
������������	
������	
�
�����������	
�������������
�����
�����
������� ��
�����	�!	�
��	���
�������
"""#�$��#���

�������������	
��

������������	
������	
�
�����������	
��������
�
����
������
�
����






































































































�����

 

Further properties of v-continuity 

 

S. Balasubramanian* 

 
Department of Mathematics, Government Arts College (Autonomous), Karur-639 005 (T. N.), India 

 

E-mail: mani55682@rediffmail.com 
 

(Received on: 14-07-11; Accepted on: 01-08-11) 

------------------------------------------------------------------------------------------------------------------------------------------------ 

ABSTRACT 

The object of the present paper is to study the basic properties of v-continuous functions. 
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1.  INTRODUCTION: 

 

In 1963, Norman Levine introduced semi-continuous functions. A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-

Deeb defined pre-continuity in 1982. M.E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud defined semi-pre 

continuity in 1983. A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb defined α-continuity in 1997. S. 

Balasubramanian, C. Sandhya and P. A. S. Vyjayanthi defined v-continuity in 2009.  Inspired with these developments, 

we study some characterizations and properties of v-continuous functions. 

 

2. PRELIMINARIES: 

 

Definition 2.1: A⊂ X is called 

(i)  closed if its complement is open. 

(ii) regular open[pre-open; semi-open; α-open;  β-open] if A = (cl{A})o[A⊆ (cl{A})o; A⊆ cl{(Ao)}; A⊆ (cl{(Ao)})o; 

A⊆ cl{((cl A )o)}] and regular closed[pre-closed; semi-closed; α-closed; β-closed]  

if A = cl{Ao}[cl{(Ao)} ⊆ A; (cl A)o⊆ A; cl{((cl A)o)}⊆ A; (cl{(Ao)})o⊆ A].  

(iii) semi-θ-open if it is the union of semi-regular sets and its complement is semi-θ-closed. 

(iv) v-open[rα-open] if there exists a regular open set U such that U⊆ A⊆ cl U[U⊆ A⊆ α (cl {U})]. 

 

Definition 2.2: A function f: X → Y is called continuous [resp: semi-; pre-; r-;rα-; α-; β-; ω-; v-] continuous if inverse 

image of every open set in Y is open[resp: semi-open; pre-open; regular-open; rα-open; α-open; β-open; ω-open; v-

open] in X. 

 

3. FURTHER RESULTS ON V-CONTINUOUS FUNCTIONS:  

 

Theorem 3.1: The following statements are equivalent for a function f: 

(1) f is v-continuous; 

(2) f -1(F)∈vC(X) for every closed set F⊂ Y; 

(3) for each x∈ X and each closed set F in Y containing f(x), there exists a v-closed set U in X containing x such that 

f(U) ⊂ F; 

(4) for each x∈ X and each open set V in Y non-containing f(x), there exists a v-open   set K in X non-containing x 

such that f  -1(V) ⊂ K; 

(5) f   -1(cl{(G)}) ∈ v C(X) for every open subset G of Y; 

(6) f -1(Fo)∈ v O(X) for every closed subset F of Y. 

 

Proof: (1)⇔ (2): Let F be closed in Y. Then Y - F is open in Y. By (1), f  -1(Y - F) = X - f  -1(F) ∈ v O(X). We have    

f
 -1(F) ∈ v C(X). Reverse can be obtained similarly. 
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(2)�(3): Let F be closed in Y containing f(x). By (2), f -1(F) ∈v C(X) and x∈ f  -1(F). Take U = f -1(F). Then f (U) ⊂ F. 

 

(3) � (2): Let F be closed in Y and x∈ f  -1(F). From (3), there exists Ux∈ v C(X, x) such that Ux⊂ f -1(F). We have  

f
 -1(F) = ∪x∈ f  -1(F)Ux. Thus f -1(F) is v-closed. 

