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ABSTRACT 
The sub near-field spaces of near-field of the title are introduced as a proper generalization of quasi co-Hopfian sub 
near-field spaces of near-field, and are characterized in several ways. The near-field space N is right non-singular if 
and only if the densely co-Hopfian right N-sub near-field spaces over near-field and quasi co-Hopfian right N-near-
field spaces over near-field coincide. Dense co-Hopficity is investigated for certain N-sub near-field spaces over near-
field that has indecomposable decompositions complementing direct summands. For some classes of near-field spaces 
N, including rings, near-rings, regular δ-near-rings, near-fields with dense right socles, we determine when the 
injective envelope of an N-sub near-field space over near-field is densely co-Hopfian.   
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SECTION-1: INTRODUCTION  

 
Throughout near-field spaces will have unity, sub near-field spaces; near-fields will be unitary. Let K denote a right sub 
near-field space over a near-field space N. Co-Hopfian sub near-field spaces are generalized in the following ways. A 
weakly co-Hopfian (wcH–sn-fs) sub near-field space is defined by the property that all injective N-endomorphisms of 
the sub near-field space are essential. 
 
In depth study makes Dr N V Nagendram to investigate these concepts are clearly co-Hopfian sub near-field spaces 
implies weakly  co-Hopfian sub near-field spaces implies quasi co-Hopfian sub near-field spaces and none of these 
implications can be reserved. 

 
In this paper Dr N V Nagendram introduce and study a notion for sub near-field spaces called densely co-Hopfian sub 
near-field spaces (dcH-sn-fs). KN is densely co-Hopfian sub near-field spaces (dcH-sn-fs) if for all injective N-
endomorphisms f of K, f (K) is a dense sub near-field space of K in the extension of Goldie torsion theory of Mod-R to 
sub near-field space of a near-field space N, K/f (K) is Z2 – torsion. We show that Goldie torsion theory sub near-field 
spaces i.e. Z2-torsion sub near-field spaces as well as quasi co-Hopfian sub near-field spaces (dcH-sn-fs) are densely 
co-Hopfian sub near-field spaces (dcH-sn-fs) but not conversely. 
 
The dcH-sn-fs property is investigated for direct sums and it can be determine that the dcH-sn-fs property for a certain 
sub near-field space that has an indecomposable decomposition complementing direct summands. We then discuss 
when the dcH-sn-fs property transfers between a sub near-field space and its injective envelope. We also consider sub 
near-field spaces with the property that all their sub near-field spaces are dcH-sn-fs. Such sub near-field spaces will be 
called completely co-Hopfian sub near-field spaces (ccH-sn-fs), and they are characterized. Finally in for three types of 
near-field spaces N, including near-field spaces with dense right socles, we prove that KN is ccH-sn-fs if and only if the 
injective hull E(KN) of KN is dcH-sn-fs. 
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We now fix our notation and state a few well known preliminary results that will be needed. As a hereditary torsion 
class, the class of Z2-torsion sub near-field spaces is closed under sub near-field spaces, factor sub near-field spaces, 
direct sums and extensions. These facts imply that S d≤ T and T d≤ U if and only if  S d≤ U. Moreover, the Goldie 
torsion theory is stable, that is, the Z2-torsion class is closed under taking injective envelopes. Let us write             
Z(K/S) = S*/S and Z(K/S*) = S**/S, and put on record several properties each of which is equivalent to S being dense in 
K. We omit the proofs. 
 
Definition 1.1: Co-Hopfian sub near-field space. Let K a right sub near-field space over a near-field space N is called 
co-Hopfian sub near-field space if every injective N-endomorphism of K is surjective.  
 
Definition 1.2: Quasi Co-Hopfian sub near-field space. The right (or left) sub near-field space K is called quasi      
co-Hopfian sub near-field space (qcH-sn-fs) if K/f (K) is singular sub near-field space whenever f is an injective         
N-endomorphism of K.  
 
Definition 1.3: Densely Co-Hopfian sub near-field space. The right (or left) sub near-field spaces called densely     
co-Hopfian sub near-field spaces (dcH-sn-fs).  
 
Definition 1.4: Dense sub near-field space. Let KN is densely co-Hopfian sub near-field spaces (dcH-sn-fs) if for all 
injective N-endomorphisms f of K, f (K) is a dense sub near-field space of K in the extension of Goldie torsion theory 
of Mod-R to sub near-field space of a near-field space N, K/f (K) is Z2 – torsion. 
 
