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ABSTRACT 
Let N be a commutative near-field space with 1 ≠ 0, and let M be a proper sub near-field space of N. Recall that M is 
an n-absorbing sub near-field space if whenever x1, x2, ....,xn+1 ∈M for x1, x2, ....,xn+1∈N, then there are n of the xi’s 
whose product is in M. We define M to be a semi-n-absorbing sub near-field space if xn+1 ∈ M for x ∈ N implies           
xn ∈ M. More generally, for positive integers m and n, we define M to be close sub near-field space more specifically     
(m, n)-closed sub near-field space if xm∈M for x∈N implies xn ∈ M. A number of examples and results on closed (or 
open) sub near-field spaces of commutative near-field space over a near-field.  
 
Key words: prime sub near-field space, radical near - field space, 2-absorbing sub near-field space, n - absorbing sub 
near-field space. 
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SECTION-1: INTRODUCTION  
 
1.1 Definition: n-absorbing sub near-field space. Let N be a commutative near-field space with 1 ≠ 0, M be a Closed 
(or Open) sub near-field space of commutative near-field space N, and n be a positive integer. M is called n-absorbing 
sub near-field space of N if whenever x1,..., xn+1 ∈ M for x1, x2, x3, ....,xn+1 ∈ N, then there are n of the xi’s whose 
product is in M. 
 
1.2 Note: a 1-absorbing sub near-field space of N is just prime sub near-field space. 
 
1.3 Definition: semi n-absorbing sub near-field space. We define in this paper, M to be a semi n-absorbing sub near-
field space of N if xn+1 ∈ M for x ∈ N ⇒ xn ∈ M. 
 
1.4 Note: clearly, an n-absorbing sub near-field space of N is also semi n-absorbing sub near-field space of N, and a 
semi 1-absorbing sub near-field space is just a radical (semi prime near-field space) sub near-field space of N. Hence  
n-absorbing sub near-field space respectively semi n-absorbing sub near-field space of N generalize prime respectively 
radical sub near-field space of N.  
 
1.5 Definition: closed (or open) sub near-field space. More generally, for positive integers m, n we define M to be an 
(m, n)-closed (or open) sub near-field space of N if xm ∈ M for x ∈ N ⇒ x n ∈ M.  
 
1.6 Definition: semi-n-absorbing sub near-field space. Thus M is a semi-n-absorbing sub near-field space if and only 
if M is an ( n+1, n ) – closed (or open) sub near-field space of N. 
 
1.7 Definition: radical sub near-field space. M is a radical sub near-field space if and only if M is a (2, 1)-closed (or 
open) sub near-field space. In fact, an n-absorbing sub near-field space is (m, n)-closed (or open) sub near-field space 
for every positive integer m. 
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1.8 Note: clearly, a proper radical sub near-field space of N is (m, n)-closed (or open) radical sub near-field space for    
1 ≤ m ≤ n. So we often assume that 1 ≤ n ≤ m. 
 
The concept of 2-absorbing sub near-field space of N over a near-field introduced by Dr N V Nagendram and extended 
to n-absorbing sub near-field space of N over a near-field with reference to A. Badawi’s study of 2-absorbing ideals of 
commutative rings. Several related concepts, such as 2-absorbing primary sub near-field space of N have been studied 
over a near-field and other generalizations of prime sub near-field space of N over a near-field are investigated. 
 
SECTION-2: PROPERTIES OF CLOSED OR OPEN SUB NEAR-FIELD SPACES OF COMMUTATIVE 
NEAR-FIELD SPACE 
 
In this section, we give the basic properties of semi n-absorbing sub near-)-field space of N over a near-field and (m, 
n)-closed (or open) sub near-field space of N over a near-field. We also determine when every proper sub near-field 
space of N over a near-field is (m, n)-closed (or open) sub near-field space of N over a near-field for positive integers 
m, n such that 1 ≤ m ≤ n. 
 
2.1 Definition: Maximal sub near-field spaces. If K1, K2, ..., Kn are maximal sub near-field space of N, then K1,...., Kn 
is an n-absorbing sub near-field space of N. The following analogous result holds for semi n-absorbing sub near-field 
space of N over a near-field. 
 
2.2 Theorem: Let N be a commutative near-field space. 

(a) A radical sub near-field space of N is (m, n)-closed (or open) sub near-field space of N over a near-field for all 
positive integers m and n. 

(b) An n-absorbing sub near-field space of N is a semi n-absorbing sub near-field space i.e. (n+1, n)-closed         
(or open) sub near-field space of N over a near-field for every positive integer n. 

(c) An (m, n)-closed (or open) sub near-field space of N over a near-field is (m’, n’) - closed (or open) sub near-
field space of N over a near-field for positive integers m’ ≤ m and n’ ≤ n. 

(d) An absorbing sub near-field space of N is (m, n)-closed (or open) sub near-field space of N over a near-field 
for a positive integer m. 

(e) Let P1, P2, ...., Pk be radical sub near-field spaces of N. Then P1, P2, ...., Pk is (m, n)-closed (or open) sub near-
field space of N over a near-field for a positive integer m ≥ 1 and n ≥ min {m, k}. In particular, P1, P2, ...., Pk is 
a semi k-absorbing sub near-field space (k+1, k) - -closed (or open) sub near-field space of N over a near-field 
for a positive integer k. 

 
Proof: It is obvious and directly follow (a), (b) and (c) from the definitions. 
 
To prove (d): Let M be an n-absorbing sub near-field space of N for n is positive integer. Suppose that xn ∈ M for        
x∈N and m > n an integer. Then xn∈N. So M is (m, n)-closed (or open) sub near-field space of N over a near-field for 
m > n. Clearly, M is (m, n)-closed (or open) sub near-field space of N over a near-field for every integer 1 ≤ m ≤ n. So 
M is (m, n)-closed (or open) sub near-field space of N over a near-field for every integer m. Proved (d). 
 
To prove (e): Let xm ∈ P1...Pk for x ∈ N. Then xm ∈ Pi for every 1 ≤ i ≤ k, and thus x ∈ Pi is a radical sub near-field 
space of N. Hence xk ∈ P1 ...Pk. So xn ∈ P1 ...Pk for some n ≥ min {m, k}. Proved (e).  
This completes the proof of the theorem. 
 
Note 2.3: It is for every integer n ≥ 2, there is a semi n-absorbing sub near-field space i.e. (n + 1, n)-closed or open sub 
near-field space over a near-field N i.e. neither a radical sub near-field space nor an n – absorbing sub near-field space 
i.e. (n + 1, n)-closed or open sub near-field space over a near-field N for any positive integer n. 
 
Example 2.3(a): Let N = Z, n ≥ 2 an integer, and M = 2 3nZ. Then M is a semi – n-absorbing sub near-field space i.e.    
(n+1, n)- closed or open sub near-field space over a near-field N. Let P1 = 6Z and P2 = ......= Pn = 3Z. In fact, M is a 
semi m-absorbing near-field space for every integer m ≥ n.  However, (2 3n-1 )2 ∈ M and 2 3n-1 ∉ M. So M is not a 
radical sub near-field space of N. Moreover, 2 3n ∈ i, 3n ∉ M and 2 3 n-1 ∉ M. So I is not an n – absorbing sub near-
field space of N but M is an (n+1)- absorbing sub near-field space of N. Note that for n = 1, M = 6Z is a semi              
1-absorbing near-field space i.e. radical sub near-field space of N, but not a 1-absorbing sub near-field space i.e. prime 
sub near-field space of a near-field space N over a near-field. 
 
