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ABSTRACT 
In this paper we introduce and study the notions of w𝐼𝐼𝑔𝑔�-continuous and w𝐼𝐼∗𝑔𝑔-continuous, w𝐼𝐼𝑔𝑔�-irresolute and w𝐼𝐼∗𝑔𝑔-
irresolute in ideal topological spaces, and also we studied their properties. 
 
Keywords: w𝐼𝐼𝑔𝑔�-closed, w𝐼𝐼∗𝑔𝑔-closed, w𝐼𝐼𝑔𝑔�-continuous, w𝐼𝐼∗𝑔𝑔-continuous, w𝐼𝐼𝑔𝑔�-irresolute, w𝐼𝐼∗𝑔𝑔-irresolute. 
 
 
1. INTRODUCTION AND PRELIMINARIES 
 
Ideals in topological spaces have been considered since 1930. In 1990, Jankovic and Hamlett [2] once again 
investigated applications of topological ideals. The notion of Ig-closed sets was first by Dontchev.et.al [1] in 1999. 
Navaneethakrishnan and Joseph [3] further investigated and characterized Ig-closed sets and Ig-open sets by the use of 
local functions. The notion of I∗g-closed sets was introduced by Ravi.et.al [4] in 2013. Recently the notion of            
wIg�-closed sets and wI∗g-closed sets was introduced and investigated by Maragathavalli.et.al [5]. In this paper, we 
introduce the notions of   wIg�-continuous and wI∗g-continuous functions in ideal topological spaces.  
 
An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following 
properties. (1) A ∈I and B ⊆ A implies B∈ I,  (2)  A ∈ I and B ∈ I implies AB∈I. An ideal topological space is a 

topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I).  For a subset A ⊆X, A*(I,τ)={x ∈X: A  U ∉I 
for every U∈τ (X,x)} is called the local function of A with respect to I and τ [6]. We simply write A* in case there is no 
chance for confusion. A Kuratowski closure operator cl*(.) for a topology τ *(I, τ) called the *-topology, finer than τ is 
defined cl*(A) = A A* [7].  If A ⊆ X, cl(A) and int(A) will respectively, denote the closure and interior of A in (X, τ). 
 
Definition 1.1: A subset A of a topological space (X, τ) is called 

1. g-closed [8], if cl (A) ⊆ U whenever A ⊆ U and U is open in (X, τ). 
2. 𝑔𝑔�-closed [9], if cl(A)⊆ U whenever A ⊆ U and U is semi open in (X, τ). 
3. *g-closed [4], if A* ⊆ U whenever A ⊆ U and U is 𝑔𝑔�-open in (X, τ). 

 
Definition 1.2: A subset A of a topological space (X, τ) is called 

1. Ig-closed [3], if A* ⊆ U whenever A ⊆ U and U is open in X. 
2. Ig�-closed [10], if A* ⊆ U whenever A ⊆ U and U is semi-open in X. 
3. wIg�-closed [5], if int(A*)⊆ U whenever A ⊆ U and U is semi-open in X. 
4. wI∗g-closed [5], if int(A*)⊆ U whenever A ⊆ U and U is 𝑔𝑔�-open in X. 

 
Definition 1.3: A function f :(X, τ, I)→ (Y, 𝜎𝜎) is said to be  

1. g-continuous [11], if for every open set V∈ 𝜎𝜎, f−1(V) is g-open in (X, τ). 
2. 𝑔𝑔�-continuous [9], if for every open set V∈ 𝜎𝜎, f−1(V) is 𝑔𝑔�-open in (X, τ). 
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Definition 1.4: A function f: (X, τ, I)→ (Y, 𝜎𝜎) is said to be Ig-continuous [12], if  f−1(V) is Ig-closed in  (X, τ, I) for 
every closed set V in (Y, 𝜎𝜎). 
 