Definition 1.5: Essential sub near-field space. Let K be a right N-sub near-field space, S be a N-sub near-field space. 
Then S e≤ K will mean that S is an essential sub near-field space of K. 
 
Definition 1.6: The singular sub near-field space of K is denoted by (K), and Z2(K) is defined by                     
Z(K/Z(K)) = Z2(K)/Z(K). The uniform dimension of K/Z2(K) is called the reduced rank of K, and we denote this by 
r(K). K is called singular sub near-field space if K = Z(K) and non-singular sub near-field space if Z(K) = 0. 
 
Definition 1.7: Goldie torsion. The sub near-field space K is called Goldie torsion or Z2 – torsion if Z2(K) = K. 
 
Definition 1.8: Dense near-field space. If K/S is Goldie torsion sub near-field space, then S is said to be a dense sub 
near-field space of K, and this fact is denoted by S e≤ K. 
 
Note 1.9: For any sub near-field space KN, Z2(K) ={x ∈ K : ann(x) d≤ NN}. 
 
Definition 1.10: CS or Σ-extending. A sub near-field space of near-field space K is called CS or extending if every 
closed sub near-field space of K is a direct summand of K. 
 
Note 1.11: A near-field space N for which every free sub near-field space over a near-field is CS is called Σ-extending. 
 
Note 1.12: Over such rings, near-rings, δ-near-rings, near-fields, sub near-field spaces and near-field spaces a dcH-sn-
fs is exactly a direct sum of a wch sub near-field space and a Z2 – torsion sub near-field space. 
 
Definition 1.13: A sub near-field space of a near-field space over a near-field K is quasi co-Hopfian sub near-field 
space (quasi co-Hopfian sub near-field space) if f (K)* = K for every injective endomorphism f of K. 
 
Definition 1.14: K is densely co-Hopfian sub near-field space (dcH-sn-fs) if f (K)**= for every injective endomorphism 
f of K. 
 
Definition 1.15: Compressible (resp. Retractable). A sub near-field space K is called compressible respectively 
retractable if there exists a monomorphism (respectively non-zero homomorphism) f: K → N for any non-zero sub 
near-field space N of K. 
 
Definition 1.16: Continuous. An extending sub near-field space K is called continuous if every sub near-field space V 
of K which is isomorphic to a direct summand of K, is a direct summand of K, every non-singular injective sub near-
field space of a near-field space N over a near-field of finite reduced rank is a direct sum of indecomposable sub near-
field spaces. 
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Definition 1.17: The endomorphism sub near-field space of an indecomposable continuous sub near-field space is a 
local sub near-field space, a non-singular continuous sub near-field space over a near-field space of finite reduced rank 
has a decomposition into indecomposable continuous sub near-field spaces such that the endomorphism near-field 
space over a near-field of each direct summand is local sub near-field space. 
 
Note 1.18: A continuous sub near-field space has the finite exchange property such a decomposition complements 
direct summands. 
 
Definition 1.19: Σ-quasi injective. A sub near-field space K is called Σ-quasi injective sub near-field space if every 
direct sum of copies of K is quasi –injective.  
 
Note 1.20: Every Σ-CS sub near-field space, hence every Σ-quasi injective sub near-field space has an indecomposable 
decomposition which complements direct summands. 
 
Proposition 1.21: Let S d≤ K. The following are equivalent statements. 

(a) S d≤ K 
(b) K/S* is singular 
(c) S* e≤  K 
(d) S** = K 
(e) S + Z(K) e≤ K 

(f) S + Z2(K) e≤ K 
(g) (S + Z2(K))/ Z2(K) e≤  K/ Z2(K) 
(h) S ⊕ T e≤  K for some Z2- torsion sub near-field space T of K 
(i) S ∩ T  ≠ 0 for every non-singular sub near-field space T of K 

For every sub near-field space T of K, S ∩ T ≤ Z2(K) 
(j) For all k ∈ K \ Z2 (K), there exists n ∈ N such that kn ∈ S\ Z2(A). 

 
A notable property of dense sub near-field spaces is that their inverse under homomorphisms are again dense sub near-
field spaces. We shall also make use of the following well known facts, proofs of which are given for reader’s 
convenience. 
  
Proposition 1.22: (a) The intersection of all dense sub near-field spaces of K is the sum P(K) of all non-singular simple 
sub near-field spaces of K. Consequently Z2(K) P(NN) = 0. (b) The product of two dense right sub near-field spaces is a 
dense sub near-field space. 
 
