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ABSTRACT 
The present paper is concerned with the unsteady MHD oscillatory motion of conducting visco-elastic [Oldroyd 
(1958) model] liquid through porous medium between two finite co-axial right circular cylinders in presence of 
variable transverse magnetic field applied perpendicular to the flow of liquid, when both the cylinders execute simple 
harmonic motion along the common axis of the cylinders. The amplitudes and frequencies have been taken different for 
both cylinders. The particular cases have also been discussed in detail. 
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INTRODUCTION 
 
Some interesting problems in this area have been investigated by many researchers.  Teipel (1981) studied the problem 
of the impulsive motion of a flat plate in a visco-elastic fluid. Choubey (1985) discussed the hydromagnetic flow of an 
electrically conducting visco-elastic Rivlin Ericksen (1955) type liquid near an infinite horizontal flat plate started 
impulsively from rest in its own plane with constant velocity subjected to an applied uniform transverse magnetic field. 
Yadav& Singh (1990) studied the impulsive motion of a porous flat plate in an elastico-viscous (Rivlin-Ericksen) liquid 
in the presence of a uniform transverse magnetic field. The hydromagnetic flow of two immiscible visco-elastic Walter 
liquids between two inclined parallel plates has been studied by Chakraborty & Sengupta (1992). Moreover some 
interesting problems in this area have been investigated by Ghosh and Sengupta (1993, 1996); Sengupta and Kundu 
(1999); Sharma and Pareek (2001); Hassanien (2002); Sengupta and Basak (2002); Pundhir and Pundhir (2003). 
Krishna, Rao and Sulochana (2004) have discussed the hydromagnetic oscillatory flow of a second order Rivlin 
Ericksen fluid in channel. Rahman and Alam Sarkar (2004) studied the unsteady MHD flow of visco-elastic Oldroyd 
fluid under time varying body force through a rectangular channel. Krishna and Rao (2005) investigated magneto 
hydrodynamic unsteady flow through a rectangular duct with a prescribed discharge. Radhakrishnamacharya and Rao 
(2007) studied the flow of a magnetic fluid through a non-uniform wavy tube. Kumar et.al (2008) studied unsteady 
flow of visco-elastic liquid through porous medium between two finite co-axial right circular cylinders. Nayak, Dash 
and panda (2013) studied unsteady MHD flow of a visco-elastic fluid along vertical porous surface with chemical 
reaction. Choudhury, Dhar and Dey (2014) have discussed visco-elastic MHD flow through a porous medium bounded 
by horizontal parallel plates moving in opposite direction in presence of heat and mass transfer.     
 
The aim of the present paper is to study the unsteady MHD flow of a conducting visco-elastic [Oldroyd (1958) type] 
liquid through porous medium between two finite co-axial right circular cylinders when both cylinders oscillate 
harmonically with different amplitudes and frequencies.  Some particular cases have also been discussed in detail.  
 
BASIC THEORY AND EQUATIONS OF MOTION 
 
For motion, the Rheological equations for Oldroyd (1958) visco-elastic liquid are:  

Pik = −pδik + Pik
′  

Pik
′ + λ1

D
Dt

Pik
′ + μ0Pij

′eik − μ1�Pij
′eik + Pjk

′ eij� − υ1Pji
′ejiδik = 2η0 �eik + λ2

D
Dt

eik − 2μ2eij ejk + υ2ejiδik � 
with the equation of incompressibility 

𝑒𝑒𝑖𝑖𝑖𝑖 = 0 
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where 

D
Dt
𝑏𝑏𝑖𝑖𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑏𝑏𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖𝑖𝑖 𝑏𝑏𝑖𝑖𝑖𝑖 ,𝑖𝑖 + 𝑤𝑤𝑖𝑖𝑖𝑖 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑖𝑖𝑖𝑖 𝑏𝑏𝑖𝑖𝑖𝑖  

eij =
1
2
�νk,i + νi,k� 

wik =
1
2
�νk,i − νi,k� 

where 
Pik = stress tensor 
eik = rate of strain tensor 
λ1= relaxation time 
λ2= retardation time 
δik =The metric tensor (Kronecker delta) 
η0 = Cofficient of viscosity 

and      μ0 ,μ1, μ2 , υ1, υ2 are material constants. 
 