Example 2.3(b): Let N = Q[{Xn}n ∈ N] and M = [{Xn

n}n ∈ N]. Then 1
1
+
+

n
nX ∈M and n

nX 1+  ∉ M for every positive integer 
n. So not a semi n-absorbing sub near-field space i.e. ( n+1, n )-closed or open sub near-field space over a near-field N 
for every positive integer n. Thus M is (m, n) - closed or open sub near-field space over a near-field N if and only if       
1 ≤ m ≤ n. 
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Example 2.3(c): Let N be a commutative near-field space over a noetherian regular delta near-ring. Then every proper 
sub near-field space of N is an n-absorbing sub near-field space of N, and hence a semi n-absorbing sub near-field 
space of N, for some positive integer n. Thus by ([4] Th. 2.1), for every proper sub near-field space M of N, there exists 
a positive integer n such that M is (m, n) - closed or open sub near-field space over a near-field N if and only if              
1 ≤ m ≤ n. Here note that the near-field space in (b) is not Noetherian near-field space. 
 
Example 2.3(d): Clearly, an n-absorbing sub near-field space of N is also an (n+1) – absorbing sub near-field space of 
N. However, this need not be true for semi n-absorbing sub near-field spaces of a near-field space. For example, it is 
easily seen that M = 16Z is a semi 2-absorbing sub near-field space i.e. (3, 2) - closed or open sub near-field space of Z 
over a near-field N, but not a semi 3-absorbing sub near-field space i.e. (4, 3) - closed or open sub near-field space of Z 
over a near-field N. 
 
Example 2.3(e): Let N be a valuation domain which is a commutative near-field space over a noetherian regular delta 
near-ring. Then a radical sub near-field space of N is also a prime sub near-field space of N i.e. a semi 1-absorbing sub 
near-field space of N is a 1-absorbing sub near-field space of N. However, a semi n-absorbing sub near-field space of N 
need not be an n-absorbing sub near-field space of N for n ≥ 2. For instance, Let N = Z(2) and M = 16Z(2). Then N is a 
DVN and it is easily verified that M is a semi 2-absorbinh sub near-field space i.e. (3, 2) - closed or open sub near-field 
space of N over a near-field but not a 2-absorbing sub near-field space of N. 
 
In general, a product of (m, n) - closed or open sub near-field space of N over a near-field need not be (m, n) - closed 
(example. A product of radical sub near-field spaces need not be a radical sub near-field space). 
 
Theorem 2.4: Let N be a commutative near-field space over a near-field, m1, ....., mk, n1, ....., nk  positive integers, and 
M1, .....,Mk be sub near-field spaces of N such that M, is ( mi, ni ) - closed or open sub near-field spaces of N over a 
near-field for 1 ≤ i ≤ k. 

(a) M1∩ ..... ∩Mk is (m, n) - closed or open sub near-field space of N over a near-field for all positive integers     
m ≤ min {m1, ....., mk} and n ≥ min {m, max {n1, ....., nk}}. 

(b) M1, .....,Mk is (m, n) - closed or open sub near-field spaces of N over a near-field for all positive integers         
m ≤ min {m1, ....., mk} and n ≥ min {m, n1+ .....+ nk}}. 

 
Proof: To prove (a): Let xm ∈ M1∩ ..... ∩Mk for x ∈ N, m ≤ min {m1, ....., mk}, and 1 ≤ i ≤ k. Then xm ∈ Mi, and thus 
xmi ∈ Mi; So xni ∈ Mi since Mi is (mi, ni) - closed or open sub near-field spaces of N over a near-field for 1 ≤ i ≤ k. 
Hence xn ∈ M1∩ ..... ∩Mk for n ≥ max {n1, ....., nk }. Thus xn ∈ M1∩ ..... ∩Mk for n ≥ min {m, n1+ .....+ nk}}. Proved 
(a). 
 
To prove (b): Let xm ∈ M1, .....,Mk for x∈N, m ≤ min {m1, ....., mk}, and 1 ≤ i ≤ k. Then xm ∈ Mi, and thus xmi ∈ Mi; So 
xni∈Mi since Mi is (mi, ni) - closed or open sub near-field spaces of N over a near-field for 1 ≤ i ≤ k. Hence xn1+n2+.....+nk 
∈ M1, ..... , Mk for n ≥ n1+ .....+nk }. Thus xn ∈ M1, .....,Mk for n ≥ min {m, n1+ .....+ nk}}. Proved (b). 
This completes the proof of the theorem. 

 
Corollary 2.5: Let N be a commutative near-field space over a near-field, m and n  positive integers, and M1, M2, ...., 
Mk be ( m, n ) – closed or open sub near-field spaces of N over a near-field respectively semi n-absorbing sub near-field 
spaces of N over a near-field space. 

(a) M1∩ ..... ∩Mk is (m, n) - closed or open sub near-field space of N over a near-field respectively semi              
n-absorbing sub near-field spaces of N over a near-field space. 

(b) If M1,..... ,Mk are pair-wise co-maximal, then  M1,..... ,Mk is an (m, n) - closed or open sub near-field space of 
N over a near-field. 

 
Definition 2.6: Strongly n-absorbing sub near-field space. Let m and n be positive integers. We define a proper sub 
near-field  space M of a commutative near-field space N to be strongly n-absorbing sub near-field space of N if 
whenever M1, M2, ....., Mn+1 ⊆ M for sub near-field spaces M1, M2, ....., Mn+1 of N, then there are n  of the Mi’s whose 
product is in M. 
 
Note 2.7: Clearly, a strongly n-absorbing sub near-field space is also an n-absorbing sub near-field space the two 
concepts are equivalent and conjectured that they are always equivalent. 
 
Definition 2.8: Strongly semi n-absorbing sub near-field space of N. A proper sub near-field space M of N to be 
strongly semi n-absorbing sub near-field space of N if Pn ⊆ M whenever Pn+1 ⊆ M for a sub near-field space P of N, 
and more generally, we say that a proper sub near-field space M of N is a strongly (m, n) - closed or open sub near-field 
space of N over a near-field if Pn ⊆ M whenever Pm ⊆ M for a sub near-field space P of N. 
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Note 2.9: Every proper sub near-field space of a near-field space n is strongly (m, n) - closed or open sub near-field 
space of N over a near-field for 1 ≤ m ≤ n, a strongly (m, n) - closed or open sub near-field space of N over a near-field 
is a (m, n) - closed or open sub near-field space of N over a near-field, and a (m, 1) - closed or open sub near-field 
space of N over a near-field is also strongly (m, 1) - closed or open sub near-field space of N over a near-field. 
  
Remark 2.10: However, a (m, n) - closed or open sub near-field space of N over a near-field need not be a strongly 
closed or open sub near-field space of N over a near-field. 
 
Example 2.11: Let N = Z[X, Y], M = (X2, 2XY, Y2) and P = √M = (X, Y). Suppose that am ∈ M for a ∈ N and a 
positive integer. Then a∈√M, and thus a= bX+cY for some b, c∈N. hence a2 =(bX + cY)2 = b2X2 + 2bcXy + c2Y2 ∈M, 
and thus M is an ( m, 2 ) - closed or open sub near-field space of N over a near-field for every positive integer m ≥ 3. 
However, P2 ⊄ M since XY ∉ M. So M is not a strongly (m, 2) - closed or open sub near-field space of N over a near-
field for any integer m ≥ 3. 
 