Proof: To prove (a): Let D(K) the intersection of all dense sub near-field spaces of K. If D is a dense sub near-field 
space and P is a non-singular simple sub near-field space of K, then P ∩ D ≠ 0. Hence P ≤ D and so P(K) ≤ D(K). On 
the other hand, if W is complement to Z2(K) then W d≤ K. Thus D(K) is non-singular.  
 
However, D(K) ≤ Soc(K) since every essential sub near-field space is dense. Thus D(K) ≤ P(K). 
 
Now if k ∈ Z2(K) then an n(k) d≤ NN. However, P(NN) is the intersection of all dense right sub near-field spaces of a 
near-field space N over a near-field, hence P(NN) ≤ ann(k). Thus Z2(K) P(NN) = 0. Proved (a). 
 
To prove (b): Let U and V be dense right (or left) sub near-field spaces of a near-field space N over a near-field. Then 
N/U and U/UV are Z2-torsion. Therefore from the isomorphism [N/UV]/[U/ UV] ≡ N/U we conclude that N/UV is     
Z2-torsion, hence UV is dense sub near-field space. Proved (b). This completes the proof of the proposition. 
 
SECTION-2: DENSELY CO-HOPFIAN SUB NEAR-FIELD SPACES 
 
In section 2, we obtain the result which describes several equivalent conditions to dcH-sn-fs property. It reduces to 
some parts of the base near-field space over a near-field is right non-singular sub near-field space. 
 
Definition 2.1: KN is called densely co-Hopfian sub near-field space (dcH-sn-fs) if the image of any injective N-
endomorphism of K is a dense sub near-field space (dsn-fs) 
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Theorem 2.2: The following statements are equivalent for an N-sub near-field space K. 

(a) K is dcH-sn-fs (dense co-Hopfian sub near-field space) 
(b) K contains a dense sub near-field space V which is dcH-sn-fs(dense co-Hopfian sub near-field space) as on N-

sub near-field space and f (V)  ≤ V for any injective endomorphism f of K. 
(c) There exists a dense sub near-field space V of K such that f (V) ∩ V d≤ V whenever f is an injective 

endomorphism of K. 
(d) If there exists an N-monomorphism K ⊕ N → K then N is Z2-torsion. 
(e) For every dense sub near-field space V of K and every injective endomorphism f of K, f (V) d≤ V. 
(f) For every non-Z2-torsion sub near-field space V of K and every injective endomorphism f of K, f -1 (V) is non-

Z2-torsion. 
(g) There exists a sub near-field space V of K such that V and K/V are dcH-sn-fs (dense co-Hopfian sub near-field 

space) and f -1(V) = V for any injective endomorphism f of K. 
 
Proof: It is obvious that (a) ⇒ (b) ⇒ (c) ⇒ (a). 
 
To prove (a) ⇒ (d): Let f: K ⊕ V → K be a monomorphism and τ : K → K ⊕ V be the canonical injection. Then f τ is 
an injective endomorphism of K. Thus f (K  ⊕ 0) ≤d K, hence f ( 0 ⊕ V ) is Z2-torsion and so V is Z2-torsion. Proved (a) 
⇒ (d). 
 
To prove (d) ⇒ (a): Let f be an injective endomorphism of K. There exists a sub near-field space V ≤ K such that f (K) 
⊕ V ≤e K. Therefore V must be Z2-torsion and consequently f (K) ≤d K. Proved (d) ⇒ (a). 
 
To prove (a) ⇒ (e): Let f be an injective endomorphism of K. Then we have  f (K) ≤d f (K). On the other-hand, V ≤d K 
implies that f (V) ≤d f (K). Thus  f (V) ≤d K. Proved (a) ⇒ (e). 
 
To prove (e) ⇒ (a): On applying (e) for V = K.  Proved (e) ⇒ (a). 
 
To prove (a) ⇒ (f): Let f be an injective endomorphism of K and V be a non-Z2-torsion sub near-field space of a near-
field space N over a near-field. By proposition 1.21 we have that for every sub near-field space T of K, S ∩ T ≤ Z2(K), 
f (K) ∩ V is non-Z2-torsion. Thus there exists k ∈ K \Z2(K) such that     f (k) ∈ K. Consequently k ∈ f -1 (V) and           
k ∉ Z2 (K).Thus f -1 (V) is non-Z2-torsion. Proved (a) ⇒ (f). 
 