FORMULATION OF THE PROBLEM 
 
Let (r,θ , z) be the cylindrical polar coordinates and v𝑟𝑟 , v𝜃𝜃 , v𝑧𝑧  are the components of velocity of liquid in the increasing 
directions of r, θ , and z – axis respectively.  
 
For the present geometry, appropriate equation of motion for Oldroyd (1958) visco-elastic liquid through porous 
medium in presence of variable magnetic field when induced magnetic field is neglected is given by:  

�1 + λ1
∂
∂t
�
∂w
∂t

= −
1
ρ
�1 + λ1

∂
∂t
�
∂p
∂z

+ υ �1 + λ2
∂
∂t
� �
∂2w
∂r2 +

1
r
∂w
∂r
� − �

σB0
2

ρ
+
υ
K
� �1 + λ1

∂
∂t
�w               (1) 

where r represents radius of cylinder, t the time and K is the permeability of porous medium, μ the coefficient of 
viscosity in the direction of oscillation, p the fluid pressure, w the velocity of liquid, υ = μ

ρ
 = the kinetic viscosity, ρ the 

density of liquid, σ the electrical conductivity of the liquid and B0 is the magnetic inductivity of the field.  
 
Here consider the motion of conducting visco-elastic liquid through porous medium bounded between two co-axial 
right circular cylinders of radii a and b (a > 𝑏𝑏) executing longitudinal harmonic oscillations along their common axis 
with different amplitudes and frequencies. 
 
Assuming the pressure gradient to be zero, the equation (1) becomes 

�1 + λ1
∂
∂t
�
∂w
∂t

= υ �1 + λ2
∂
∂t
� �
∂2w
∂r2 +

1
r
∂w
∂r
� − �

σB0
2

ρ
+
υ
K
� �1 + λ1

∂
∂t
�w                                                       (2) 

 
and boundary conditions are: 

�w = ν1e−iω1t   where r = a
w = ν2e−iω2t   where r = b

�                                                                                                                                               (3) 

where ν1,ω1 and ν2,ω2 are the respective amplitudes and frequencies of the outer and inner cylinders.  
 
Introducing the following non-dimensional quantities:  

r∗ =
r
a

, t∗ =
υ
a2 t, w∗ =

υ
a2 w,  λ1

∗ =
υ
a2 λ1, λ2

∗ =
υ
a2 λ2 , 

ν1
∗ =

a
υ
ν1 , ν2

∗ =
a
υ
ν2 ,ω1

∗ =
a2

υ
ω1,ω2

∗ =
a2

υ
ω2, K∗ =

1
a2 K 

 
In (2) and (3) and then dropping the stars, it is found 

�1 + λ1
∂
∂t
�
∂w
∂t

= �1 + λ2 
∂
∂t
� �
∂2w
∂r2 +

1
r
∂w
∂r
� − �

1
K

+ H� �1 + λ1
∂
∂t
�w                                                               (4) 

 
and boundary conditions  

� w = ν1e−iω1t   where r = 1
  w = ν2e−iω2t   where r = b a�

�                                                                                                                                         (5) 

where   H =
σB0

2

ρ
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SOLUTION OF THE PROBLEM 
 
To found solution of equation (4) in the form  
w = ν1f(r)e−iω1t + ν2g(r)e−iω2t                                                                                                                                                        (6) 
which is evidently periodic in t. 
 
Substituting (6) in (4), it is found 

�(1 − iω1λ2) �
d2f
dr2 +

1
r

df
dr
� + �(1 − iω1λ1) �iω1 −

1
K
− H�� f(r)� × ν1e−iω1t  

                   + �(1 − iω2λ2) �d2g
dr2 + 1

r
dg
dr
� + �(1 − iω2λ1) �iω2 −

1
K
− H�� g(r)� × ν2e−iω2t = 0                          (7)                                                                                                                              

 
By assumption that ν1 and ν2 are not zero, it is found  

d2f
dr2 +

1
r

df
dr

+ m2f = 0                                                                                                                                                          (8) 

and         
d2g
dr2 +

1
r

dg
dr

+ n2g = 0                                                                                                                                                         (9) 

where    m2 =
(1 − iω1λ1) �iω1 −

1
K
− H�

(1 − iω1λ2)  

n2 =
(1 − iω2λ1) �iω2 −

1
K
− H�

(1 − iω2λ2)  