Theorem 2.11: Let N be a commutative near-field space, m a positive integer, M a closed or open sub near-field space 
of N over a near-field, and P a sub near-field space of N over a near-field. 

(a) If Pm ⊆ M, then 2P2 ⊆ M. 
(b) Suppose that 2 ∈ U(N). If Pm ⊆ M, then P2 ⊆ M i.e. M is strongly (m, 2) – closed or open sub near-field space 

of N over a near-field. 
 
Proof: (a) Let x, y ∈ P. Then xm, ym, (x + y)m ⊆ M and thus x2, y2, (x + y)2 ∈ M since M  is (m, 2) - closed or open sub 
near-field space of N over a near-field. Hence 2xy = ( x + y )2  - x2 – y2 ∈ M, and thus 2P2 ⊆ M. Proved (a) 
(b) is obvious follows from (a). Proved (b). This completes the proof of the theorem. 
 
Example 2.12: Let M be a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-
field it is possible that xn ∈ M for every x ∈ P = √M, but Pn ⊄ M. It is also possible that xn ∈ M for every x ∈ P = √M, 
but Pm ⊄ M. Finally, it is possible to have xm ∉ M for some x ∈ √M. 
 
Example 2.13: Let N = Z2[X, Y, Z], M = (X2, Y2

, Z2) and P = √M = (X, Y, Z). Suppose that a∈P. Then a = bX+cY+dZ 
for some b, c, d ∈ N. hence a2 = (b2X2 + c2Y2 +d2Z2) = b2X2 + c2Y2 +d2Z2 ∈ M, and thus M is an (3, 2) - closed or open 
sub near-field space of N over a near-field. However, P3 ⊄ M since XYZ ∉ M.  
 
Example 2.14: Let N = Z and M = 16Z. Then M is a (3, 2) - closed or open sub near-field space of N over a near-field. 
However 2 ∈ √M = 2Z, but 23 = 8 ∉ I. 
 
Theorem 2.15: Let N be a commutative near-field space, m and n positive integers, M a (m, n) -  closed or open sub 
near-field space of commutative near-field space N over a near-field, and T a multiplicatively closed or open sub near-
field space of N such that M ∩ T = φ. 

(a) MT is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field of NT. 
In particular, if M is a semi n-absorbing sub near-field space of N, then MT is a semi n-absorbing sub near-
field space of NT. 

(b) If n = 2, 2 ∈ T, and Pm ⊆ MT for a sub near-field space P of NT, then P2 ⊆ MT i.e. MT is a strongly (m, 2) – 
closed or open sub near-field space of commutative near-field space NT over a near-field. 

 
Proof: To prove (a): Let xm ∈MT for x ∈ NT. Then x = r/t for some r ∈ N and t ∈ T and thus xm = rm /tm = i/s for some  
i ∈ M and s ∈ T. Hence rm sz = tmiz ∈ M for some z ∈ T, and thus ( rsz )m ∈ M. Hence (rsz)n ∈ M since M is (m, n) – 
closed or open sub near-field space of NT. The “in particular” statement is clear. Proved (a). 
 
To prove (b): Suppose that Pm ⊆ MT for a sub near-field space P of NT. Then 2 ∈ U (NT) since 2∈T, and thus P2 ⊆ MT. 
Proved (b).  
 
This completes the proof of the theorem. 
 
Corollary 2.16: Let N be a commutative near-field space, M be a proper sub near-field space of N, and m and n 
positive integers. Then M is a ( m, n ) – closed or open sub near-field space of commutative near-field space NT over a 
near-field if and only if MT is a ( m, n ) – closed or open sub near-field space of commutative near-field space NT over a 
near-field for every prime or maximal sub near-field space of N containing M. In particular, M is a semi n-absorbing 
sub near-field space if and only if M is locally a semi n-absorbing sub near-field space of N over a near-field. 
 
Proof: (⇒) is obvious. 
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(⇐) Let xm ∈ M for x ∈ N, P = { r ∈ N / rxn ∈ M } a sub near-field space of N and S be a prime sub near-field space of 
N with M ⊆ S. Then (x/1)m ∈ MS since MS is ( m, n ) – closed or open sub near-field space of commutative near-field 
space NT over a near-field. Thus txn ∈ M for some t ∈ N/S. So P ⊄ S. Clearly, P ⊄ Q for every prime sub near-field 
space Q of N with M ⊄ Q. Hence P = N. so xn ∈ M. thus M is ( m, n ) - – closed or open sub near-field space of 
commutative near-field space N over a near-field. The “in particular” statement is clear. This completes the proof of the 
theorem. 
 
Corollary 2.17: Let N and S be commutative near-field spaces, m and n positive integers, and f: N → S a 
homomorphism. 

(a) If P is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field 
respective semi n-absorbing sub near-field space of S, then f -1 (P) is a (m, n) - closed or open sub near-field 
space of commutative near-field space N over a near-field respective semi n-absorbing sub near-field space of 
N. 

(b) If f is surjective and M is a (m, n) - closed or open sub near-field space of commutative near-field space N 
over a near-field respective semi n-absorbing sub near-field space of N containing ker f, then f (M) is a              
(m, n) - closed or open sub near-field space of commutative near-field space N over a near-field respective 
semi n-absorbing sub near-field space of S. 

 
Corollary 2.18: Let m and n be positive integers. 
Let N ⊆ S be an extension of commutative near-field spaces. If P is a (m, n) - closed or open sub near-field space of 
commutative near-field space N over a near-field respective semi n-absorbing sub near-field space of S, then P ∩ N is a 
(m, n)-closed or open sub near-field space of commutative near-field space N over a near-field respective semi                 
n-absorbing sub near-field space of N 
 
Note 2.19: A sub near-field space N × T has the form M × P for a sub near-field space of N and P is a sub near-field 
space of T. 
 
Remark 2.20:  A sub near-field space S, it will be convenient to define the improper sub near-field space S to be a     
(∞, 1) - closed or open sub near-field space S of commutative near-field space N over a near-field. 
 
Theorem 2.21: Let N and T be commutative near-field spaces, M be a (m1, n1) - closed or open sub near-field space of 
commutative near-field space N over a near-field and P a (m2, n2) - closed or open sub near-field space of T. Then        
M × P is a (m, n) - closed or open sub near-field space of N × T for all positive integers m ≤ min{m1, n1} and                
n ≥ max {n1, n2}. 
 
Theorem 2.22: Let N be a commutative near-field space and n a + ve integer. Every proper sub near-field space of a 
commutative near-field space N is a prime sub near-field space if and only if N is a near-field space over a near-field. 
 
Every proper sub near-field space of N is a radical near-field space if and only if N is Von Neumann regular sub near-
field space. Every proper sub near-field space of N is (m, n) - closed or open sub near-field space of commutative near-
field space N over a near-field. 

(a) Every proper sub near-field space of N is a prime sub near-field space if and only if N is a near-field space 
over a near-field. 

(b) Every proper sub near-field space of N is a radical sub near-field space if and only if N is von Neumann 
regular near-field space. 

(c) If every proper sub near-field space of N is an n – absorbing sub near-field space, then dim (N) = 0 and N has 
at most n maximal sub near-field spaces. 

Proof: is obvious.  
 
Theorem 2.23: Let N be a commutative near-field space and m and n integers with 1 ≤ n ≤ m. Then the following 
statements are equivalent. 

(a) Every proper sub near-field space of N is a (m, n) - closed or open sub near-field space of commutative near-
field space N over a near-field.  