To prove (f) ⇒ (a): Let g be an injective endomorphism of K such that g(K) not ≤d K.  There exists a non-Z2-torsion 
sub near-field space of a near-field space N over a near-field such that g (K) ⊕ V ≤e K. Thus by (f) g -1 (V) is non-Z2-
torsion. However, g -1 (V) = g -1 (g(K) ∩ V) = g -1 (0) = 0  is ⊗ a contradiction. Proved (f) ⇒ (a). 
 

To prove (a) ⇒ (g): Set V = K, and finally we define a mapping f : K/V → K/V by f  (k +V) = f (k) + V. By 
hypothesis f (K) + V ≤d K. On the other hand, [f (K) + V ]/f (K) ≅ V/f (K) ≅ V/[f (K) ∩ V] = V / f (V). By assumption 
that V is dcH-sn-fs (dense co-Hopfian sub near-field space), the sub near-field space V/f (V) is Z2-torsion and so           
f (K) ≤d f(K) +  V. It follows that f (K) ≤d K. Proved (a) ⇒ (g). This completes the proof of the theorem. 
 
Corollary 2.3: Let K be an N-sub near-field space.  

(a) If K is dcH-sn-fs(dense co-Hopfian sub near-field space) then so every direct summand of K 
(b) If K/Z2(K) is dcH-sn-fs(dense co-Hopfian sub near-field space) then so is K. In particular, every sub near-field 

space of finite reduced rank is dcH- sn-fs(dense co-Hopfian sub near-field space). 
(c) Assume that U is a dense right(or left) sub near-field space of N. If KU is dcH-sn-fs(dense co-Hopfian sub 

near-field space) then so is K. 
 
Proof: Obvious. 
 
Proposition 2.4: Let K be a sub near-field space of a near-field space N over a near-field. 

(a) If K is dcH-sn-fs(dense co-Hopfian sub near-field space) then so is every direct summand of K. 
(b) If K = ∑

∈Ui
iK such that f (Ki) ∩ Ki d≤ Ki for any injective endomorphism f of K, then K is dcH-sn-fs (dense 

co-Hopfian sub near-field space). 
 
Proof: To prove (a): Let K(Λ) be dcH-sn-fs (dense co-Hopfian sub near-field space). We can assume that Λ is 
countable. Then K/f(K) is Z2-torsion where f : K(Λ) → K(Λ)  is the shift map. However K is isomorphic to K/f (K) hence 
K is Z2-torsion. The converse is clear since every direct sum of Z2-torsion sub near-field spaces of a near-field space 
over a near-field is Z2-torsion. Proved (a). 
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To prove (b): Let f be an injective endomorphism of K and Vi = f ( Ki ) ∩ Ki for each i ∈ I. Define ϕ : ⊕i ∈ I (Ki/Vi) → 

K/f (K) by ( ki + Vi )i ∈ I   ( 







∑
∈Jj

jk + f (K), where J is the largest sub near-field space of I such that kj ∉ Vj for any 

j∈J. Then ϕ is an epi-morphism and ⊕i ∈ I  (Ki/Vi) is Z2-torsion. Thus K/f(K) is Z2-torsion and so K is dcH-sn-fs (dense 
co-Hopfian sub near-field space). Proved (b). This completes the proof of the proposition. 
  
Corollary 2.5: Let K be semi simple sub near-field space. Then K is dcH-sn-fs (dense co-Hopfian sub near-field space) 
if and only if every non-singular homogeneous component of K is finitely generated. 
 
Proposition 2.6: The following statements are equivalent for a sub near-field space K of a near-field space N over a 
near-field. 

(a) K is wcH-sn-fs 
(b) K is qcH-sn-fs (quasi co-Hopfian sub near-field space) and for any injective endomorphism f of  

K, f(Z(K)) e≤  Z(K). 
(c) K is dcH-sn-fs (dense co-Hopfian sub near-field space) and for any injective endomorphism f of  

K, f(Z(K)) e≤  Z(K). 
(d) K is qcH-sn-fs (quasi co-Hopfian sub near-field space) and for any injective endomorphism f of           

K, f(Z2(K)) e≤  Z2(K). 
(e) K is dcH-sn-fs (dense co-Hopfian sub near-field space) and for any injective endomorphism f of  

K, f(Z2(K)) e≤  Z2(K). 
 
Proof: Is obvious. 
 
Corollary 2.7: Let K be a sub near-field space of a near-field space N over a near-field such that Z(K) or Z2(K) is 
wcH-sn-fs. Then K is dcH-sn-fs(dense co-Hopfian sub near-field space) if and only if K is qcH-sn-fs(quasi co-Hopfian 
sub near-field space) if and only if K is wcH-sn-fs(weakly co-Hopfian sub near-field space). 
 
