µ-closed subsets of (X, τ). 
6. ψC(X, τ) is the class of ψ-closed subsets of (X, τ). 

 
3. PROPERTIES OF µψ –CLOSED SETS 
 
We introduce the following definition. 
 
Definition 3.1: A subset A of (X, τ) is called µψ -closed set if µcl(A) ⊆ U whenever A⊆ U and U is ψ-open in (X, τ). 
The class of µψ–closed subsets of X is denoted by µψ C(X, τ). 
 
Proposition 3.2: Every closed set is µψ –closed. But the converse is not true which can be seen from the following 
examples. 
 
Example3.3:  Let X = {a, b, c} and τ = {x, φ, {c}, {a, b}}. Here, the set {b} is µψ – closed but it is not closed. 
 
Proportion 3.4:  µψ - closedness is independent of α-closedness and semi-closedness. 
 
Proof: It follows from the following examples 
 
Example 3.5: Let X = {a, b, c}, τ = {x, φ, {a}}. Here the set {b} is α-closed and semi-closed but it is not µψ -closed. 
 
Example 3.6: Let X = {a, b, c}, τ= {x, φ, {a, b}}. Here the set {b, c} is µψ -closed but it is neither α- closed nor semi- 
closed. 
 
Proportion 3.7: Every µψ -closed set is g – closed (resp. αg- closed, gα- closed).But the converses are not true as can 
be seen from the following examples. 
 
Example 3.8: Let X = {a, b, c}, τ = {φ, x, {b}}. Here the set {a} is g-closed (resp. αg- closed, gα- closed) but it is not 
µψ- closed. 
 
Proposition 3.9: µψ – closedness is independent of *g- closedness, α*g – closedness, ψ-closedness, g*ψ-closedness 
*gs-closedness and µs-closedness. 
 
Proof: It follows from the following examples.  
 
Example 3.10: Let X = {a, b, c}, τ = {φ, x, {a}}. Here the set {b} is both *g -closed and α*g-closed but it is not           
µψ  -closed. 
 
Example 3.11: Let X = {a, b, c}, τ = {φ, x, {a}, {b, c}}. Here the set {b} is µψ -closed but it is not *g-closed and not 
α*g-closed. 
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Example 3.12: Let X = {a, b, c}, τ = {φ, x, {a}}. Here the set {b} is both ψ-closed and g*ψ-closed but it is not            
µψ -closed. 
 
Example 3.13: Let X = {a, b, c}, τ = {φ, x, {a}, {b, c}}. Here the set {b} is µψ -closed but it is not ψ-closed and not 
g*ψ-closed. 
 
Example 3.14: Let X = {a, b, c}, τ = {φ, x, {a}, {a, b}}. Here the set {b} is *gs-closed and μs-closed but it is not 
 
Example 3.15: Let X = {a, b, c}, τ = {φ, x, {a}, {b, c}}. Here the set {b} is μψ -closed but is not *gs-closed and not 
 
Proposition 3.16: Every µψ - closed set is g*p-closed. But the converse is not true as can be seen from the following 
example. 
 
Example 3.17: Let X = {a, b, c}, τ = {φ, x, {b, c}}. Here the set {b} is g*p-closed but it is not µψ -closed. 
 
Proposition 3.18: Every µ-closed set is µψ -closed. But the converse is not true as can be seen from the following 
example. 
 
Example 3.19: Let X = {a, b, c}, τ = {φ, x, {c}, {a, b}}.Here the set {b} is µψ -closed but it is not µ-closed. 
 
Proposition 3.20: Every µψ  -closed set  is µp-closed. But the converse is not true as can be seen from the following 
example. 
 
Example 3.21: Let X = {a, b, c}, τ = {φ, x, {a}, {a, b}}.Here the set {b} is µp-closed but it is not µψ -closed. 
 
Theorem 3.22: The union (intersection) of any two µψ-closed sets is also an µA–closed set. 
 
Proposition 3.23: Let A and B be any two subsets of the topology (X, τ).Then 

1. A is µψ -closed, then µcl(A)\A does not contain any non empty ψ -closed set. 
2. A is µψ -closed and A ⊂ B ⊂ µcl(A), then B is µψ -closed. 

 
Proof: Let A be µψ –closed and suppose µcl(A)\A contain a non empty  ψ-closed set F. Therefore, F⊂ µcl(A)\A implies 
A⊂ Fc, which is ψ-open. Since A is µψ-closed, µcl(A)⊂ Fc implies F ⊂ (µcl(A))c, also F⊂µcl(A) therefore                      
F ⊂ µcl(A)∩ (µcl(A))c = φ. 
 