2. w𝐈𝐈𝐠𝐠�-CONTINUOUS AND w𝐈𝐈∗𝐠𝐠-CONTINUOUS 
 
Definition 2.1: A function f: (X, τ, I)→ (Y, 𝜎𝜎) is Said to be 

1. weaklyIg�-continuous (briefly wIg�-continuous) if f−1(V) is weakly Ig�-closed set in (X, τ, I) for every closed set 
V in (Y, 𝜎𝜎).   

2. weaklyI∗g-continuous (briefly wI∗g-continuous) if f−1(V) is weakly  I∗g-closed set in (X, τ, I) for every closed 
set V in (Y, 𝜎𝜎).   

 
Definition 2.2: A function f: (X, τ, I1)→ (Y, 𝜎𝜎, I2) is Said to be 

(i) wIg�-irresolute if  f−1(V) is wIg�-closed in (X, τ, I1) for every  wIg�-closed set V in (Y, 𝜎𝜎, I2).   
(ii) wI∗g-irresolute iff−1(V) is wI∗g-closed in (X, τ, I1) for every wI∗g-closed set V in (Y, 𝜎𝜎, I2).   

 
Theorem 2.3: Every continuous function is wIg�-continuous. 
 
Proof: Let f be an continuous function and let V be a closed set in (Y, 𝜎𝜎). Then f−1(V) is closed set in (X, τ, I). Since 
every closed set is wIg�-closed. Hence f−1(V) is wIg�-closed set in (X, τ, I). Therefore f is wIg�-continuous. 
 
Example2.4: Let X = Y = {a, b, c}, τ = {φ, {b}, {b,c}, X}, 𝜎𝜎 = {φ, {c}, Y} and I = {φ, {b}}. Let the function           
f:(X, τ, I)→ (Y, 𝜎𝜎) be the idendity function. Then the function f is wIg�-continuous but not continuous. 
 
Theorem 2.5: Ever continuous function is wI∗g-continuous. 
 
Proof: Let f be an continuous function and let V be a closed set in (Y, 𝜎𝜎). Then f−1(V) is closed set in (X, τ, I). Since 
every closed set is wI∗g-closed. Hence f−1(V) is wI∗g-closed set in (X, τ, I). Therefore f is wI∗g-continuous. 
 
Example2.6: Let X = Y = {a, b, c}, τ = {φ, {b}, {b, c}, X}, 𝜎𝜎 = {φ, {c}, Y} and I = {φ, {b}}. Let the function               
f: (X, τ, I)→ (Y, 𝜎𝜎) be the identity function. Then the function f is wI∗g-continuous but not continuous. 
 
Theorem 2.7: Ever Ig�-continuous function is wIg�-continuous. 
 
Proof: Let f be an Ig�-continuous function and let V be a closed set in (Y, 𝜎𝜎), then f−1(V) is Ig�-closed set in (X, τ, I). 
Since every Ig�-closed set is wIg�-closed. Hence f−1(V) is wIg�-closed set in (X, τ, I). Therefore f is wIg�-continuous. 
 
Example2.8: Let X = Y = {a, b, c, d}, τ = {φ, {a, b}, {a, b, c}, X}, 𝜎𝜎 = {φ, {a, b}, {a}, Y} and I = {φ, {a}}. Let the 
function f: (X, τ, I)→ (Y, 𝜎𝜎) is defined by f(a) = b, f(b) = c, f(c) = a, f(d) = d. Then the function f is wIg�-continuous but 
not Ig�-continuous. 
 
Theorem 2.9: Ever 𝑔𝑔�-continuous function is wIg�-continuous. 
 
Proof: Let f be an 𝑔𝑔�-continuous function and let V be a closed set in (Y, 𝜎𝜎), then f−1(V) is 𝑔𝑔�-closed set in (X, τ, I). 
Since every 𝑔𝑔�-closed set is wIg�-closed set. Hence f−1(V) is wIg�-closed set in (X, τ, I). Therefore f is wIg�-continuous. 
 