(b) dim (N) = 0 and ωn = 0 for every ω ∈ Nil (N). 
 
Proof: To prove (a) ⇒ (b): Let ω ∈ Nil (N). Then ωnN ia a (m, n) - closed or open sub near-field space of commutative 
near-field space N over a near-field. So ωn ∈ ωmN. Thus ωn = ωmz for some z ∈ N. Hence ωn(1- ωm – n z) = 0, and thus 
ωn = 0 since 1 - ωm – nz ∈ U (N) because  ωm – nz ∈ Nil (N) since m > n. Suppose, by way of contradiction, that           
dim (N) ≥ 1. Then there exists prime sub near-field spaces S ⊄ Q of N. Let x ∈ Q \ S. As above, xn ∈ xm N. So xn = xmy 
for some y ∈ N. Thus xn (1 – xm – ny) = 0 ∈ S, and hence 1 – xm – ny ∈ S ⊆ Q since x ∈ Q \ S. But then 1 ∈ Q since       
xm – ny ∈ Q, a contradiction⊗. Thus dim (N) = 0. Proved (a) ⇒ (b). 
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To prove (b) ⇒ (a): Let M be a proper sub near-field space of N, and assume that xm ∈ M for x ∈ N. Then N is            
π-regular near-field space since dim (N) = 0, and thus x = eu + ω for some idempotent e ∈ N, u ∈ U(N), and ω ∈ Nil 
(N). If n = 1, then N is reduced, and thus N is Von Neumann regular near-field space since dim (N) = 0. In this case, 
every proper sub near-field space of N is a radical sub near-field space, and hence M is (m, n) - closed or open sub 
near-field space of commutative near-field space N over a near-field. Thus we may assume that n ≥ 2. Let k ≥ n. So     
ωk = 0. Then xk = (eu + ω)k = euk + keuk – 1 ω + ... + keuωk – 1 = e (uk + kuk – 1 ω + ......+ kuωk – 1). Hence vk = uk + kuk – 1 

ω + ... + kuωk – 1 ∈ U (N) since u ∈ U (N), ω ∈ Nil(N), and k ≥ 2 and thus xk = evk. In particular, xm = eh ∈ M with       
h ∈ U (N) since m > n, and hence e = h-1xm ∈ M. Thus xk = evk ∈ M for every integer k ≥ n. Hence M is (m, n) - closed 
or open sub near-field space of commutative near-field space N over a near-field. Proved (b) ⇒ (a). This completes the 
proof of the theorem. 
 
Theorem 2.24: Let N be a commutative near-field space and n a positive integer. Then the following statements are 
equivalent. 

(a) Every proper sub near-field space of N is (m, n) - closed or open sub near-field space of commutative near-
field space N over a near-field. 

(b) There is an integer m > n such that every proper sub near-field space of N is (m, n) - closed or open sub near-
field space of commutative near-field space N over a near-field. 

(c) for every proper sub near-field space of N there is an integer m1 > n such  that M is (m1, n) - closed or open 
sub near-field space of commutative near-field space N over a near-field. 

(d) Every proper sub near-field space of N is a semi n-absorbing sub near-field space i.e. (n+1, n) - closed or open 
sub near-field space of commutative near-field space N over a near-field. 

(e) dim (N) = 0 and ωn = 0 for every ω ∈ Nil (N). 
 
Proof: Is obvious that (a) ⇒ (b) ⇒ (c) ⇒ (d) and (d) ⇒ (e) and from theorem 2.15 (e) ⇒ (a) for m > n and the fact that 
every proper sub near-field space is (m, n) - closed or open sub near-field space of commutative near-field space N over 
a near-field for 1 ≤ m ≤ n. This completes the proof of the theorem. 
 
Corollary 2.25: Let N be a commutative near-field space and n a positive integer. Then the following statements are 
equivalent. 

(a) Every proper sub near-field space of N is radical sub near-field space. 
(b) Every proper sub near-field space of N is (m, n) - closed or open sub near-field space of commutative near-

field space N over a near-field for all positive integers m, n. 
(c) There is a positive integer n such that every proper sub near-field space M of N is (m, n) - closed or open sub 

near-field space of commutative near-field space N over a near-field for m ≥ n. 
(d) There is a positive integer n such that every proper sub near-field space M of N is (m1, n) - closed or open sub 

near-field space of commutative near-field space N over a near-field for m1 > n. 
(e) There is a positive integer n such that every proper sub near-field space M of N is a semi n – absorbing sub 

near-field space i.e. (n+1, n) - closed or open sub near-field space of commutative near-field space N over a 
near-field. 

(f) N is a Von Neumann regular near-field space. 
 
Proof: Is obvious that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) and and (e) ⇒ (f) and since a reduced commutative near-field 
space N with dim (N) = 0 is Von Neumann regular near-field space. Also (f) ⇒ (a) by theorem 2.22. The           
“moreover“statement holds since an integral domain is Von Neumann regular near-field space if and only if it is a near-
field space over a near-field. This completes the proof of the theorem. 
 
Corollary 2.26:  Let N be a reduced commutative near-field space and n a positive integer. Then every proper sub 
near-field space of N is an n-absorbing sub near-field space of N if and only if  N is isomorphic to the direct product of 
at most n near-field spaces over a near-field. 
 
Note 2.27: Let N be a commutative Noetherian near-field space. Then every proper sub near-field space of N is an n-
absorbing sub near-field space, and thus a semi n-absorbing sub near-field space i.e. (n+1, n)- closed or open sub near-
field space of commutative near-field space N over a near-field for positive integer n. However, if there is a fixed 
positive integer n such that every proper sub near-field space of N is a semi n-absorbing sub near-field space of N, then 
dim (N) = 0. 
 
SECTION 3. PRINCIPAL SUB NEAR-FIELD SPACES OF COMMUTATIVE NEAR-FIELD SPACE 
 
In this section, we specialize to the case of principal sub near-field space of N over a near-field in integral domains. For 
an integral domain N, we determine N(M) = ((m, n) ∈ N × N / M is (m, n)-closed or open sub near-field space of N 
over a near-field } for M = p1

k1 .....,pi
ki N, where p1, ...,pi are non-associate prime sub near-field space of N over a near-

field and k1, k2, ....., ki  are positive integers. 
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Theorem 3.1: Let N be an integral domain, m and n integers with 1 ≤ n  ≤ m, and M = pkN, where p is a prime element 
of N and k is a +ve integer. Then the following statements are equivalent. 

(a) M is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. 
(b) k = ma + r, where a and r are integers such that a ≥ 0, 1 ≤ r ≤ n, a(m mod n) + r ≤ n, and if a ≠ 0, then              

m = n + c for some integer c with 1 ≤ c ≤ n – 1. 
(c) If m = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n – 1, then k ∈ {1, 2, ...., n}. If m = n + c for an 

integer c with 1 ≤ c ≤ n – 1, then k ∈ }0/{
1

hnicandZihmin

h
−≤≤∈+

=
. 

 
Proof: is obvious. 
 
Theorem 3.2: Let N be an integral domain, n +ve integer, and M = pkN, where p is a prime element of N and k is a +ve 
integer. Then the following statements are equivalent. 

(a) M is a semi n-absorbing sub near-field space of commutative near-field space N over a near-field i.e. (n+1, n) 
- closed or open sub near-field space of commutative near-field space N over a near-field. 

(b) k = (n + 1) a+ r, where a and r are integers such that a ≥ 0, 1 ≤ r ≤ n, and a + r ≤ n. 

