International Journal of Mathematical Archive-2(8), 2011, Page: 1226-1230 MA Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

Further properties of *v***-continuity**

S. Balasubramanian*

Department of Mathematics, Government Arts College (Autonomous), Karur-639 005 (T. N.), India

E-mail: mani55682@rediffmail.com

(Received on: 14-07-11; Accepted on: 01-08-11)

ABSTRACT

 \pmb{T} he object of the present paper is to study the basic properties of v-continuous functions.

Keywords: v-open sets, v-continuity, v-irresolute, v-open map, v-closed map, v-homeomorphisms and almost v-continuity.

AMS-classification Numbers: 54C10; 54C08; 54C05.

1. INTRODUCTION:

In 1963, Norman Levine introduced semi-continuous functions. A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb defined pre-continuity in 1982. M.E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud defined semi-pre continuity in 1983. A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb defined α -continuity in 1997. S. Balasubramanian, C. Sandhya and P. A. S. Vyjayanthi defined *v*-continuity in 2009. Inspired with these developments, we study some characterizations and properties of *v*-continuous functions.

2. PRELIMINARIES:

Definition 2.1: A⊂ X is called

(i) closed if its complement is open.

(ii) regular open[pre-open; semi-open; α -open; β -open] if $A = (cl\{A\})^{o}[A \subseteq (cl\{A\})^{o}; A \subseteq cl\{(A^{o})\}; A \subseteq (cl\{(A^{o})\})^{o}; A \subseteq cl\{((cl A)^{o})\}]$ and regular closed[pre-closed; semi-closed; α -closed; β -closed]

if $A = cl\{A^o\}[cl\{(Ao)\} \subseteq A; (cl A)^o \subseteq A; cl\{((cl A)^o)\} \subseteq A; (cl\{(A^o)\})^o \subseteq A].$

(iii) semi- θ -open if it is the union of semi-regular sets and its complement is semi- θ -closed.

(iv) *v*-open[r α -open] if there exists a regular open set U such that U \subseteq A \subseteq cl U[U \subseteq A $\subseteq \alpha$ (cl {U})].

Definition 2.2: A function $f: X \to Y$ is called continuous [resp: semi-; pre-; r-;r α -; α -; β -; ω -; ν -] continuous if inverse image of every open set in Y is open[resp: semi-open; pre-open; regular-open; r α -open; α -open; β -open; ω -open; ν -open] in X.

3. FURTHER RESULTS ON V-CONTINUOUS FUNCTIONS:

Theorem 3.1: The following statements are equivalent for a function *f*:

(1) *f* is *v*-continuous;

(2) $f^{-1}(F) \in vC(X)$ for every closed set $F \subset Y$;

(3) for each $x \in X$ and each closed set F in Y containing f(x), there exists a *v*-closed set U in X containing x such that $f(U) \subset F$;

(4) for each $x \in X$ and each open set V in Y non-containing f(x), there exists a v-open set K in X non-containing x such that $f^{-1}(V) \subset K$;

 $(5) f^{-1}(cl\{(G)\}) \in v C(X)$ for every open subset G of Y;

(6) $f^{-1}(F^{\circ}) \in v O(X)$ for every closed subset F of Y.

Proof: (1) \Leftrightarrow (2): Let F be closed in Y. Then Y - F is open in Y. By (1), $f^{-1}(Y - F) = X - f^{-1}(F) \in v O(X)$. We have $f^{-1}(F) \in v C(X)$. Reverse can be obtained similarly.

Corresponding author: S. Balasubramanian, *E-mail: mani55682@rediffmail.com

S. Balasubramanian*/ Further properties of v-continuity/ IJMA-2(8), August-2011, Page: 1226-1230 (2) \Rightarrow (3): Let F be closed in Y containing f(x). By (2), $f^{-1}(F) \in v C(X)$ and $x \in f^{-1}(F)$. Take $U = f^{-1}(F)$. Then $f(U) \subset F$.