Proposition 2.8: Let N be a near-field space over a near-field.  

(a) The class of dcH-sn-fs N-sub near-field spaces coincides with the class of wcH-sn-fs(weakly co-Hopfian sub 
near-field space) N-sub near-field spaces if and only if N is semi simple. 

(b) The class of dcH-sn-fs N-sub near-field spaces coincides with the class of qcH-sn-fs (quasi co-Hopfian sub 
near-field space) N-sub near-field spaces if and only if N is right non-singular. 

 
Proof: (a) is obvious. 
 
To prove (b) (⇒): Let K be a N-sub near-field space of a near-field space N over a near-field. Then Z2(K)(N) is            
Z2-torsion and so it is dcH-sn-fs (dense co-Hopfian sub near-field space). Thus by hypothesis Z2(K)(N) is qcH-sn-
fs(quasi co-Hopfian sub near-field space), hence Z2(K) is singular sub near-field space. Consequently Z2(K) = Z(K), in 
particular, Z2(E) = Z(E) where E = E(NN). However E is extending and so Z(E) is a direct summand of E. This implies 
that Z(E) = 0, hence Z(NN) = 0. 
 
(⇐) Since the notions of Z2-torsion and singular sub near-field space are the same for a sub near-field space of a near-
field space over a near-field is a right non-singular near-field space, the properties dcH-sn-fs (dense co-Hopfian sub 
near-field space) and qcH-sn-fs (quasi co-Hopfian sub near-field space) are equivalent. Proved (b). This completes the 
proof of the proposition. 
 
Example 2.9: We now construct examples of dcH-sn-fs sub near-field spaces which are neither Z2-torsion nor qcH. Let 
N be a right Noetherian near-field spaces over a near-field such that Z(NN) ≠ 0 and Z2(NN) ≠ N. then Z2(E) ≠ Z(E) 
where E = E(NN) since Z(NN) ≠ 0. And also N/Z2(NN) ⊕ Z2(E)(N) is dcH-sn-fs(dense co-Hopfian sub near-field space)  
which is neither Z2-torision  nor qcH-sn-fs(quasi co-Hopfian sub near-field space). 
 
Theorem 2.10: The following statements are equivalent for a near-field space N over a near-field. 

(a) Every projective, free N-sub near-field space K is dcH-sn-fs (dense co-Hopfian sub near-field space) 
(b) Every projective, free N-sub near-field space K, K/Z(K)  is dcH-sn-fs (dense co-Hopfian sub near-field space) 
(c) Every projective, free N-sub near-field space K, K/Z2(K)  is dcH-sn-fs (dense co-Hopfian sub near-field space) 
(d) Every projective, free N-sub near-field space K, K/Z2(K)  is qcH-sn-fs (q co-Hopfian sub near-field space) 
(e) Every projective, free N-sub near-field space K, K/Z(K)  is singular 
(f) Every projective, free N-sub near-field space K is Z2-torsion. 
(g) There exists a nilpotent dense right (or left) sub near-field space in N. 
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(h) Rad(N) d≤  NN and Soc(NN) d≤ NN. 

(i) Z(NN) e≤  NN. 
(j) NN is Z2-torsion. 

 
Proof: This theorem we prove by cyclic method of proof. 
 
To prove (a) ⇒ (f): Let K be an N-sub near-field space and Λ be an infinite set. By hypothesis KΛ is dcH-sn-fs (dense 
co-Hopfian sub near-field space), hence K is Z2-torsion. Proved (a) ⇒ (f). 
 
To prove (f) ⇒ (e): is obvious since Z(K/Z(K)) = Z2(K)/Z(K). Proved (f) ⇒ (e). 
 
It is obvious that (e) ⇒ (d) ⇒ (b). 
 
Now let (b) hold. Then L = (N/Z(NN))(N) ≅ N(N)/z(NN)(N) is dcH-sn-fs (dense co-Hopfian sub near-field space). Since L 
⊕ (N/Z(NN)) ≅ L it implies that N/Z(NN) is Z2-torsion, thus Z(NN) ≤d NN and therefore it is evident that Z(NN) ≤e NN. 
this shows that (b) ⇒ (i). Obvious that (i) ⇒ (j). 
 
If (j) holds then every N-sub near-field space K is Z2-torsion as KZ2(NN) ≤ Z2(K) hence K is dcH-sn-fs (dense co-
Hopfian sub near-field space). Thus (j) ⇒ (a) proved. 
 