(c) k 


n

h
hniandZihin

1
}0|)1{(

=
−≤≤∈++∈  for every 1 ≤ j ≤ i moreover, { k ∈ N| pkN is (n+1, n) 

- closed or open sub near-field space of commutative near-field space N over a near-field } = n(n+1)/2. 
 
Proof: is obvious. 
 
Corollary 3.3: Let N be an integral domain, M = pi

kN, where p is a prime element of N and k is a positive integer. 
Then M is a semi 2-absorbing sub near-field space i.e. (3, 2) - closed or open sub near-field space of commutative near-
field space N over a near-field if and only if k ∈ {1, 2, 4}. 
 
Note 3.3(a): This can be extended to product of prime powers of sub near-field spaces of N. If p1, p2,......,pn are non 
associate prime elements of N and k1, k2,.....,ki are positive integers, and n a positive integer. Then p1

k∩ p2
k∩ ..... 

∩pn
knN = p1

k. p2
k. .....,pn

knN for all positive integers k1, k2, ....,kn. 
 
Note 3.3(b): p1

k. p2
k. .....,pn

knN is an m-absorbing sub near-field space of N if and only if m ≥ k1 + k2 + .... + kn. 
 
Theorem 3.4: Let N be an integral domain, m and n a positive integers with 1 ≤ n ≤ m, and M = p1

k. p2
k. .....,pi

kiN, 
p1,p2,......,pi are non associate prime elements of N and k1, k2,.....,ki are positive integers. Then the following statements 
are equivalent. 

(a) Let M be (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. 
(b) pj

kjN is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field for 
every 1 ≤ j ≤ i. 

(c) if m = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n – 1, then kj ∈ {1, 2, 3,.....,n} for every 1 ≤ j ≤ i. If      

m = n + c for an integer c, 1 ≤ c ≤ n – 1, then kj 


n

h
hnvcandZvhmv

1
}0|{

=
−≤≤∈+∈  for every 

1 ≤ j ≤ i. 
 
Proof: To prove (a) ⇒ (b): Let Mj = pj

kjN. Suppose that xm ∈ Mj for x∈N. Let y = x(p1
k1.....pi

ki)/pjkj ∈ N. They ym ∈ M, 
and hence yn ∈ M, since M is (m, n) - closed or open sub near-field space of commutative near-field space N over a 
near-field for every 1 ≤ j ≤ i. Proved (1) ⇒ (2). 
 
To prove (b) ⇒ (a): obvious and clear since p1

k1N ∩.......∩pi
kiN. Proved (b) ⇒ (a). And is clear and obvious (b) ⇒ (c). 

This completes the proof of the theorem. 
 
Corollary 3.5: Let N be an principal sub near-field space, M be a proper sub near-field space of N, and m and n 
integers with 1 ≤ n ≤ m, Then the following statements are equivalent. 

(a) Let M is ( m, n ) - closed or open sub near-field space of commutative near-field space N over a near-field. 
(b) M = p1

k1. p2
k2. .....,pi

kiN, p1,p2,......,pi are non associate prime elements of N and k1,k2,.....,ki are positive 
integers. One of the following holds good. 
(i) if   m = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n – 1, then kj ∈ {1,2,3,.....,n} for every 1 ≤ j ≤ i.  

(ii) If m = n + c for an integer c, 1 ≤ c ≤ n – 1, then kj 


n

h
hnvcandZvhmv

1
}0|{

=
−≤≤∈+∈  for 

every 1 ≤ j ≤ i. 
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Corollary 3.6: Let N be an integral domain, M = p1

k, p2
k, .....,pi

kiN, where p1,p2,......,pk are non associate prime 
elements of N and k1,k2,.....,ki are positive integers, and n a positive integer. Then the following statements are 
equivalent. 

(a) Let M be semi n –absorbing sub near-field space i.e. (n+1, n) - closed or open sub near-field space of 
commutative near-field space N over a near-field. 

(b) kj 


n

h
hnvandZvhvn

1
}0|)1{(

=
−≤≤∈++∈  for every 1 ≤ j ≤ i. 

 
Corollary 3.7: Let N be a principal sub near-field space, M a proper sub near-field space of N, and n is a positive 
integer. Then the following statements are equivalent. 

(a) Let M be semi n –absorbing sub near-field space i.e. (n+1, n) - closed or open sub near-field space of 
commutative near-field space N over a near-field. 

(b) M = p1
k, p2

k, .....,pi
kiN, where p1,p2,......,pk are non associate prime elements of N and k1,k2,.....,ki are positive 

integers, and kj 


n

h
hnvandZvhvn

1
}0|)1{(

=
−≤≤∈++∈  for every 1 ≤ j ≤ i. 

 
Theorem 3.8: Let N be an integral domain, m and n a positive integers with 1 ≤ n ≤ m, and M = pkN, where p is prime 
element of N and k is a positive integer. Then the following statements are equivalent. 

(a) Let M be (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. 
(b) Exactly one of the following statements holds good. 

(i) If 1 ≤ k ≤ n. 
(ii) there a is a +ve integer a such that k = ma + r = ma + r = na + d for integers r and d with 1 ≤ r, d ≤ n – 1. 
(iii) There a is a +ve integer a such that k = ma + r = n(a + 1) for integer r with 1 ≤  r  ≤ n – 1. 

 
Proof: To prove (a) ⇒ (b): Suppose that M is (m, n) - closed or open sub near-field space of commutative near-field 
space N over a near-field. Then k = ma + r, where a and r are integers such that a ≥ 0, 1 ≤ r ≤ n, a (mod n) + r ≤ n and if 
a ≠ 0, then m = n + c for an integer c with 1 ≤ c ≤ n – 1. Thus if a = 0, then 1 ≤ k ≤ n. Hence assume that a ≠ 0. Note 
that m mod n = c. Since c ≠ 0 and ac + r ≤ n, we conclude that 1 ≤ r ≤ n, Since k = ma + r and m = n + c, we have         
k = (n + c) a + r= na + ac + r. Let d = ac + r. Then d ≤ n. If d < n, then k = ma + r = na + d, where 1 ≤ r, d ≤ n – 1. Then 
k = ma + r = n(a + 1), where 1 ≤ r ≤ n – 1. Proved (a) ⇒ (b). 
 
To prove (b) ⇒ (a): Suppose that 1 ≤ k ≤ n. It is clear that M is a (m, n) - closed or open sub near-field space of 
commutative near-field space N over a near-field. Next, suppose that there is an integer a ≥ 1 such that k = ma + r = na 
+ d, where 1 ≤ r, d ≤ n – 1. Then m = n + (d – r)/a, and thus m = n + c for an integer c with 1 ≤ c ≤ n – 1. Hence M is    
(m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. Finally, suppose that 
there is an integer a ≥ 1 such that k = ma + r = n (a + 1), where 1 ≤ r ≤ n – 1. Then m = n + (n – r)/a = n + c for an 
integer c with 1 ≤ c ≤ n – 1, and thus M is ( m, n ) - closed or open sub near-field space of commutative near-field space 
N over a near-field. This completes the proof of the theorem.  
 
Theorem 3.9: Let a, d, m, n, r and w be positive integers 1 ≤ r ≤ m, 1 ≤ w ≤ n < m, and 1 ≤ d ≤ a. 

(a) If ma + r = na + w, then 1 ≤ r ≤ w < n and 1 ≤ a < n 
(b) If ma + r = n( a + 1 ), then 1 ≤ r < n and 1 ≤ a < n 
(c) If ma + r = n( a + 1 ) + d, then either m = n + 1 or 1 ≤ a < n. 