 

(3) ⇔ (4): Let V∈ σ(Y) not containing f(x). Then, Y - V∈ C(Y, f(x)). By (3), there exists U∈ v C(X,x) such that f(U) ⊂ 

Y - V. Hence, U⊂ f  -1(Y - V) ⊂ X - f  -1(V) and then f  -1(V) ⊂ X - U. Take H = X - U. Then H∈ v O(X) non-containing 

x. The converse can be shown easily. 

 

(1) ⇔ (5): Let G be open subset of Y. Since (cl G) is closed, then by (1),  f  -1(cl{(G)}) ⊂v C(X). The converse can be 

shown easily. 

 

(2) ⇔ (6): It can be obtained similar as (1) ⇔ (5). 

 

Example 1: Let X = {a, b, c}, τ = {φ, {a}, {b}, {a, b},{a, c}, X} and σ = {φ, {a}, {b}, {a, b}, X}. Then the identity 

function f: X→ X is v-continuous. But it is not regular set-connected. 

 

Theorem 3.2: If f is v-continuous and A∈ RO(X), then f|A: A→ Y is v-continuous. 

 

Remark 2: Every restriction of a v-continuous function is not necessarily v-continuous. 

 

Example 3: Let X = {a, b, c, d}, τ = {φ, {a}, {b}, {a, b}, X} and σ = {φ, {a}, {a, b}, X}. The identity function f:X→ X 

is v-continuous, but, if A = {a, c, d} where A is not regular-open in (X, τ) and τA is the relative topology on A induced 

by τ, then f|A:(A, τA)→ (X, σ) is not v-continuous. 

 

Theorem 3.3: Let f be a function and  Σ = {Uα: α∈I} be a v-cover of X. If for each α∈ I, f/Uα is v-continuous, then f is 

an v-continuous function. 

 

Proof: Let F∈ σ (Y). f/Uα is v-continuous for each α∈ I, f/Uα
 -1(F)∈vO/Uα. Since Uα∈vO(X), by theorem 6.3[7]  

f/Uα
 -1(F)∈vO(X) for each α∈I. Then f -1(F) = ∪α∈I f/Uα

 -1(F)∈vO(X). This gives f is v-continuous. 

 

Theorem 3.4: Let f be a function and let g: X→ X × Y be the graph function of f, defined by g(x) = (x, f(x)) for every 

x∈ X. If g is v-continuous, then f is v-continuous. 

 

Proof: Let V∈ σ (Y), then X× V∈ σ (X× Y). Since g is v-continuous, then f -1(V) = g  -1(X× V) ∈v O(X). Thus, f is  

v-continuous. 

 

Theorem 3.5: Let f and g be functions. Then, the following properties hold: 

(1) If f is v. c. and g is regular set-connected, then g• f is v. c. 

(2) If f is v. c. and g is perfectly continuous, then g• f is v. c. 

 

Proof: (1) Let V∈η(Z). Since g is regular set-connected, g -1(V) is clopen. Since f is v-continuous,  

 f -1(g  -1(V)) = (g• f)  -1(V) is v-clopen. Therefore, g• f is v. c. 

(2) can be obtained similarly. 

 

Definition 3.2: A function f is called M-v-open if image of v-open is v-open. 

 

Theorem 3.6: If f is surjective M-v-open [resp: M-v-closed] and g is a function such that g• f: is v-continuous, then g is 

v-continuous. 

 

Proof: Let V∈ σ (Z). Since g• f is v-continuous, (g• f)  -1(V ) = f  -1• g  -1(V) is v-open. Since f is surjective M-v-open,  

f(f  -1• g  -1(V)) = g  -1(V) is v-open. Therefore, g is v-continuous. 

 

Theorem 3.7:  

(i) If f is r-irresolute and contra continuous, then f is regular set-connected. 

(ii) If f is contra-r-irresolute and almost continuous, then f is regular set-connected. 

 

Theorem 3.8: If f is v-continuous, then for each point x∈ X and each filter base Λ in X v-converging to x, the filter 

base f (Λ) is rc-convergent to f(x). 