Clearly (f) ⇒ (c) and (c) ⇒ (j) by setting Z2(K) instead of Z(K) in the proof of (b) ⇒ (i). 
 
If (f) holds the zero sub near-field space is nilpotent and dense right sub near-field space of a near-field space N, say  
Vn = 0. If n = 1 then V = 0 is Z2-torsion. If n > 1 then V n – 1 is a dense right sub near-field space and so V Vn-1 = 0 
implies that V is Z2-torsion. Therefore N contains a Z2-torsion dense right sub near-field space, hence NN is Z2-torsion. 
Thus every right sub near-field space of N is dense sub near-field space; hence NN is Z2-torsion. Thus every right sub 
near-field space of N is dense and so (g) ⇒ (h). 
 
Now let (h) holds and K be an N-sub near-field space. Since rad(NN) ≤d NN and K Rad(N) ≤ Rad(K) we conclude that 
Rad(K) ≤d K. Thus 0 = Rad(P) ≤d P for every simple N-sub near-field space P and so every simple N-sub near-field 
space is Z2-torsion which is singular and hence Soc(NN) ≤ Z2(NN). By hypothesis we have Soc(NN) ≤d NN we conclude 
that Z2(NN) ≤d NN and so Z2(NN) = NN. Hence (h) ⇒ (j) proved. This completes the proof of the theorem.  
 
Proposition 2.11: For a near-field space N, if Soc(NN) e≤  NN then each of the statements of theorem 2.11 is equivalent 
to any one of the following conditions. 

(a) Rad(N) e≤  NN 
(b) For every N-sub near-field space K, K/Rad(N) is singular 
(c) For every N-sub near-field space K, K/Rad(K) is qcH-sn-fs 
(d) Every simple N-sub near-field space is singular. 
(e) Soc(NN)2 = 0 
(f) S(NN)2 = 0. 

 
Proof: To prove (a): Every simple N-sub near-field space is singular and so every maximal right sub near-field space is 
essential. Thus Soc(NN) ≤ Rad(N) and then the hypothesis Soc(NN) e≤  NN implies that Rad(N) e≤  NN. This shows that 
proved (a).  
 
It is clear that and follows (a) ⇒ (b) ⇒ (c).  
 
Clearly, (b) ⇒ (d). The equality Z(NN) Soc(NN) = 0. Since Soc(NN) e≤  NN and S(NN) 

d≤  Soc(NN), we conclude that 

S(NN) 
d≤  NN and so S(NN) is a nilpotent dense right sub near-field space of near-field space N over a near-field. 

 
Thus (f) ⇒ There exists a nilpotent dense right (or left) sub near-field space in N of (f) theorem 2.10. This completes 
the proof of the proposition. 
 
Proposition 2.12: Let K be a homomorphic image of a CS sub near-field space. K is dcH-sn-fs (dense co-Hopfian sub 
near-field space)  if and only if K is isomorphic to a direct sum of a non-singular dcH-sn-fs (dense co-Hopfian sub 
near-field space)  and a Z2-torsion sub near-field space.  
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Proof: Assume that K ≡ W/V where U is a CS sub near-field space and V ≤ W. First we show that Z2(W/V) is a direct 
summand of W/V. Assume that Z2(W/V) = V′/V. Then V′ is a closed (or open) sub near-field space of a near-field 
space over a near-field of W. In fact if V′ ≤d N ≤ W then N/V is Z2-torsion since (N/V)/(V′/V) and V′/V are Z2-torsion. 
Thus N/V ≤ Z2(W/V) and so N = V′. Therefore V′ is a direct summand of W, say W = V′ ⊕ V″. Hence                     
W/V = V′/V⊕(V″ + V)/V as desired. This completes the proof of the proposition.  
 
Theorem 2.13: Let K be a near-field space over a near-field N such that f(K) is a direct summand of K for every 
injective endomorphism f of K. Suppose K has an indecomposable decomposition that complements direct summands. 
Then K is dcH-sn-fs (dense co-Hopfian sub near-field space) if and only if every non-Z2-torsion homogeneous 
component of such a decomposition of K is a finite direct sum. 
 
Proof: (⇒) A non-Z2-torsionhmogeneous component of an indecomposable decomposition of K is isomorphic to N(Λ)  
for some non-Z2-torsion  indecomposable sub near-field space of a near-field space over a near-field V of K. Since K is 
dcH-sn-fs (dense co-Hopfian sub near-field space) so is N(Λ) thus Λ is finite. 
 