 
Proof: To prove (a): Suppose that ma + r = na + w. Then w – r = a(m – n) > 0 and 1 ≤ w ≤ n.  Thus 1 ≤ r ≤ w < n, and 
hence 0 < w – r < n. Thus a = (w – r)/ (m – n) < n since 0 < w – r < n and m – n ≥ 1. Proved (a). 
 
To prove (b): Suppose that ma + r = n(a + 1). Then n  – r = a(m – n) > 0.  Thus 1 ≤ r < n, and a = (n – r)/(m – n) < n 
since 0 < n – r < n and m – n ≥ 1. Proved (b). 
 
To prove (c): Suppose that ma + r = n(a + 1) +d and a ≥ n. Then 0 < m – n = a(m – n)/a = (n + d – r) /a = n/a + d/a – r/a 
< 2 since 1 < n  ≤ a, 1 ≤ d ≤ a, and r > 0. Thus m – n = 1. So m = n + 1. Proved (c).  
 
This completes the proof of the theorem. 
 
Theorem 3.10: Let N be an integral domain, n a positive integer, and M = pkN, where p is prime element of N and k is 
a positive integer. Let m be a positive integer and n be the smallest + ve integer such that M is (m, n) - closed or open 
sub near-field space of commutative near-field space N over a near-field. 

(a) If m ≥ k, then m = k. 
(b) Let m < k and write k = ma + r, where a is a +ve integer and 0 ≤ r ≤ m. 

(i) If r = 0, then n = m.  



Dr. N. V. Nagendram /  
Closed (or Open) sub near-field spaces of commutative near-field space over Near-field / IJMA- 7(9), Sept.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                         65  

 
(ii) If r ≠ 0 and a ≥ m then n = m. 
(iii) If r ≠ 0 and a < m and (a + 1)\k, then n = k\(a + 1). 
(iv) If r ≠ 0 and a < m and (a + 1)\k, then n = [k\(a + 1)] + 1. 

 
Proof: To prove (a): If m ≥ k, then pm ∈ M. So n ≥ k. Clearly, M is (m, k) - closed or open sub near-field space of 
commutative near-field space N over a near-field. So n = k is the smallest integer such that M is (m, n) - closed or open 
sub near-field space of commutative near-field space N over a near-field when m ≥ k. Proved (a). 
 
To prove (b): Assume that m > 1 and n ≤ m by the above (a) comments. 
 
To prove (i): Suppose that r = 0. Then M is not (m, m – 1) - closed or open sub near-field space of commutative near-
field space N over a near-field since (pa)m = pk ∈ M and (pa)m-1  = pma – a = pk – a  ∉ M. Thus n = m since M is (m, m) - 
closed or open sub near-field space of commutative near-field space N over a near-field. Proved (i). 
 
To prove (ii): Suppose that r ≠ 0 and a ≥ m. If n ≠ m then n < m < k. Thus either k = ma + r = na +d or                            
k = ma + r = n(a + 1), where 1 ≤ r, d < n. Hence a < n < m which is a contradiction⊗  to n ≠ m. So n = m. Proved (ii). 
 
To prove (iii): Suppose that r ≠ 0, a < m and (a + 1)|k. Let i = k/(a + 1). Then k = ma + r = i (a + 1) with 1 ≤ i < m. So    
1 ≤ r < i. M is a (m, i) - closed or open sub near-field space of commutative near-field space N over a near-field it is 
clear that i is the smallest such positive integer. Thus n = i = k/(a + 1). Proved (iii). 
 
To prove (iv): Suppose that r ≠ 0, a < m, and (a+1) does not divide k. Let i = [k/(a + 1)]. Then k = ma + r = i(a + 1) + d, 
where 1 ≤ d ≤ a and 1 ≤ i ≤ m. Thus either m = i + 1 or 1 ≤ d ≤ a < i. Let us first suppose that m = i + 1. Since (a + 1) |k, 
k ≠ i (a + 1), and thus M is not (m, i) - closed or open sub near-field space of commutative near-field space N over a 
near-field. Hence n = m = i + 1 = [k/(a + 1)] + 1 is the smallest positive integer such that M is (m, n) - closed or open 
sub near-field space of commutative near-field space N over a near-field. Further suppose that 1 ≤ d ≤ a < i and            
m ≠ i + 1. So, i + 1 < m. Since k = i(a + 1) + d, we have k = (i + 1)a + i + d – a. Let j = i + d – a ∈ Z. Then 1 ≤ j ≤ i 
since 1 ≤ d ≤ a < i. Thus [k/(a + 1)] = a. Since k = ma + r = (i + 1) a + j with 1 ≤ j ≤ i + 1 < m, we have 1 ≤ r < j ≤ i. 
Hence M is (m, i+1) - closed or open sub near-field space of commutative near-field space N over a near-field. Since  
(a + 1) does not divide k, we have k ≠ i (a + 1), and thus M is not (m, i) - closed or open sub near-field space of 
commutative near-field space N over a near-field. Hence n = i + 1 = [k/ (a + 1)] + 1 is the smallest positive integer such 
that M is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. Proved (iv). 
 
This completes the proof of the theorem. 
 
Note 3.10 (a): For fixed positive integers n and k, we determine the largest positive integer m (or ∞) such that M = pkN 
is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. If M is (m, n) - 
closed or open sub near-field space of commutative near-field space N over a near-field for every positive integer m, 
we will say that M is (∞, n) - closed or open sub near-field space of commutative near-field space N over a near-field. 
 
Theorem 3.11: Let N be an integral domain, n a positive integer, and M = pkN, where p is prime element of N and k is 
a positive integer. 

(a) If n ≥ k, then M is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-
field. 

(b) Let n < k and write k = na + r, where a is a positive integer and 0 ≤ r ≤ n. let m be the largest positive integer 
such that M is ( m, n ) - closed or open sub near-field space of commutative near-field space N over a near-
field. 
(i) If a > n, then m = n  
(ii) If a = n and r = 0, then m = n + 1. 
(iii) If a = n and r ≠ 0, then m = n. 
(iv) If a < n, r = 0 and (a – 1)\k, then m = k\ (a – 1) – 1. 
(v) If a < n and r = 0, and (a – 1)\k, then m = [k\ (a – 1)]. 
(vi) If a < n and r ≠ 0, and a\k, then m = k\a – 1. 
(vii) If a < n, r ≠ 0, and a\k, then m = [k\a]. 

 
Proof: To prove (a): Let xm ∈ M for x ∈ N and m a positive integer. Then p|xm. So p|x since p is prime. Thus pn|xn. So 
xn ∈ M since n ≥ k. Hence M is (m, n) - closed or open sub near-field space of commutative near-field space N over a 
near-field. Proved (a). 
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To prove (b): by the above comments, m ≥ n. Suppose that M is (m, n) - closed or open sub near-field space of 
commutative near-field space N over a near-field and m > n. If r = 0, then k = m(a – 1) + w = na, where 1 ≤ w < n and  
a – 1 < n. If r ≠ 0, then k = ma + d = na + r, where 1 ≤ d < r < n and a < n. Proved (b). 
 
To prove (i): Suppose that a > n. If m ≠ n, then m > n. So either a – 1 < n or a < n by the above comments. In either 
case, a ≤ n, a contradiction⊗. Thus m = n. proved (i). 
 