 

Proof: Let x∈ X and Λ be any filter base in X v-converging to x. Since f is v-continuous, then for any  

V∈ σ (Y) containing f(x), there exists U∈ v O(X) containing x such that f(U) ⊂ V. Since Λ is v-converging to x, there 

exists a B∈ Λ such that B⊂ U. This means that f(B)⊂ V and therefore the filter base f(Λ) is rc-convergent to f(x). 
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Theorem 3.9: Let f be a function and x∈ X. If there exists U∈ RO(X) such that x∈ U and the restriction of f|U is v-

continuous at x, then f is v-continuous at x. 

 

Proof: Suppose that F∈σ(Y) containing f(x). Since f|U is v-continuous at x, there exists V∈vO(U, x) such that  

f(V) = (f|U)(V)⊂ F. Since U∈RO(X, x), V∈vO(X, x). This shows clearly that f is v-continuous at x. 

 

Lemma 3.1: 

(i) If V is an open set, then sClθ(V) = sCl(V). 

(ii)If V is an regular-open set, then sCl(V) = Int(Cl(V)). 

 

Theorem 3.10: For a v-continuous function f, the following conditions are equivalent: 

(i) vcl{(f  -1(V))} ⊆ f  -1(sClθ (V)) for every open subset V of Y; 

(ii) vcl{(f  -1(V))} ⊆ f  -1(scl{(V)}) for every open subset V of Y; 

(iii) vcl{(f  -1(V))} ⊆ f  -1((cl V)o) for every open subset V of Y; 

(iv) cl{(f  -1(V))o}⊆ f  -1((cl V)o) for every open subset V of Y. 

 

Proof: (i) � (ii) follows from Lemma 3.1(i). 

 

(ii) � (iii) and (iv) � (i) follows from Lemma 3.1(ii). 

 

(iii) � (iv) Since vcl{(f  -1(V))} = f  -1(V) ∪ cl{(f  -1(V))o)}, it follows from (iii) that 

cl{(f  -1(V))o)}⊆ f  -1((cl V)o). 

 

The next result is an immediate consequence of Theorems 3.1 and 3.4. 

 

Theorem 3.11: Let f be a function and let S be any collection of subsets of Y containing the open sets. Then f is  

v-continuous iff vcl{(f  -1(S))} ⊆ f  -1(sClθ (S)) for every S∈S. 

 

Definition 3.2: A function f is called (v, s)-continuous if for each x∈ X and each V∈ SO(Y, f(x)), there exists U∈ v 

O(X, x) such that f(U) ⊂ cl{V}. 

 

Theorem 3.12: For a function f, the following properties are equivalent: 

(1) f is (v, s)-continuous; 

(2) f is v-continuous; 

(3) f -1(V) is v-open in X for each θ-semi-open set V of Y; 

(4) f -1(F) is v-open in X for each θ-semi-closed set F of Y. 

 

Proof: (1) � (2): Let F∈σ(Y) and x∈f
 -1(F). Then f(x) ∈ F and F is semi-open. Since f is (v, s)-continuous, there exists 

U∈vO(X, x) such that f(U)⊂cl(F) = F. Hence x∈U⊂f
  -1(F) which implies that x∈v(f -1(F))o. Therefore, f -1(F)⊂v(f -1(F))o 

and hence f -1(F) = v(f  -1(F))o. This shows that f -1(F)∈vO(X). It follows from Theorem 3.1,  f is v-continuous. 

 

(2) � (3): Follows from the fact that every θ-semi-open set is the union of regular closed sets. 

 

(3) ⇔ (4): This is obvious. 

 

(4) � (1): Let x∈X and V∈SO(Y, f(x)). Since cl V is regular closed, it is θ-semi-open.  

 

Now, put U = f -1(cl V). Then U∈ v O(X, x) and f(U) ⊂ cl V. This shows that f is (v, s)-continuous. 

 

Theorem 3.13: For a function f, the following properties are equivalent: 

(1) f is v-continuous; 

(2) f(v(cl A)) ⊂ sClθ (f(A)) for every subset A of X; 

(3) vcl{(f  -1(B))} ⊂ f  -1(sClθ (B)) for every subset B of Y. 