(3) \Rightarrow (2): Let F be closed in Y and x $\in f^{-1}(F)$. From (3), there exists $U_x \in v C(X, x)$ such that $U_x \subset f^{-1}(F)$. We have $f^{-1}(F) = \bigcup_{x \in f^{-1}(F)} U_x$. Thus $f^{-1}(F)$ is v-closed.

(3) \Leftrightarrow (4): Let V $\in \sigma(Y)$ not containing f(x). Then, Y - V $\in C(Y, f(x))$. By (3), there exists U $\in v C(X, x)$ such that $f(U) \subset v$ Y - V. Hence, $U \subset f^{-1}(Y - V) \subset X - f^{-1}(V)$ and then $f^{-1}(V) \subset X - U$. Take H = X - U. Then $H \in v O(X)$ non-containing x. The converse can be shown easily.

(1) \Leftrightarrow (5): Let G be open subset of Y. Since (cl G) is closed, then by (1), $f^{-1}(cl\{(G)\}) \subset v C(X)$. The converse can be shown easily.

(2) \Leftrightarrow (6): It can be obtained similar as (1) \Leftrightarrow (5).

Example 1: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the identity function $f: X \rightarrow X$ is v-continuous. But it is not regular set-connected.

Theorem 3.2: If *f* is *v*-continuous and $A \in RO(X)$, then $f_{IA}: A \rightarrow Y$ is *v*-continuous.

Remark 2: Every restriction of a *v*-continuous function is not necessarily *v*-continuous.

Example 3: Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, X\}$. The identity function $f: X \rightarrow X$ is v-continuous, but, if A = {a, c, d} where A is not regular-open in (X, τ) and τ_A is the relative topology on A induced by τ , then $f_{IA}:(A, \tau_A) \rightarrow (X, \sigma)$ is not *v*-continuous.

Theorem 3.3: Let *f* be a function and $\Sigma = \{U_{\alpha}: \alpha \in I\}$ be a *v*-cover of X. If for each $\alpha \in I$, $f_{U\alpha}$ is *v*-continuous, then *f* is an v-continuous function.

Proof: Let $F \in \sigma(Y)$. $f_{/U\alpha}$ is v-continuous for each $\alpha \in I$, $f_{/U\alpha}^{-1}(F) \in vO_{/U\alpha}$. Since $U_{\alpha} \in vO(X)$, by theorem 6.3[7] $f_{I\cup\alpha}^{-1}(F) \in vO(X)$ for each $\alpha \in I$. Then $f^{-1}(F) = \bigcup_{\alpha \in I} f_{I\cup\alpha}^{-1}(F) \in vO(X)$. This gives f is v-continuous.

Theorem 3.4: Let f be a function and let g: $X \rightarrow X \times Y$ be the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is v-continuous, then f is v-continuous.

Proof: Let $V \in \sigma(Y)$, then $X \times V \in \sigma(X \times Y)$. Since g is v-continuous, then $f^{-1}(V) = g^{-1}(X \times V) \in v O(X)$. Thus, f is v-continuous.

Theorem 3.5: Let *f* and *g* be functions. Then, the following properties hold: (1) If f is v. c. and g is regular set-connected, then $g \bullet f$ is v. c. (2) If f is v. c. and g is perfectly continuous, then $g \bullet f$ is v. c.

Proof: (1) Let $V \in \eta(Z)$. Since g is regular set-connected, $g^{-1}(V)$ is clopen. Since f is v-continuous, $f^{-1}(g^{-1}(V)) = (g \bullet f)^{-1}(V)$ is v-clopen. Therefore, $g \bullet f$ is v. c. (2) can be obtained similarly.

Definition 3.2: A function *f* is called M-*v*-open if image of *v*-open is *v*-open.

Theorem 3.6: If f is surjective M-v-open [resp: M-v-closed] and g is a function such that $g \bullet f$: is v-continuous, then g is v-continuous.