To prove (ii): Suppose that a = n and r = 0. So k = n2 and n ≥ 2 since n < k. Note that (pa)n+1 ∈ M ⇒ a (n + 1) ≥ k = n2 
⇒ a ≥ n ⇒ an ≥ n2 = k ⇒ (pa)n ∈ M. So M is (n+1, n) - closed or open sub near-field space of commutative near-field 
space N over a near-field. However, M is not (n+2, n) - closed or open sub near-field space of commutative near-field 
space N over a near-field since (pn-1)n ∉ M. Thus m = n + 1. Proved (ii). 
 
To prove (iii): Suppose that a = n and r ≠ 0. If m > n, then a < n by the above comments, is a contradiction ⊗ So m = n. 
Proved (iii). 
 
To prove (iv): Suppose that a< n, r = 0, and (a – 1) |k. Let f = k| (a – 1). So k = f (a – 1) and a < n < f. Thus k = f (a – 1) 
= (f - 1 + 1)(a – 1) = (f – 1) (a – 1) + a – 1  = na with a – 1 < n. Hence M is (f – 1, n) - closed or open sub near-field 
space of commutative near-field space N over a near-field. M is not (f, n) - closed or open sub near-field space of 
commutative near-field space N over a near-field. Hence m = f – 1 = k| (a – 1) – 1 is the largest +ve integer such that M 
is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. Proved (iv). 
 
To prove (v): Suppose that a<n, r = 0, and (a – 1) does not divides k. Let f = k| (a – 1). So k = f (a – 1)+d and 1≤d< a– 1. 
Since a < n < f we have 1 ≤ d < a – 1 < f . Since k = f (a – 1) + d = na with 1 ≤ d < f. we have d < n. Hence M is (f, n) - 
closed or open sub near-field space of commutative near-field space N over a near-field.  Note that by a contradiction 
of f, if k = i (a – 1) + c for some 1 ≤ c < a – 1, then i ≤ f. Thus m = f = [k|(a – 1) ] is the largest  +ve integer such that M 
is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. Proved (v). 
 
To prove (vi): Suppose that a < n, r ≠ 0, and a|k. Let f = k/a. So k = f a and f ≥ n + 1. Then M is not (f, n) - closed or 
open sub near-field space of commutative near-field space N over a near-field. Let us assume that f – 1 > n. Thus          
k = fa = (f – 1 + 1) a = (f – 1) a + a. Since a < n < f – 1 and k = (f – 1) a + a = na + r. We conclude that M is (f – 1, n) - 
closed or open sub near-field space of commutative near-field space N over a near-field. So, m = f – 1 = k / (a – 1) is 
the largest positive integer such that M is (m, n) - closed or open sub near-field space of commutative near-field space 
N over a near-field. Further, we assume that f – 1 = n. Then clearly m = n = k/(a – 1) is again the largest positive integer 
such that M is (m, n) -  closed or open sub near-field space of commutative near-field space N over a near-field. Proved 
(vi). 
 
To prove (vii): Suppose that a < n, r ≠ 0, and a does not divide k. Let f = [k|a]. So k = f a + d, where 1 ≤ d < a. Since      
a < n < f, we have 1 ≤ d < a < f. Since k = fa + d = na + r and 1 ≤ d < f, we have d < n. Thus M is (f, n) - closed or open 
sub near-field space of commutative near-field space N over a near-field. Note that by construction of f, if k = ia + c for 
some 1 ≤ c < a, then i < f. Thus m = f = [k/a] is the largest positive integer such that M is (m, n) - closed or open sub 
near-field space of commutative near-field space N over a near-field. Proved (vii). This completes the proof of the 
theorem. 
 
Theorem 3.12: Let N be an integral domain and M = p1

k, p2
k, .....,pi

kiN, where p1,p2,......,pk are non associate prime 
elements of N and k1,k2,.....,ki are positive integers. 

(a) Let m be a positive integer. If nj is the smallest positive integer such that pj
kjN is (m, nj) - closed or open sub 

near-field space of commutative near-field space N over a near-field for 1 ≤ j ≤ i, then n = max {n1, n2,.....,ni} 
is the smallest positive integer such that M is (m, n) - closed or open sub near-field space of commutative 
near-field space N over a near-field. 

(b) Let n be a positive integer. If mj is the largest positive integer (or ∞) such that pj
kjN is (mj, n) - closed or open 

sub near-field space of commutative near-field space N over a near-field for 1≤ j ≤ i, then m=min{m1, m2,....,} 
is the largest positive integer (or ∞) such that M is (m, n) - closed or open sub near-field space of commutative 
near-field space N over a near-field. 

 
Proof: Is obvious. 
 
SECTION-4: GENERAL RESULTS ON CLOSED OR OPEN SUB NEAR-FIELD SPACES OF COMMUTA-
TIVE NEAR-FIELD SPACE. 
 
In this section, we continue the study of (m, n)-closed or open sub near-field space of N over a near-field and give 
several examples to illustrate earlier results. For a proper sub near-field space M of N over a near-field we investigate  
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the two functions f1 and g1 defined by f1 (m) = min {n/M is  (m, n)-closed or open sub near-field space of N} and         
g1 (n) = Sup {m / M is  (m, n)-closed or open sub near-field space of N}. 
 
We assume throughout that all closed or open sub near-field space of N are commutative with 1 ≠ 0 and that f (1) = 1 
for all near-field homomorphism f: N → S. For such a near-field space N, dim(N) denotes the Krull dimension of N, 
√M denotes the radical sub near-field space of a near-field space M of N, and nil(N), Z(N), and U(N) denote the set sub 
near-field space nilpotent elements, zero divisors, and units of N, respectively; and N is reduced  nil (N) = {0}. 
 
Recall that N is von Neumann regular if for every x ∈ N, there is y ∈ N such that x2y = x, and that N is π-regular if for 
every x∈N, there is y∈N a positive integer n such that x2m y = xn. Moreover, N is π-regular respectively von Neumann 
regular if and only if dim.(N) = 0 respectively N is reduced and dim(N) = 0. 
 
Thus N is π-regular sub near-field space if and only if N/Nil (N) is von Neumann regular sub near-field space of N over 
a near-field. As usual, N, Z, Zn and Q will denote the positive integers, integers, integers modulo n, and rational 
numbers respectively.  
 
Let M be a proper sub near-field space of a commutative near-field space N over a near-field. We define                 
N(M) = {(m, n) ∈ N × N / M is (m, n)-closed or open sub near-field space of N over a near-field}. Thus {(m, n) ∈ N × 
N / 1 ≤ m ≤ n} ⊆ N(M) ⊆N × N and N(M) = N × N if and only if √M = M. We start with some elementary properties of 
N(M). If we define N(N) = N × N, then the results in this section hold for all sub near-field spaces of N over a near-
field. 
 
Theorem 4.1: Let N be a commutative near-field space over a near-field. M and P be proper sub near-field spaces of a 
near-field space N over a near-field, and m, n and k positive integers. 