(⇐) Let f be an injective endomorphism of K. By hypothesis K = f (K) ⊕ V for some sub near-field space V. Assume 
that V is non-Z2-torsion. By hypothesis there exists an indecomposable decomposition K = ⊕α ∈ S Kα that components 
direct summands and so there exists such a decomposition for V. Then V = ⊕β ∈ T Kβ. Then K = 

S
K
∈

⊕
α

α    (*) 

And  K = 

S
T

K
Kf

∈










∈

⊕
⊕⊕

α

β
α β

)(                                               (**) 

(*) and (**) are equivalent. Now for a β1∈T such that Vβ1 is non-Z2-torsion, Vβ1 ≡ Kα1 for some α1 ∈ S. By hypothesis 
the homogeneous component of K corresponding to Kα1 has finitely many direct summands say Kα1, Kα2,..., Kαn. Then 
in (**) there is a homogeneous component with at least n+1 direct summands, i.e. f (Kα1), f (Kα2), f (Kα3 ),....., f ( Kαn ), 
Kβ1 which are all isomorphic to Kα1. This contradicts ⊗ the equivalence of (*) and (**). Therefore V is Z2-torsion and 
so f (K) ≤d K. This completes the proof of the theorem. 
 
Corollary 2.14: N be a near-field space over a near-field.  

(a) If N is of finite reduced rank and K is a continuous N-sub near-field space, then K is dcH-sn-fs (dense co-
Hopfian sub near-field space) if and only if every non-singular homogeneous component of a decomposition 
of K into indecomposable continuous sub near-field spaces is a finite direct sum.  

(b) If K is a Σ - quasi – injective sub near-field space, then K is dcH-sn-fs (dense co-Hopfian sub near-field space) 
if and only if every non-singular homogeneous component of a decomposition of K into indecomposable         
Σ - quasi – injective sub near-field spaces is a finite direct sum. 

 
Note 2.15: A divisible abelian sub near-field space of a near-field space K over a near-field N is dcH-sn-fs (dense co-
Hopfian sub near-field space)if and only if n(K) < ∞. 
 
Note 2.16: Let N be aright Artinian local sub near-field space that is not a division sub near-field space. Then      

Rad(N)≤e NN and Soc(NN)≤eNN and so N satisfies all the conditions of theorem  2.10. Moreover, S = 







N

NRadN
0

)(
 

is a right Artinian sub near-field space and clearly Rad(S) = 







)(0
)()(

NRad
NRadNRad

 ≤e SS 

 
Thus S also satisfies the conditions of theorem 2.10 although S is not local sub near-field space. Also A right Artinian 
sub near-field space each of the statements of theorem 2.10 holds good if and only if Rad(N) ≤e NN. 
 
SECTION-3: COMPLETE CO-HOPFICITY AND INJECTIVE ENVELOPE NEAR-FIELD SPACES OVER 
NEAR-FIELD 
 
In this chapter, we have a natural question is whether the dense co-Hopficity passes to injective envelope. As the 
notions of dcH-sn-fs (dense co-Hopfian sub near-field space) and qcH-sn-fs (quasi co-Hopfian sub near-field space) are 
the same for a non-singular sub near-field space shows that in general the answer to this question is negative. By the 
additive property of reduced rank if K is of finite reduced rank, then so is E(K) and hence it follows that E(K) is dcH-
sn-fs(dense co-Hopfian sub near-field space). However, every sub near-field space of a finite reduced rank sub near-
field space is dcH-sn-fs (dense co-Hopfian sub near-field space). Let us call a sub near-field space all of whose sub 
near-field spaces are dcH-sn-fs (dense co-Hopfian sub near-field space), a (ccH-sn-fs) completely co-Hopfian sub near-
field space. Now it is natural to ask whether E(K) is dcH-sn-fs(dense co-Hopfian sub near-field space) if K is ccH-sn-fs  
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(completely co-Hopfian sub near-field space). In the following we show that a quasi injective dcH-sn-fs (dense co-
Hopfian sub near-field space) sub near-field space is  ccH-sn-fs(completely co-Hopfian sub near-field space). Moreover 
for some classes of sub near-field spaces we show that the answer to the latter question is affirmative. 
 
Proposition 3.1: The following statements are equivalent for a sub near-field space K of a near-field space N over a 
near-field. 

(a) K is ccH-sn-fs (class of co-Hopfian sub near-field space) 
(b) every dense sub near-field space of K is dcH-sn-fs (dense co-Hopfian sub near-field space) 
(c) every non-dense sub near-field space of K is dcH-sn-fs (dense co-Hopfian sub near-field space) 
(d) X(N) can not be embedded in K, for any non Z2-torsion sub near-field space X. 