Proof: Let $V \in \sigma(Z)$. Since $g \bullet f$ is v-continuous, $(g \bullet f)^{-1}(V) = f^{-1} \bullet g^{-1}(V)$ is v-open. Since f is surjective M-v-open, $f(f^{-1} \bullet g^{-1}(V)) = g^{-1}(V)$ is v-open. Therefore, g is v-continuous.

Theorem 3.7:

(i) If f is r-irresolute and contra continuous, then f is regular set-connected. (ii) If f is contra-r-irresolute and almost continuous, then f is regular set-connected.

Theorem 3.8: If f is v-continuous, then for each point $x \in X$ and each filter base A in X v-converging to x, the filter base $f(\Lambda)$ is rc-convergent to f(x).

Proof: Let $x \in X$ and Λ be any filter base in X v-converging to x. Since f is v-continuous, then for any V $\in \sigma$ (Y) containing f(x), there exists U $\in v O(X)$ containing x such that f(U) $\subset V$. Since Λ is v-converging to x, there exists a $B \in \Lambda$ such that $B \subset U$. This means that $f(B) \subset V$ and therefore the filter base $f(\Lambda)$ is rc-convergent to f(x). © 2011, IJMA. All Rights Reserved 1227

S. Balasubramanian*/ Further properties of v-continuity/ IJMA- 2(8), August-2011, Page: 1226-1230

Theorem 3.9: Let *f* be a function and $x \in X$. If there exists $U \in RO(X)$ such that $x \in U$ and the restriction of f_{IU} is *v*-continuous at x, then f is *v*-continuous at x.

Proof: Suppose that $F \in \sigma(Y)$ containing f(x). Since $f_{\mathbb{IU}}$ is *v*-continuous at *x*, there exists $V \in vO(U, x)$ such that $f(V) = (f_{\mathbb{IU}})(V) \subset F$. Since $U \in RO(X, x)$, $V \in vO(X, x)$. This shows clearly that *f* is *v*-continuous at *x*.

Lemma 3.1:

(i) If V is an open set, then $sCl_{\theta}(V) = sCl(V)$. (ii)If V is an regular-open set, then sCl(V) = Int(Cl(V)).

Theorem 3.10: For a *v*-continuous function *f*, the following conditions are equivalent: (i) $vcl\{(f^{-1}(V))\} \subseteq f^{-1}(sCl_{\theta}(V))$ for every open subset V of Y; (ii) $vcl\{(f^{-1}(V))\} \subseteq f^{-1}(scl\{(V)\})$ for every open subset V of Y; (iii) $vcl\{(f^{-1}(V))\} \subseteq f^{-1}((cl V)^{\circ})$ for every open subset V of Y; (iv) $cl\{(f^{-1}(V))^{\circ}\} \subseteq f^{-1}((cl V)^{\circ})$ for every open subset V of Y.

Proof: (i) \Rightarrow (ii) follows from Lemma 3.1(i).

(ii) \Rightarrow (iii) and (iv) \Rightarrow (i) follows from Lemma 3.1(ii).

(iii) \Rightarrow (iv) Since $vcl\{(f^{-1}(V))\} = f^{-1}(V) \cup cl\{(f^{-1}(V))^{\circ})\}$, it follows from (iii) that $cl\{(f^{-1}(V))^{\circ}\} \subseteq f^{-1}((cl V)^{\circ}).$

The next result is an immediate consequence of Theorems 3.1 and 3.4.

Theorem 3.11: Let *f* be a function and let *S* be any collection of subsets of Y containing the open sets. Then f is *v*-continuous iff $vcl\{(f^{-1}(S))\} \subseteq f^{-1}(sCl_{\theta}(S))$ for every $S \in S$.

Definition 3.2: A function *f* is called (*v*, s)-continuous if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists $U \in v$ O(X, x) such that $f(U) \subset cl\{V\}$.