(a) (m, n) ∈ N(M) for all positive integers m and n with m ≤ n. 
(b) If (m, n) ∈ N(M), then (m, n) ∈ N(M) for all positive integers m and n with 1 ≤ m′ ≤ m and n′ ≥ n. 
(c) If (m, n) ∈ N(M), then (km, kn) ∈ N(M). 
(d) If (m, n), (n, k) ∈ N(M), then (m, k)∈N(M). 
(e) If (m, n), (m+1, n+1) ∈ N(M), for m≠ n, then (m+1, n)∈N(M). 
(f) If (n, 2),(n+1, 2) ∈ N(M), for an integer n ≥ 3, then ( n+2, 2) ∈ N(M), and  
(g) thus (m, 2) ∈ N(M) for every positive integer m. 
(h) If (m, n) ∈ N(M), for positive integers m and n with n ≤ m/2, then       
(i) (m+1, n) ∈ N(M) and thus (k, n) ∈ N(M),  for every positive integer k. 
(j) (m, n) ∈ N(M), for every positive integers m if and only if (2n, n) ∈ N(M). 
(k) N(M × P) = N(M) ∩ N(P) ⊆ N(M ∩ P). 

 
Proof: To prove (a) to (d): It easily follows from the basic definitions. Hence Proved (a) to (d). 
 
To prove (e): If m < n, then (m+1, n) ∈ N(M) by (a). For m > n, suppose that xm+1 ∈ M for x ∈ N. then xn+1 ∈ M since 
M is (m+1, n+1) - closed or open sub near-field space of N over a near-field. Thus xm ∈ M since m ≥ n + 1, and hence 
xn ∈ M since M is (m, n) - closed or open sub near-field space of N over a near-field. Thus M is (m+1, n) - closed or 
open sub near-field space of N over a near-field. Proved (e). 
 
To prove (f): Suppose that xn+2∈M for x∈N. Then (x2)n = x2n∈M since 2n ≥ n + 2 because n ≥ 2. Hence x4 = (x2)2∈M 
since (n, 2) - closed or open sub near-field space of N over a near-field. But then xn+1∈M since n ≥ 3. Thus x2 ∈ M 
since M is (n+1, 2) - closed or open sub near-field space of N over a near-field. Hence M is (n+2, 2) - closed or open 
sub near-field space of N over a near-field. Similarly, (k, 2) ∈ N(M) for every integer k ≥ n + 3. So by (b), M is (k, 2) - 
closed or open sub near-field space of N over a near-field for every positive integer k. Proved (f). 
 
To prove (g): Let xm+1 ∈ M for x ∈ N. Then (x2)m = x2m ∈ M, and hence x2n = (x2)n ∈ M since M is (m, n) - closed or 
open sub near-field space of N over a near-field. Thus xm∈M since 2n ≤ m, and hence xn ∈ M since M is (m, n) - closed 
or open sub near-field space of N over a near-field. Thus M is (m+1, n) - closed or open sub near-field space of N over 
a near-field. Similarly, (k, n) ∈ N(M) for every integer k ≥ n, and hence (k, n) ∈ N(M) for every positive integer k by 
(b). Proved (g). 
 
To prove (h): obvious with the help of proof of (g). Proved (g). 
 
To prove (i): Clearly M × P is (m, n) - closed or open sub near-field space of N over a near-field if and only if M and P 
are both (m, n) - closed or open sub near-field space of N over a near-field. Thus N(M × P) = N(M) ∩ N(P). Thus N(M) 
∩ N(P) ⊆ N(M ∩ P) follows that N(M × P) = N(M) ∩ N(P) ⊆ N( M ∩ P). Hence proved (i). 
This completes the proof of the theorem. 
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Note 4.2: The m ≠ n hypothesis is needed and since (n, n) ∈ N(M) for every positive integer n. 
 
Note 4.3: The n ≥ 3 hypothesis in needed and for n =1, we have (1, 2), (2, 2) ∈ N(M) for every proper sub near-field 
space M of N, but in general, (3,2) ∉ N(M). For n = 2, we have (2,2), (3,2) ∈ N(M) does not imply (4, 2) ∈ N(M). For 
example, let N = Z and M = 16Z. Then (2,2), (3,2) ∈ N(M), but (4,2) ∉ N(M). 
 
Note 4.4: The inclusion may be strict. For example, Let N = Z, M = 8Z and P = 16Z. Then (3, 2) ∈N(P) =N(M ∩ P). 
However, (3, 2) ∉ N(M). So N(M) ∩ N(P) ⊆ N(M ∩ P). 
 
Note 4.5: More generally, N(M × P) = N(M) ∩ N(P) for all sub near-field spaces M and P of a commutative near-field 
space of N and T, respectively. 
 
Let M be a proper sub near-field space of a commutative near-field space N over a near-field and m and n be +ve 
integers. We define f1 (m) = min {n/M is (m, n) - closed or open sub near-field space of N over a near-field}∈ 
{1,2,...,m} and g1(n) = Sup {m / M is (m, n) - closed or open sub near-field space of N over a near-field} ∈ {n, n+1,....} 
∪ {∞}. So f 1 : N → N and g 1 : N → N ∪ {∞}. The columns respectively rows of N(M) determine f 1 (or g1). Then 
either function f 1 or g 1 is determined the other, and either function determines N(M). It is sometimes useful to view     
f 1 (or g1) as an N-valued respectively N ∪ {∞} valued non-decreasing sequence f 1 = (f 1 (m)) (or g 1 = g 1 (n)).  Note 
that f 1 = (1,1,1,...) if and only if g 1 = {∞,∞,∞...}, if and only if √M = M. if we define N(N) = N × N, then                      
f N = (1,1,1,...) and g N = (∞,∞,∞,....). Also f 1 is eventually constant if and only if g 1 is eventually constant, if and only 
if g 1 is eventually ∞. We next give some elementary properties of the two functions f 1 and g 1. 
 
Theorem 4.6: Let N be a commutative near-field space, M be a proper sub near-field space of N and m and n are + ve 
integers. Let f1 (m) = min { n/M is (m, n) - closed or open sub near-field space of N over a near-field} and g1(n) = Sup 
{m / M is (m, n) - closed or open sub near-field space of N over a near-field }. 

(a) 1 ≤ f 1 (m) ≤ m    
(b) f 1 (m) ≤ f 1(m + 1) 
(c) If f 1 (m) < m, then either f 1(m + 1) = f 1(m) or f 1(m+1) ≥ f 1(m) + 2. 
(d) n ≤ g 1 (n) ≤ ∞. 
(e) g 1 (n) ≤ g 1 (n + 1) 
(f) If g 1 (n) > n, then either g 1 (n+1) = g 1 (n) or g 1 (n+1) ≥ g 1 (n) +2. 

 
Proof: Obvious. 
  
Theorem 4.7: Let N be a commutative near-field space and M and P proper sub near-field spaces of N. Let f1(m) = min 
{n / M is (m, n) - closed or open sub near-field space of N over a near-field } and g 1 (n) = Sup {m / M is (m, n) - 
closed or open sub near-field space of N over a near-field}. 

(a) f M ∩ P ≤ fM ∨ f P  
(b) g M ∩ P ≤ g M ∨ g P  
(c) N (M ∩ P) = N(M) ∩ N(P). 

 
Proof: Obvious. 
 
Theorem 4.8: Let N be a sub near-field space and x, y ∈ N co-prime elements. Then N(xyN) = N(xN ∩ yN) = N(xN) 
∩ N(yN). Moreover, fxyN =  fxN ∨ fyN and gxyN =  gxN ∧ gyN. 
 
Proof: Obvious. 
 
Theorem 4.9: Let N be a commutative near-field space, n a positive integer, and M an n-absorbing sub near-field space 
of N. Then f1(m) ≤ n for every positive integer m. Thus f1 and g1 are eventually constant. In particular, if N is 
Noetherian, then f1 and g1 are eventually constant for every proper sub near-field space M of N. 
 
Proof: Obvious. 
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