 
Now boundary conditions given by equation (5) becomes 

� f(r) = 1, g(r) = 0 when r = 1
 f(r) = 0, g(r) = 1 when r = b a�

�                                                                                                                                 (10) 

 
Now the solutions of (8) and (9) subject to the boundary conditions (10) are: 

f(r) =
J0(mr)Y0 �m b

a
� − Y0(mr)J0 �m b

a
�

J0(m)Y0 �m b
a
� − J0 �m b

a
�Y0(m)

 

and 

g(r) =
J0(nr)Y0 �n b

a
� − Y0(nr)J0 �n b

a
�

J0(n)Y0 �n b
a
� − Y0(n)J0 �n b

a
�

 

 
Putting the values of f (r) and g (r) in (6) there is found the velocity of conductingvisco-elastic [Oldroyd (1958) type] 
liquid through porous medium between two oscillating co-axial right circular cylinders under the influence of variable 
magnetic field. 

w = ν1 �
J0(mr)Y0 �m b

a
� − Y0(mr)J0 �m b

a
�

J0(m)Y0 �m b
a
� − Y0(m)J0 �m b

a
�
� e−iω1t+ν2 �

J0(nr)Y0(n) − Y0(nr)J0(n)

J0(n)Y0 �n b
a
� − Y0(n)J0 �n b

a
�
� e−iω2t                  (11) 

 
PARTICULAR CASES  
 
Case-I: If both cylinders oscillate with same amplitudes but different frequencies 
 

i.e. ν1 = ν2 = ν(say) then from (11), it is found    
 

w = ν ��
J0(mr)Y0 �m b

a
� − Y0(mr)J0 �m b

a
�

J0(m)Y0 �m b
a
� − Y0(m)J0 �m b

a
�
� e−iω1t � �+�

J0(nr)Y0(n) − Y0(nr)J0(n)

J0(n)Y0 �n b
a
� − Y0(n)J0 �n b

a
�
� e−iω2t�                   (12) 

 
Case-II: If both cylinders oscillate with same frequencies but different amplitudes 
 

i.e. ω1 = ω2 = ω (say) then from (11), it is found  
 

w = �ν1 �
J0(mr)Y0 �m b

a
� − Y0(mr)J0 �m b

a
�

J0(m)Y0 �m b
a
� − Y0(m)J0 �m b

a
�
�� �+ν2 �

J0(nr)Y0(n) − Y0(nr)J0(n)

J0(n)Y0 �n b
a
� − Y0(n)J0 �n b

a
�
�� e−iωt                           (13) 
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Case-III: If both cylinders oscillate with same amplitudes and same frequencies 
 

i.e. ν1 = ν2 = ν (say) and ω1 = ω2 = ω (say) then from (11), it is found 
 

w = �
J0(mr) �Y0 �m b

a
� − Y0(m)� − Y0(mr) �J0 �m b

a
� − J0(m)�

J0(m)Y0 �m b
a
� − Y0(m)J0 �m b

a
�

� νe−iωt                                                            (14) 

 
Case-IV: If magnetic field and porous medium both are withdrawn 
 
 i.e.  H = 0 and K= ∞ then from (11), it is found    
 

w = ν1 �
J0(mr)Y0 �m b

a
� − Y0(mr)J0 �m b

a
�

J0(m)Y0 �m b
a
� − Y0(m)J0 �m b

a
�
� e−iω1t+ν2 �

J0(nr)Y0(n) − Y0(nr)J0(n)

J0(n)Y0 �n b
a
� − Y0(n)J0 �n b

a
�
� e−iω2t                  (15) 

 
Case-V: If it is taken λ2 = 0 in above results. 
 
 Then all results for velocity of Maxwell liquid are found. 
 
Case-VI: If it is taken λ1 = 0 and λ2 = 0  in above results. 
 
 Then all results for velocity of purely viscous liquid are found. 
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