Theorem 3.12: For a function *f*, the following properties are equivalent:

(1) f is (v, s)-continuous;

(2) *f* is *v*-continuous;

 $(3)f^{-1}(V)$ is *v*-open in X for each θ -semi-open set V of Y;

(4) $f^{-1}(F)$ is v-open in X for each θ -semi-closed set F of Y.

Proof: (1) \Rightarrow (2): Let $F \in \sigma(Y)$ and $x \in f^{-1}(F)$. Then $f(x) \in F$ and F is semi-open. Since f is (v, s)-continuous, there exists $U \in vO(X, x)$ such that $f(U) \subset cl(F) = F$. Hence $x \in U \subset f^{-1}(F)$ which implies that $x \in v(f^{-1}(F))^{\circ}$. Therefore, $f^{-1}(F) \subset v(f^{-1}(F))^{\circ}$ and hence $f^{-1}(F) = v(f^{-1}(F))^{\circ}$. This shows that $f^{-1}(F) \in vO(X)$. It follows from Theorem 3.1, f is v-continuous.

(2) \Rightarrow (3): Follows from the fact that every θ -semi-open set is the union of regular closed sets.

 $(3) \Leftrightarrow (4)$: This is obvious.

(4) \Rightarrow (1): Let x \in X and V \in SO(Y, *f*(x)). Since cl V is regular closed, it is θ -semi-open.

Now, put $U = f^{-1}(cl V)$. Then $U \in v O(X, x)$ and $f(U) \subset cl V$. This shows that f is (v, s)-continuous.

Theorem 3.13: For a function *f*, the following properties are equivalent:

(1) *f* is *v*-continuous; (2) $f(v(cl A)) \subset sCl_{\theta}(f(A))$ for every subset A of X; (3) $vcl\{(f^{-1}(B))\} \subset f^{-1}(sCl_{\theta}(B))$ for every subset B of Y.

Proof: (1) \Rightarrow (2): Let A \subset X. Suppose that x \in vcl{(A)} and G \in SO(Y, *f*(x)). Since *f* is *v*-continuous, by Theorem 3.12, there exists U \in *v* O(X, x) such that *f*(U) \subset cl G. Since x \in vcl{(A)}, U \cap A $\neq \phi$; and hence $\phi \neq f(U) \cap f(A) \subset$ cl G $\cap f(A)$. Therefore, *f*(x) \in sCl_{θ}(*f*(A)) and hence *f*(vcl{(A)}) \subset sCl_{θ}(*f*(A)).

(2) \Rightarrow (3): Let B be any subset of Y. Then $f(vcl\{(f^{-1}(B))\}) \subset sCl_{\theta}(f(f^{-1}(B))) \subset sCl_{\theta}(B)$ and hence $vcl\{(f^{-1}(B))\} \subset f^{-1}(sCl_{\theta}(B))$.

(3) \Rightarrow (1): Let V \in SO(Y, *f*(x)). Since cl{V} \cap (Y - cl V) = ϕ ,

S. Balasubramanian*/ Further properties of v-continuity/ IJMA- 2(8), August-2011, Page: 1226-1230

we have $f(x) \notin sCl_{\theta}$ (Y - cl V) and hence $x \notin f^{-1}(sCl_{\theta}(Y - cl\{V\}))$. By (3), $x \notin vcl\{(f^{-1}(Y - cl\{V\}))\}$. There exists $U \in vO(X, x)$ such that $U \cap f^{-1}(Y - cl\{V\}) = \phi$; hence $f(U) \cap (Y - cl\{V\}) = \phi$. This shows that $f(U) \subset cl\{V\}$. Therefore, f is v-continuous.

4. THE PRESERVATION THEOREMS:

Theorem 4.1: Let *f* be an *v*-continuous surjection. Then the following statements hold:

(1) if X is v-compact, then Y is S-closed[resp: nearly compact].

(2) if X is v-Lindelof, then Y is S-Lindelof[resp: nearly Lindelof].

(3) if X is countably v-compact, then Y is countably S-closed[resp: nearly countably compact].