 

Proof: (1) � (2): Let A ⊂ X. Suppose that x∈vcl{(A)} and G∈SO(Y, f(x)). Since f is v-continuous, by Theorem 3.12, 

there exists U∈v O(X, x) such that f(U)⊂cl G. Since x∈vcl{(A)}, U∩A ≠  φ; and hence    φ ≠ f(U) ∩ f(A) ⊂ cl G ∩ 

f(A). Therefore, f(x) ∈ sClθ (f(A)) and hence f(vcl{(A)}) ⊂ sClθ (f(A)). 

 

(2) � (3): Let B be any subset of Y. Then f(vcl{(f  -1(B))})⊂sClθ(f(f
  -1(B)))⊂sClθ(B)  

and hence vcl{(f  -1(B))}⊂f
  -1(sClθ (B)). 

 

(3) � (1): Let V∈ SO(Y, f(x)). Since cl{V}∩ (Y - cl V) = φ,  
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we have f(x) ∉ sClθ (Y - cl V) and hence  x∉f
 -1(sClθ(Y - cl{V})). By (3), x∉vcl{(f  -1(Y-cl{V}))}. There exists 

U∈vO(X, x) such that U∩f
 -1(Y-cl{V}) = φ; hence   f(U)∩(Y-cl{V}) = φ. This shows that f(U)⊂cl{V}. Therefore,  f is 

v-continuous. 

 

4. THE PRESERVATION THEOREMS: 

 

Theorem 4.1: Let f be an v-continuous surjection. Then the following statements hold: 

(1) if X is v-compact, then Y is S-closed[resp: nearly compact]. 

(2) if X is v-Lindelof, then Y is S-Lindelof[resp: nearly Lindelof]. 

(3) if X is countably v-compact, then Y is countably S-closed[resp: nearly countably compact]. 

 

Theorem 4.2: If f is an r-continuous and contra-continuous surjection and X is mildly compact (resp. mildly countably 

compact, mildly Lindelof), then Y is nearly compact (resp. nearly countably compact, nearly Lindelof) and S-closed 

(resp. countably S-closed, S-Lindelof). 

 

Proof: Since f is r-continuous and contra-continuous, for {Vα:α∈ I} be any regular closed (respectively regular open) 

cover of Y, we have {f
 -1(Vα: α∈ I} is a clopen cover of X and since X is mildly compact, there exists a finite subset Io 

of I such that X = ∪{f
 -1(Vα: α∈ Io}. Since f is surjective, we obtain Y = ∪ {Vα: α ∈ Io}. This shows that Y is S-closed 

(respectively nearly compact). The other proofs can be obtained similarly. 

 

Theorem 4.3: If X is v-ultra-connected and f is v-continuous and surjective, then Y is hyperconnected. 

 

Proof: Assume that Y is not hyperconnected. Then there exists an open set V such that V is not dense in Y. Then there 

exist disjoint non-empty regular open subsets B1 and B2 in Y, namely (cl V)o and Y - cl V. Since f is v-continuous and 

onto, A1 = f
 -1(B1) and A2 = f

 -1(B2) are disjoint non-empty v-open subsets of X. By assumption, the v-ultra-

connectedness of X implies that A1 and A2 must intersect, which is a contradiction. Therefore Y is hyperconnected. 

 

Theorem 4.4: If f is v-continuous surjection and X is v-connected, then Y is connected. 

 

Proof: Suppose that Y is not connected space. There exist nonempty disjoint open sets V1 and V2 such that  

Y = V1∪ V2. Therefore, V1 and V2 are clopen in Y. Since f is v-continuous, f -1(V1) and f -1(V2) are disjoint v-open sets 

in X and X = f -1(V1) ∪ f -1(V2), which is a contradiction for v-connectedness of X. Hence, Y is connected. 

 

Corollary 4.1: If f is v-continuous surjection and X is r-connected, then Y is connected. 

 

Theorem 4.5: If f is a v-continuous injection and Y is weakly Hausdorff, then X is v-T1. 