Example2.10: Let X = Y = {a, b, c, d}, τ = {φ, {b}, {a, b, c}, X}, 𝜎𝜎 = {φ, {c}, {a, c}, Y} and I = {φ, {c}}. Let the 
function f: (X, τ, I)→ (Y, 𝜎𝜎) be the identity function. Then the function f is wIg�-continuous but not 𝑔𝑔�-continuous. 
 
Theorem 2.11: Ever g-continuous function is wIg�-continuous. 
 
Proof: Let f be an g-continuous function and let V be a closed set in (Y, 𝜎𝜎), then f−1(V) is g-closed set in (X, τ, I). 
Since every g-closed set is wIg�-closed set. Hence f−1(V) is wIg�-closed set in (X, τ, I). Therefore f is wIg�-continuous. 
 
Example 2.12: Let X = Y = {a, b, c, d}, τ = {φ, {b}, {c}, {b, c}, X}, 𝜎𝜎 = {φ, {c}, X} and I = {φ, {b}}. Let the function 
f: (X, τ, I) → (Y, 𝜎𝜎) be the idendity function. Then the function f is wIg�-continuous but not g-continuous. 
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Theorem 2.13: Ever I∗g-continuous function is wI∗g-continuous. 
 
Proof: Let f be an wI∗g-continuous function and let V be a closed set in (Y, 𝜎𝜎). Then  f−1(V) is wI∗g-closed set in        
(X, τ, I). Since every wI∗g-closed set is wIg�-closed, hence  f−1(V) is wI∗g-closed set in (X, τ, I). Therefore f is             
wI∗g-continuous. 
 
Example 2.14: Let X = Y = {a, b, c, d}, τ = {φ, {a,b},{c,d}, X}, 𝜎𝜎 = {φ, {c,d}, Y}  and I = {φ, {d}}. Let the function 
f: (X, τ, I) → (Y, 𝜎𝜎) be the idendity function. Then the function f is wI∗g-continuous but not I∗g-continuous. 
 
Theorem 2.15: Ever g-continuous function is wI∗g-continuous. 
 
Proof: Let f be an g-continuous function and let V be a closed set in (Y, 𝜎𝜎), then f−1(V) is g-closed set in (X, τ, I). 
Since every g-closed set is wI∗g-closed set. Hence  f−1(V) is wI∗g-closed set in (X, τ, I). Therefore f is wI∗g-continuous. 
 
Example 2.16: Let X = Y = {a, b, c, d}, τ = {φ,  {a,b},{a,b,c}, X}, 𝜎𝜎 = {φ, {d}, {c,d}, Y} and I = {φ, {a}}. Let the 
function f: (X, τ, I) → (Y, 𝜎𝜎) be the idendity function. Then the function f is wI∗g-continuous but not g-continuous. 
 
Theorem 2.17: Ever Ig-continuous function is wIg�-continuous. 
 
Proof: Let f be an Ig-continuous function and let V be a closed set in (Y, 𝜎𝜎), then  f−1(V) is Ig-closed set in (X, τ, I). 
Since every Ig-closed set is wIg�-closed set. Hence  f−1(V) is wIg�-closed set in (X, τ, I). Therefore f is wIg�-continuous. 
 
Example 2.18: In example 2.17, let the function f: (X, τ, I) → (Y, 𝜎𝜎) be the idendity function. Then the function f is  
wIg�-continuous but not Ig-continuous. 
 
Theorem 2.19: Ever Ig-continuous function is wI∗g-continuous. 
 
Proof: Let f be an Ig-continuous function and let V be a closed set in (Y, 𝜎𝜎). Then  f−1(V) is Ig-closed set in (X, τ, I). 
Since every Ig-closed set is wI∗g-closed set. Hence  f−1(V) is wI∗g-closed set in (X, τ, I). Therefore f is wI∗g-continuous. 
 
Example 2.20: Let X = Y = {a, b, c, d}, τ = {φ,  {b}, {a,b,c}, X}, 𝜎𝜎 = {φ, {a}, {a,c,d}, Y}  and I = {φ, {d}}. Let the 
function f: (X, τ, I) → (Y, 𝜎𝜎) be the idendity function. Then the function f is  wI∗g-continuous but not Ig-continuous. 
 