Theorem 4.2: If *f* is an r-continuous and contra-continuous surjection and X is mildly compact (resp. mildly countably compact, mildly Lindelof), then Y is nearly compact (resp. nearly countably compact, nearly Lindelof) and S-closed (resp. countably S-closed, S-Lindelof).

Proof: Since *f* is r-continuous and contra-continuous, for $\{V_{\alpha}: \alpha \in I\}$ be any regular closed (respectively regular open) cover of Y, we have $\{f^{-1}(V_{\alpha}: \alpha \in I\}$ is a clopen cover of X and since X is mildly compact, there exists a finite subset I_o of I such that $X = \bigcup \{f^{-1}(V_{\alpha}: \alpha \in I_o\}$. Since *f* is surjective, we obtain $Y = \bigcup \{V_{\alpha}: \alpha \in I_o\}$. This shows that Y is S-closed (respectively nearly compact). The other proofs can be obtained similarly.

Theorem 4.3: If X is v-ultra-connected and f is v-continuous and surjective, then Y is hyperconnected.

Proof: Assume that Y is not hyperconnected. Then there exists an open set V such that V is not dense in Y. Then there exist disjoint non-empty regular open subsets B_1 and B_2 in Y, namely $(cl V)^o$ and Y - cl V. Since f is v-continuous and onto, $A_1 = f^{-1}(B_1)$ and $A_2 = f^{-1}(B_2)$ are disjoint non-empty v-open subsets of X. By assumption, the v-ultra-connectedness of X implies that A_1 and A_2 must intersect, which is a contradiction. Therefore Y is hyperconnected.

Theorem 4.4: If f is v-continuous surjection and X is v-connected, then Y is connected.

Proof: Suppose that Y is not connected space. There exist nonempty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$. Therefore, V_1 and V_2 are clopen in Y. Since f is v-continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint v-open sets in X and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$, which is a contradiction for v-connectedness of X. Hence, Y is connected.

Corollary 4.1: If *f* is *v*-continuous surjection and X is r-connected, then Y is connected.

Theorem 4.5: If *f* is a *v*-continuous injection and Y is weakly Hausdorff, then X is *v*-T₁.

Proof: Assume Y is weakly Hausdorff. For any $x \neq y \in X$, there exists V, $W \in \sigma(Y)$ such that $f(x) \in V$, $f(y) \notin V$, $f(x) \notin W$ and $f(y) \in W$. Since f is v-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are v-open subsets of X such that $x \in f^{-1}(V)$, $y \notin f^{-1}(V)$, $x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. Hence X is v-T₁.

Corollary 4.2: If *f* is a r-continuous injection and Y is weakly Hausdorff, then X is *v*-T₁.

Corollary 4.3: If f is a v-continuous injection and Y is weakly Hausdorff, then X is semi-T₁.

Corollary 4.4: If *f* is a *v*-continuous injection and Y is weakly Hausdorff, then X is β -T₁.

5. *v*-REGULAR GRAPHS:

Recall that for a function f, $G(f) = \{(x, f(x)): x \in X\} \subset X \times Y$ is called the graph of f.

Definition 5.1: A graph G(f) of a function f is said to be *v*-regular if for each $(x, y) \in (X \times Y) - G(f)$, $U \in vO(X, x)$ and $V \in RO(Y, y)$ such that $(U \times V) \cap G(f) = \phi$.

Lemma 5.1: The following properties are equivalent for a graph G(f) of a function: (1) G(f) is *v*-regular; (2) for each point $(x, y) \in (X \times Y) - G(f)$, there exists $U \in vO(X, x)$ and $V \in RO(Y, y)$ such that $f(U) \cap V = \phi$.

Proof: Follows from definition 5.1 and for any $A \subset X$ and $B \subset Y$, $(A \times B) \cap G(f) = \phi$ iff $f(A) \cap B = \phi$.