Let U be a ψ-open set such that B⊂U. Since A⊂B⊂U and U is ψ-open μcl(A)⊂U. Since B⊂μcl(A), cl(B)⊂μcl(μcl(A)) 
implies μcl(B) ⊂ μcl(A) ⊂ U therefore B is μψ-closed. 
 
Theorem 3.24: Let A be a µψ-closed set of a topological space (X, τ). Then  

1. Sint(A) is µψ-closed. 
2. Pcl(A) is µψ-closed. 
3. If A is regular open, then pint(A) and scl(A) are also µψ-closed sets. 

 
Proof: First we note that for a subset A of (X, τ), scl(A) = A ∪ int(cl(A)) and pcl(A) = A ∪ cl(int(A)). Moreover 
sint(A) = A ∩ cl(int(A)) and pint(A) = A ∩ int(cl(A)). 
 
Since cl(int(A)) is a closed set, then A and cl(int(A)) are  µψ-closed sets. By the theorem 3.22, A ∩  cl(int(A)) is also a 
µψ-closed set. 

1. Pcl(A) is the union of two µψ-closed sets A and cl(int(A)). Again by the theorem 3.22, pcl(A) is µψ-closed. 
2. Since A is regular open, then A = int(cl(A)). Then scl(A) = A ∪ int(cl(A)) = A. Thus, scl(A) is µψ-closed. 

Similarly pint(A) is also a µψ-closed set. 
 
The converses of the statements in the above theorem are not true as we see from the following examples. 
 
Example 3.25: Let (X, τ) be the space as in the example 3.14. B = {b} is not µψ-closed set. However sint(B) = φ is a 
µψ-closed set. 
 
Example 3.26: Let X = {a, b, c} and τ = {φ, x, {a}, {b}, {a, b}, {a, c}}. Consider A = {c}. Clearly A is not regular 
open. However A is µψ-closed and scl(A) = pint(A) = φ is µψ-closed.   
 
Remark 3.27: The following diagram shows the relationship established between µψ-closed set and some other sets    
A  →  B (resp. A ↮  B) represents A implies B but not conversely (resp. A and B are independent of each other). 
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From the above Propositions and Examples, we have the following diagram. 
 

 
 
Definition 3.28: A subset A of a space X is said to be µψ –open if Ac is µψ-closed. The class of all µψ-open subsets of X 
is denoted by µψO(X, τ). 
 
Proposition 3.29: A subset A of a topological space X is said to be µψ-open if and only if F ⊂ µint(A) whenever A ⊃ F 
and F is ψ-closed in X. 
 
Proof: Suppose that A is µψ-open in X and A ⊃ F, where F is ψ-closed in X. Then Ac ⊂  Fc, where Fc is ψ-open in X. 
Hence we get µcl(Ac) ⊂ Fc implies µint(A) ⊃ F. 
 
Conversely, suppose that Ac ⊂ U and U is ψ-open in X then A⊃ Uc and Uc is ψ-closed then by hypothesis µint(A)⊃Uc 
implies (µint(A))c ⊂ U. Hence µcl(Ac) ⊂ U gives Ac is  µψ-closed. 
 
Proposition 3.30: In a topological space X, for each x ∈ X, either {x} is ψ–closed or µψ –open in X. 
 
Proof: Suppose that {x} is not ψ-closed in X. then X – {x} is not ψ-open and the only ψ-open set containing X – {x} is 
the space X itself. Therefore, µcl(X – {x}) ⊂ X and so X – {x} is µψ –closed gives {x} is µψ – open. 
 
4. APPLICATION OF µψ-CLOSED SETS 
 
As an applications of µψ-closed sets, new spaces namely, T µψ, α T µψ,  s T µψ,  p T µψ,  sp T µψ ,µ T µψ , ψ T µψ  spaces 
are introduced. First we introduce the following definitions. 
 
Definition 4.1: A topological space (X, τ) is called a 

1. T µψ-space if every µψ –closed set is closed. 
2. αT µψ-space if every µψ –closed set is α-closed. 
3. sT µψ-space if every µψ –closed set is semi-closed. 
4. pT µψ-space if every µψ –closed set is pre-closed. 
5. spT µψ-space if every µψ –closed set is semipre-closed. 
6. µT µψ-space if every µψ –closed set is µ-closed. 
7. ψT µψ-space if every µψ –closed set is ψ-closed. 