Theorem 2.21: Ever wI∗g-continuous function is wIg�-continuous. 
 
Proof: Let f be a wI∗g-continuous function and let V be a closed set in (Y, 𝜎𝜎). Then  f−1(V) is wI∗g-closed set in       
(X, τ, I). Since every wI∗g-closed set is wIg�-closed. Hence  f−1(V) is wIg�-closed set in (X, τ, I). Therefore f is wIg�-
continuous. 
 
Example 2.22: Let X = Y = {a, b, c, d}, τ = {φ, {d}, {a, b, c}, X}, 𝜎𝜎 = {φ, {a}, Y} and I = {φ, {b}}. Let the function     
f: (X, τ, I) → (Y, 𝜎𝜎) be the idendity function. Then the function f is wIg�-continuous but not wI∗g-continuous. 
 
Theorem 2.23: A map f: (X, 𝜏𝜏, I) → (Y, 𝜎𝜎) is  w𝐼𝐼𝑠𝑠𝑔𝑔�-continuous iff the inverse image of every closed set in  (Y, 𝜎𝜎) is 
w𝐼𝐼𝑔𝑔�- closed in (X, 𝜏𝜏, I). 
 
Proof: Necessary: Let v be an open set in (Y, 𝜎𝜎). Since f is w𝐼𝐼𝑔𝑔�- continuous, f−1(v∁)is w𝐼𝐼𝑔𝑔�- closed in (X, 𝜏𝜏, I). But 
f−1(v∁) = X −f−1(v) . Hence f-1(v) is w𝐼𝐼𝑔𝑔�- closed in (X, 𝜏𝜏, I). 
 
Sufficiency: Assume that the inverse image of every closed set in (Y, 𝜎𝜎) is w𝐼𝐼𝑔𝑔�- closed in (X, 𝜏𝜏, I). Let v be a closed set 
in (Y, 𝜎𝜎). By our assumption f−1(v∁) = X −f−1(v) is w𝐼𝐼𝑔𝑔�- closed in (X, 𝜏𝜏, I) , which implies that f-1(v) is w𝐼𝐼𝑔𝑔�- closed in 
(X, 𝜏𝜏, I). Hence f is w𝐼𝐼𝑔𝑔�- continuous. 
 
Remark 2.24:  

(i) The union of any two w𝐼𝐼𝑔𝑔�- continuous function is w𝐼𝐼𝑔𝑔�continuous. 
(ii) The intersection of any two w𝐼𝐼𝑔𝑔�- continuous function is need not be w𝐼𝐼𝑔𝑔�- continuous. 
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Theorem 2.25: Let f: (X,𝜏𝜏, I1) → (Y, 𝜎𝜎, I2) and g:  (Y, 𝜎𝜎, I2)→(Z, 𝜂𝜂, I3) be any two functions. Then the following hold. 

(i) g ∘ f is w𝐼𝐼𝑔𝑔�- continuous if f is w𝐼𝐼𝑔𝑔�continuous and g is continuous. 
(ii) g∘ f is w𝐼𝐼𝑔𝑔�- continuous if f is w𝐼𝐼𝑔𝑔�irresolute and g is  w𝐼𝐼𝑔𝑔�continuous. 
(iii) g∘ f is w𝐼𝐼𝑔𝑔�- irresolute if f is w𝐼𝐼𝑔𝑔�irresolute and g is irresolute. 

 
Proof: 

(i) Let v be a closed set in Z. Since g is continuous, g-1(v) is closed in Y. w𝐼𝐼𝑔𝑔�-continuous of f implies, f-1(g-1(v)) is 
w𝐼𝐼𝑔𝑔�-closed in X and hence g ∘ f is w𝐼𝐼𝑔𝑔�-continuous. 