Theorem 5.2: If *f* is *v*-continuous and Y is T_2 , then G(f) is *v*-regular graph in X×Y.

S. Balasubramanian*/ Further properties of v-continuity/ IJMA- 2(8), August-2011, Page: 1226-1230

Proof: Assume Y is T₂. Let $(x, y) \in (X \times Y) - G(f)$. It follows that $f(x) \neq y$. Since Y is T₂, there exist disjoint open sets V and W containing f(x) and y, respectively. We have $((cl V)^{\circ}) \cap ((cl W)^{\circ}) = \phi$. Since f is v-continuous,

 $f^{-1}((\operatorname{cl} V)^{\circ}) \in vO(X, x)$. Take $U = f^{-1}((\operatorname{cl} V)^{\circ})$. Then $f(U) \subset ((\operatorname{cl} V)^{\circ})$. Therefore, $f(U) \cap ((\operatorname{cl} W)^{\circ}) = \phi$ and G(f) is *v*-regular in X× Y.

Corollary 5.1: If *f* is *v*-continuous and Y is $r-T_2$, then *G*(*f*) is *v*-regular graph in X×Y.

Corollary 5.2: If *f* is r-continuous and Y is T_2 , then *G* (*f*) is *v*-regular graph in X×Y.

Corollary 5.3: If *f* is r-continuous and Y is $r-T_2$, then *G*(*f*) is *v*-regular graph in X×Y.

Theorem 5.3: Let *f* have a *v*-regular graph G(f). If *f* is injective, then X is *v*-T₁.

Proof: Let $x \neq y \in X$. Then, we have $(x, f(y)) \in (X \times Y) - G(f)$. By definition 5.1, there exists $U \in vO(X)$ and $V \in RO(Y)$ such that $(x, f(y)) \in U \times V$ and $f(U) \cap V = \phi$; hence $U \cap f^{-1}(V) = \phi$. Therefore, we have $y \notin U$. Thus, $y \in X - U$ and $x \notin X - U$. We obtain that $X - U \in vO(X)$. Hence X is $v-T_1$.

Theorem 5.4: Let *f* have a *v*-regular graph G(f). If *f* is surjective, then Y is weakly T_2 .

Proof: Let $y_1 \neq y_2 \in Y$. Since *f* is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) - G(f)$. By definition 5.1, there exists $U \in v O(X)$ and $F \in RO(Y)$ such that $(x, y_2) \in U \times F$ and $f(U) \cap F = \phi$; hence $y_1 \notin F$. Then $y_2 \notin Y - F \in \sigma(Y)$ and $y_1 \in Y - F$. Thus Y is weakly T_2 .

CONCLUSION

Author studied some properties of v-continuity.

ACKNOWLEDGEMENT

The Author is thankful to the refrees for their critical comments and suggestions towards the development of the paper.

REFERENCES:

[1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, "` β -open sets and β -continuous mapping", Bulletin of the Faculty of Science, Assiut University, A 12} (1983) (1)77-90.

[2] S. Balasubramanian, C. Sandhya and P. A. S. Vyjayanthi, v-open sets and v-mappings, I. J. M. S. C. A., Vol.4(2)(2010)395-405.

[3] S. Balasubramanian, C. Sandhya and P. A. S. Vyjayanthi, Note on *v*-continuity, Bull. Kerala Math. Association, Vol. 6(2) (2010)21-28.

[4] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, "`On Precontinuous and Weak Precontinuous functions", Proc. Math. Phys. Soc. Egypt, 53} (1982), 47-53.

[5] A. S.Mashhour, I.A. Hasanein and S. N. El-Deeb, "` α -continuous and α -open mappings", Acta Math Hungar, 74} (1997), 211-219.

[6] Norman Levine, Semi open sets and semi-continuity in topological spaces, Amer Math. Monthly, 70} (1963)36-41.

[7] V. K. Sharma, v-open sets, Acta Ciencia Indica, Vol. XXXIIM (2) (2006)685-690.