 

Proof: Assume Y is weakly Hausdorff. For any x≠ y∈ X, there exists V, W∈ σ (Y) such that  

f(x) ∈ V, f(y) ∉ V, f(x) ∉ W and f(y) ∈ W. Since f is v-continuous, f  -1(V) and f  -1(W) are v-open subsets of X such that 

x∈ f  -1(V), y∉ f  -1(V), x∉ f  -1(W) and y∈ f  -1(W). Hence X is v-T1. 

 

Corollary 4.2: If f is a r-continuous injection and Y is weakly Hausdorff, then X is v-T1. 

 

Corollary 4.3: If f is a v-continuous injection and Y is weakly Hausdorff, then X is semi-T1. 

 

Corollary 4.4: If f is a v-continuous injection and Y is weakly Hausdorff, then X is β-T1. 

 

5. v-REGULAR GRAPHS: 

 

Recall that for a function f, G(f) = {(x, f(x)): x∈ X}⊂ X× Y is called the graph of f. 

 

Definition 5.1: A graph G(f) of a function f is said to be v-regular if for each (x, y)∈(X×Y) - G(f), U∈vO(X, x) and V∈ 

RO(Y, y)such that (U× V)∩G(f) = φ. 

 

Lemma 5.1: The following properties are equivalent for a graph G (f) of a function: 

(1) G (f) is v-regular; 

(2) for each point (x, y)∈(X× Y) - G(f), there exists U∈vO(X, x) and V∈RO(Y, y) such that f(U)∩V = φ. 

 

Proof: Follows from definition 5.1 and for any A⊂ X and B⊂ Y, (A×B)∩G(f) = φ iff f(A) ∩ B = φ. 

 

Theorem 5.2: If f is v-continuous and Y is T2, then G(f) is v-regular graph in X×Y. 
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Proof: Assume Y is T2. Let (x, y) ∈ (X× Y) - G (f). It follows that f(x) ≠ y. Since Y is T2, there exist disjoint open sets 

V and W containing f(x) and y, respectively. We have ((cl V) o) ∩ ((cl W)o) = φ. Since f is v-continuous,  

 

f
 -1((cl V)o)∈vO(X, x). Take U = f -1((clV) o). Then f (U) ⊂((clV)o). Therefore, f (U) ∩((clW) o) = φ and G (f) is v-regular 

in X× Y. 

 

Corollary 5.1: If f is v-continuous and Y is r-T2, then G (f) is v-regular graph in X×Y. 

 

Corollary 5.2: If f is r-continuous and Y is T2, then G (f) is v-regular graph in X×Y. 

 

Corollary 5.3: If f is r-continuous and Y is r-T2, then G (f) is v-regular graph in X×Y. 

 

Theorem 5.3: Let f have a v-regular graph G (f). If f is injective, then X is v-T1. 

 

Proof: Let x≠ y∈ X. Then, we have (x, f(y)) ∈ (X× Y) - G(f)}. By definition 5.1, there exists U∈vO(X) and V∈ RO(Y) 

such that (x, f(y)) ∈ U× V and f(U) ∩ V = φ; hence U∩ f  -1(V) = φ. Therefore, we have y∉ U.  

Thus, y∈ X - U and x∉ X - U. We obtain that X - U∈ v O(X). Hence X is v-T1. 

 

Theorem 5.4: Let f have a v-regular graph G(f). If f is surjective, then Y is weakly T2. 

 

Proof: Let y1 ≠ y2 ∈ Y. Since f is surjective f(x) = y1 for some x∈ X and (x, y2)∈ (X× Y) - G(f). By definition 5.1, there 

exists U∈ v O(X) and F∈ RO(Y) such that (x, y2)∈ U× F and f(U) ∩ F = φ; hence y1∉ F. Then  y2∉ Y - F∈ σ (Y) and 

y1∈ Y - F. Thus Y is weakly T2. 

 

CONCLUSION 

 

Author studied some properties of v-continuity. 
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