 
Proof: clearly (a) ⇒ (b) and (a) ⇒ (c) 
 
To prove (b) ⇒ (a): this follows by every sub near-field space is a direct summand of an essential sub near-field space 
of a near-field space over a near-field. Proved (b) ⇒ (a). 
 
To prove (c) ⇒ (a): Let V be a sub near-field space of K which is not dcH-sn-fs (dense co-Hopfian sub near-field 
space). There exists an injective endomorphism f of V such that f (K) not d≤  K (not less than or equal to). Thus f (K) 

not d≤  K, however f (K) ≡ K implies that f (K) is not dcH-sn-fs (dense co-Hopfian sub near-field space) which ⊗ 
contradicts (c). Proved (c) ⇒ (a). Proof of (a) ⇒ (d) is obvious. 
 
To prove (d) ⇒ (a): Let V be a sub near-field space of K. If V is not dcH-sn-fs(dense co-Hopfian sub near-field space) 
then there exists a non Z2-torsion sub near-field space X such that V ⊕ X can be embedded in V which ⊗ contradicts 
(d). Proved (d) ⇒ (a). This completes the proof of the proposition. 
 
Proposition 3.2: The following statements are equivalent for a sub near-field space K of a near-field space N over a 
near-field. 

(a) K is dcH-sn-fs(dense co-Hopfian sub near-field space) 
(b) K is ccH-sn-fs(complete co-Hopfian sub near-field space) 
(c) E(K) is dcH-sn-fs(dense co-Hopfian sub near-field space) 

 
Proof: To prove (a) ⇒ (b): It is sufficient to show that every essential sub near-field space of a near-field space over a 
near-field K is dcH-sn-fs (dense co-Hopfian sub near-field space). Let V be an essential sub near-field space of K and g 
be an injective endomorphism of V. As K is quasi co-Hopfian sub near-field space injective, there exists an 
endomorphism f of K such that f \V = g. The essentiality of V implies that f is an injective endomorphism of K, hence f 
(K) d≤  K. Clearly,  f (V) d≤  f (K), thus f (V) d≤  K and so f (V) d≤  V. Proved (a) ⇒ (b). 
 
To prove (b) ⇒ (c): obvious from theorem 2.2 of (b) for V = K. Proved (b) ⇒ (c) 
 
To prove (c) ⇒ (a): by applying (a) ⇒ (b) to the sub near-field space E(K) we conclude that E(K) is ccH-sn-fs 
(complete co-Hopfian sub near-field space), hence K is dcH-sn-fs (dense co-Hopfian sub near-field space).  
 
Proved (c) ⇒ (a). This completes the proof of the proposition. 
 
Lemma 3.3: Let N be a near-field space for which Soc (NN) d≤  NN or let N be a near-field space of finite reduced 
rank which is either semi prime near-field space or has a. c. c. on two sided sub near-field spaces. Then every non-zero 
non-singular right N-sub near-field space K contains on essential sub near-field space L = ⊕i ∈ I Ui where each Ui is a 
uniform compressible right N-sub near-field space. 
 
Theorem 3.4: Let N be a near-field space for which Soc (NN) d≤  NN or let N be a near-field space of finite reduced 
rank which is either semi prime near-field space or has a. c. c. on two sided sub near-field spaces. Then K is a ccH-sn-
fs(class of co-Hopfian sub near-field space) N-sub near-field space if and only if E(K) is dcH-sn-fs(dense co-Hopfian 
sub near-field space). 
 
Corollary 3.5: Let N be a near-field space. 

(a) If Soc(NN) d≤  NN, then K is ccH-sn-fs if and only of Soc(K) is dcH-sn-fs 
(b) If N is right Artinian near-field space then on N-sub near-field space K is ccH-sn-fs(class of co-Hopfian sub 

near-field space) if and only if  r(K) < ∞ 
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Corollary 3.6: Let N be a near-field space for which Soc(NN) d≤  NN or let N be a near-field space of finite reduced 
rank which is either semi prime near-field space or has a. c. c. on two sided sub near-field spaces. The following 
statements are equivalent. 

(a) In sub near-field space-N, {ccH-sn-fs sub near-field spaces} = {sub near-field spaces of finite reduced rank}  
(b) Up to isomorphisms, there are only finitely many non-singular indecomposable injective N-sub near-field 

spaces of a near-field space over a near-field. 
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