(ii) Let v be a closed set in Z. Since g is w𝐼𝐼𝑔𝑔�-continuous, g-1(v) is w𝐼𝐼𝑔𝑔�-closed in Y. Since f is w𝐼𝐼𝑔𝑔�-irresolute,          
f-1(g-1(V)) is w𝐼𝐼𝑔𝑔�-closed in X. Hence g ∘ f is w𝐼𝐼𝑔𝑔�-continuous. 

(iii) Let v be a w𝐼𝐼𝑔𝑔�-closed in Z. Since g is w𝐼𝐼𝑔𝑔�- irresolute, g-1(v) is w𝐼𝐼𝑔𝑔�-closed in Y. Since f is w𝐼𝐼𝑔𝑔�-irresolute,         
f-1(g-1(v)) is w𝐼𝐼𝑔𝑔�-closed in X. Hence g ∘ f is w𝐼𝐼𝑔𝑔�-irresolute. 

 
Theorem 2.26: Let X=A∪B be a topological space with topology 𝜏𝜏 and Y be a topological space with topology 𝜎𝜎. Let 
f: (A,𝜏𝜏/A)→ (Y,𝜎𝜎) and g: (B, 𝜏𝜏/B)→ (Y,𝜎𝜎) be w𝐼𝐼𝑔𝑔�-continuous maps such that f(x)=g(x) for every x ∈ A∩B. Suppose 
that A and B are w𝐼𝐼𝑔𝑔�-closed sets in X. Then the combination α:(X, 𝜏𝜏, I)→ (Y, 𝜎𝜎) is w𝐼𝐼𝑔𝑔�- continuous. 
 
Proof: Let F be any closed set in Y. Clearly α-1(F)=f-1(F) ∪ g-1(F) = C∪D where C = f-1(F) and D = g-1(F). But C is  
w𝐼𝐼𝑔𝑔�-closed in A and A is be w𝐼𝐼𝑔𝑔�-closed in X and so C is w𝐼𝐼𝑔𝑔� -closed in X. Since we have proved that if B⊆A⊆X, B is 
w𝐼𝐼𝑔𝑔�-closed in A and A is w𝐼𝐼𝑔𝑔�-closed in X, then B is w𝐼𝐼𝑔𝑔�-closed in X. Also C∪D is w𝐼𝐼𝑔𝑔�-closed in X. Therefore α-1(F) is 
w𝐼𝐼𝑔𝑔�-closed in X. Hence α is w𝐼𝐼𝑔𝑔�-continuous. 
 
Theorem 2.27: A map f: (X, 𝜏𝜏, I) → (Y, 𝜎𝜎) is  w𝐼𝐼∗𝑔𝑔-continuous iff the inverse image of every closed set in  (Y, 𝜎𝜎) is 
w𝐼𝐼∗𝑔𝑔- closed in (X, 𝜏𝜏, I). 
 
Proof: Necessary: Let v be an open set in (Y, 𝜎𝜎). Since f is w𝐼𝐼∗𝑔𝑔- continuous, f−1(v∁) is w𝐼𝐼∗𝑔𝑔- closed in (X, 𝜏𝜏, I). But 
f−1(v∁) = X−f−1(v) . Hence f-1(v) is w𝐼𝐼∗𝑔𝑔- closed in (X, 𝜏𝜏, I). 
 
Sufficiency: Assume that the inverse image of every closed set in (Y, 𝜎𝜎) is w𝐼𝐼∗𝑔𝑔- closed in (X, 𝜏𝜏, I). Let v be a closed 
set in (Y, 𝜎𝜎). By our assumption f−1(v∁) = X −f−1(v) is w𝐼𝐼∗𝑔𝑔- closed in (X, 𝜏𝜏, I) , which implies that f-1(v) is w𝐼𝐼∗𝑔𝑔- 
closed in (X, 𝜏𝜏, I). Hence f is w𝐼𝐼∗𝑔𝑔- continuous. 
 