 
Example 4.2: Let X = {a, b, c} and τ = {φ, x, {a}}. Here µψC(X, τ) = {x, φ, {b, c}}. Then (X, τ) is T µψ –space. The 
space in the following example is not a T µψ-space. Let X = {a, b, c} and τ = {φ, x,{a, b}}. Here µψC(X, τ) = {x, φ, {c}, 
{b, c}, {a, c}}. 
 
Example 4.3: Let X = {a, b, c} and τ = {φ, x, {b}}. Here µψC(X, τ) = {x, φ, {a, c}}. Then (X, τ) is αTµψ-space. The 
space in the following example is not aαT µψ-space. Let X = {a, b, c} and τ = {φ, x, {a, b}}. Here µψC(X, τ) = {x, φ, 
{c}, {b, c}, {a, c}} and αC(X, τ) = {φ, x, {a, b}}. 
 
Proposition 4.4: If (X, τ) is a αTµψ-space then every singleton of X is either ψ–closed or µ-open. 
 
Proof: Let x ∈  X. Suppose {x} is not ψ–closed, then X-{x} is not ψ–open. This implies that X is the only ψ–open set 
containing X-{x}. So X-{x} is µψ–closed of (X, τ). Since (X, τ) is αTµψ –space, X-{x} is α–closed and every α–closed  
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is µ-closed implies X-{x} is µ–closed or equivalently {x} is µ–open. The converse of the above proposition is not true 
as it can be seen from the following example. 
 
Example 4.5: Let X = {a, b, c} and τ = {φ, x, {a, c}}. Here every singleton of X is either ψ–closed or µ–open but is not 
αTµψ-space. 
 
Proposition 4.6: Every αTµψ (resp. sTµψ)-space is pTµψ-space. 
 
Proof: It follows from the fact that every α-closed (resp. semi-closed) is pre-closed. The converse of the above 
proposition is not true as it can be seen by the following example. 
 
Example 4.7:  Let X = {a, b, c} and τ = {φ, x, {a}, {b, c}}. Here (X, τ) is pTµψ –space but it is not a αTµψ (resp. not a 
sTµψ)-space. 
 
Proposition 4.8: Every Tµψ-space is pTµψ-space, spTµψ-space, µTµψ –space and ψTµψ-space but not conversely. 
 
Example 4.9: The space (X, τ) in Example 4.5 is pTµψ-space, spTµψ-space, µTµψ –space and ψTµψ-space but not   
Tµψ-space. 
 
Proposition 4.10:  Every Tµψ (resp. α T µψ) space is μ T µψ -space, but not conversely. 
 
Proof: Let A be µψ -closed set in a topological space X, which is T µψ -space. Hence A is closed implies A is μ-closed. 
Therefore T µψ -space is μ T µψ -space. Similarly A is µψ -closed set in topological space X which is α T µψ -space. 
Hence A is α-closed implies A is μ-closed. Therefore αTµψ -space is μ T µψ -space.  
 
Converse is not true as it can be seen by the following example. The space (X, τ) in the example 4.9 is µT µψ –space 
but it is neither T µψ –space nor αT µψ-space. 
 
Theorem 4.11:  The following statements are true but the respective converses are not true in general. 

1. If (X, τ) is a T µψ-space, then every singleton of X is either ψ-closed or open. 
2. If (X, τ) is a αT µψ-space, then every singleton of X is either ψ-closed or pre-open. 
3. If (X, τ) is a sT µψ-space, then every singleton of X is either ψ-closed or µ-open. 
4. If (X, τ) is a µT µψ-space, then every singleton of X is either gα*-closed or µψ -open. 
5. If (X, τ) is a ψT µψ-space, then every singleton of X is either sg-closed or µψ-open.                                                                                                               

 
Proof: 

1. Let x  ∈ X and suppose that {x} is not a ψ-closed of (X, τ). This implies that X-{x} is not ψ–open set. So X is 
the only ψ –open set such that X-{x} ⊆  X. Then X-{x} is a µψ –closed set of(X, τ). Since is a T µψ –space, 
then X-{x} is closed or equivalently {x} is open. 

2. The proofs for the first assertions of 2 to 5 are similar to as that of the first assertions of (1). The space (X, τ) 
as in the example 4.7 shows that the converses of 1 to 5 need not be true. 

 
Remark 4.12: The following diagram shows relationship among the spaces considered in this paper. 
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