Remark 2.28: 

(i) The union of any two w𝐼𝐼∗𝑔𝑔- continuous function is w𝐼𝐼∗𝑔𝑔-continuous. 
(ii) The intersection of any two w𝐼𝐼∗𝑔𝑔- continuous function is need not be w𝐼𝐼∗𝑔𝑔- continuous. 

 
Theorem 2.29: Let f: (X,𝜏𝜏, I1) → (Y, 𝜎𝜎, I2) and g: (Y, 𝜎𝜎, I2)→(Z, 𝜂𝜂, I3) be any two functions. Then the following hold. 

(i) g ∘ f is w𝐼𝐼∗𝑔𝑔- continuous if f is w𝐼𝐼∗𝑔𝑔continuous and g is continuous. 
(ii) g∘ f is w𝐼𝐼∗𝑔𝑔- continuous if f is w𝐼𝐼∗𝑔𝑔 irresolute and g is  𝐼𝐼∗𝑔𝑔continuous. 
(iii) g∘ f is w𝐼𝐼∗𝑔𝑔- irresolute if f is w𝐼𝐼∗𝑔𝑔 irresolute and g is irresolute. 

 
Proof: 

(i) Let v be a closed set in Z. Since g is continuous, g-1(v) is closed in Y. w𝐼𝐼∗𝑔𝑔-continuous of f implies, f-1(g-1(v)) 
is w𝐼𝐼∗𝑔𝑔-closed in X and hence g ∘ f is w𝐼𝐼∗𝑔𝑔-continuous. 

(ii) Let v be a closed set in Z. Since g is w𝐼𝐼∗𝑔𝑔-continuous, g-1(v) is w𝐼𝐼∗𝑔𝑔-closed in Y. Since f is w𝐼𝐼∗𝑔𝑔-irresolute,      
f-1(g-1(V)) is w𝐼𝐼∗𝑔𝑔-closed in X. Hence g ∘ f is w𝐼𝐼∗𝑔𝑔-continuous. 

(iii) Let v be a w𝐼𝐼∗𝑔𝑔-closed in Z. Since g is w𝐼𝐼∗𝑔𝑔- irresolute, g-1(v) is w𝐼𝐼∗𝑔𝑔-closed in Y. Since f is w𝐼𝐼∗𝑔𝑔-irresolute,     
f-1(g-1(v)) is w𝐼𝐼∗𝑔𝑔-closed in X. Hence g ∘ f is w𝐼𝐼∗𝑔𝑔-irresolute. 

 
Theorem 2.30: Let X=A∪B be a topological space with topology 𝜏𝜏 and Y be a topological space with topology 𝜎𝜎. Let 
f: (A,𝜏𝜏/A)→ (Y,𝜎𝜎) and g:(B, 𝜏𝜏/B)→ (Y,𝜎𝜎) be w𝐼𝐼∗𝑔𝑔-continuous maps such that f(x)=g(x) for every x ∈ A∩B. Suppose 
that A and B are w𝐼𝐼∗𝑔𝑔-closed sets in X. Then the combination α:(X,𝜏𝜏,I)→ (Y,𝜎𝜎) is w𝐼𝐼∗𝑔𝑔- continuous. 
 
Proof: Let F be any closed set in Y. Clearly α-1(F)=f-1(F) ∪ g-1(F) = C∪D where C = f-1(F) and D = g-1(F). But C is 
w𝐼𝐼∗𝑔𝑔-closed in A and A is be w𝐼𝐼∗𝑔𝑔-closed in X and so C isw𝐼𝐼∗𝑔𝑔 -closed in X. Since we have proved that if B⊆A⊆X, B is 
w𝐼𝐼∗𝑔𝑔-closed in A and A is w𝐼𝐼∗𝑔𝑔-closed in X, then B is w𝐼𝐼∗𝑔𝑔-closed in X. Also C∪D is w𝐼𝐼∗𝑔𝑔-closed in X. Therefore        
α-1(F) is w𝐼𝐼∗𝑔𝑔-closed in X. Hence α is w𝐼𝐼∗𝑔𝑔-continuous. 
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