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ABSTRACT 
Let M be a right R -module. A right R -module N  is called nonessential principally M -injective (briefly, NPM -
injective) if, for each nonessential principal submodule mR  of ,M any R -homomorphism from mR to N can be 
extended to an R -homomorphism from M  to .N M is called nonessential principally quasi –injective (briefly, 
NPQ -injective) if, it is NPM -injective. In this paper, we give some characterizations and properties of NPQ -
injective modules. 
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1.  INTRODUCTION 
 
Let R  be a ring.  A right  R -module  M  is called principally injective (or P − injective), if every  
R − homomorphism from a principal right ideal of R  to M can be extended to an R -homomorphism from R  to 

.M  Equivalently,  M Rl r (a) Ma=  for all  a R∈  where  I  and r are left and right annihilators, respectively. This 
notion was introduced by Camillo [2] for commutative rings.  
 
In [7], Nicholson and Yousif studied the structure of principally injective rings and gave some applications.  Nicholson, 
Park, and Yousif [8] extended this notion of principally injective rings to the one for modules. In [5], W. Junchao 
introduced the definition of Jpc -injective rings, a ring R is called right Jpc -injective if for each  \ ,ra R Z∈  any 

R -homomorphism from  aR  to R  can be extended to an R -homomorphism from R to .R    
 
In this note we introduce the definition of NPQ -injective modules and give some characterizations and properties. 
Some results on principally quasi-injective modules [8] are extended to these modules.  
 
Throughout this paper, R  will be an associative ring with identity and all modules are unitary right R −modules.  For 
right R −modules M  and ,N  RHom (M, N)  denotes the set of all R − homomorphisms from M  to N  and  

RS End (M)=  denotes the endomorphism ring of .M   If X  is a subset of M  the right (resp. left) annihilator of 

X  in R  (resp. S ) is denoted by Rr (X)   (resp. Sl (X) ).  By notation N M⊕⊂  e(N M)⊂  we mean that N  is a 

direct summand (an essential submodule) of .M   
 

Corresponding Author: S. Wongwai*  
Office of Academic Promotion and Registration,  

Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand. 
 
 
 

http://www.ijma.info/�


S. Wongwai*, M. Kaewneam / NPQ-Injective Modules / IJMA- 7(8), August-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                     149  

 
2. NPM -INJECTIVE MODULES 
 
Recall that a submodule K of a right R −module M  is essential (or large) in M  if, every nonzero submodule L of 
M , we have K L 0.∩ ≠  
 
Definition 2.1:  Let M  be a right R -module.  A right R -module N  is called nonessential principally M - injective 
(briefly, NPM -injective) if, for each nonessential principal submodule mR  of ,M any R -homomorphism from 
mR to N  can be extended to an R -homomorphism from M  to .N  
 

Example 2.2:  Let  
F F

R
0 F
 

=  
 

 where F  is a field.  

(1) Let  R

F F
M

0 0
 

=  
 

  and  R

0 0
N

0 F
 

=  
 

.  Then  N  is not M -injective but N  is NPM -injective. 

(2) If R RM R=  and  R

F F
N

0 0
 

=  
 

, then N  is  NPM -injective.   

 

Proof:  (1) It is obvious that 
0 F
0 0
 
 
 

 
0 0

.
0 F
 
 
 

   For any R -homomorphism 
F F 0 0

:
0 0 0 F
   

α →   
   

 with 

1 0 0 0
0 0 0 x

    
α =    

    
 for some x F,∈  then  

a b 1 0 a b 0 0 a b 0 0
0 0 0 0 0 0 0 x 0 0 0 0

             
α = α = =             

             
  for every  

a b F F
0 0 0 0
   

∈   
   

,  so  0.α =  

Therefore  N  is not M -injective. 
 

We see that only  
0 0
0 0
 
 
 

  is a nonessential principal submodule of  M , then N  is  NPM -injective. 

(2)  For  R RM R=  and R

F F
N

0 0
 

=  
 

, so it is clear that only 1

0 0
X ,

0 F
 

=  
 

 2

0 F
X

0 0
 

=  
 

  and  3X N=  are 

nonzero proper nonessential principal submodules of M . Let 1: X Nϕ →  be an R − homomorphism. Since 

1

0 0
X

0 1
 

∈ 
 

,  there exists 11 12x , x F∈  such that 11 120 0 x x
0 1 0 0

    
ϕ =    

    
.    

 

Then         
0 0 0 0 0 0
0 1 0 1 0 1

        
ϕ = ϕ        

        
  

                                         11 12 12x x 0 0 0 x
0 0 0 1 0 0

    
= =    
    

 . 

It follows that 11x 0= . 

Define   : M Nϕ →  by   121 0 0 x
( ) .

0 1 0 0
   

ϕ =   
   

 It is clear that ϕ  is an R − homomorphism.  

 

Then   

12 120 0 1 0 0 0 0 x 0 0 0 x
.

0 1 0 1 0 1 0 0 0 1 0 0
             

ϕ = ϕ = =             
             

 

This show that ϕ  is an extension of ϕ . By the similar proof of 1X ,  we can show for 2X  and it is clear for 3X .  Then 

N  is NPM -injective.                                                 



S. Wongwai*, M. Kaewneam / NPQ-Injective Modules / IJMA- 7(8), August-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                     150  

 
Lemma 2.3: Let M and N  be right R −modules.  Then N  is NPM -injective if and only if for each nonessential 
principal submodule mR of ,M  

R N RHom (M, N)m l r (m).=  
 
Proof:  Clearly, R N RHom (M, N)m l r (m).⊂   
 
Let N Rn l r (m).∈  Define : mR nRϕ →  by  (mr) nrϕ =  for every r R.∈  Then ϕ  is well-defined because  

R Rr (m) r (n)⊂ . It is clear that ϕ  is an R − homomorphism. Since N  is NPM -injective, there exists an 

R − homomorphism   : M Nϕ →   such that   1 2 ,ϕι = ι ϕ  where  1 : mR Mι →  and 2 : nR Nι →  are the 

inclusion maps. Hence  

Rn (m) Hom (M, N)m.= ϕ ∈  
 
Conversely, let m M∈  with emR M⊄  and : mR Nϕ →  be an R − homomorphism. Then  N R(m) l r (m)ϕ ∈  

so by assumption, we have  (m) (m)ϕ = ϕ  for some  RHom (M, N).ϕ∈  This shows that N  is NPM -injective.                                     
 
Lemma 2.4:  Let  iN   (1 i n)≤ ≤  be NPM -injective modules. Then n

i 1 iN=⊕  is NPM -injective. 
 
Proof: Let m M∈  with emR M⊄ and  n

i 1 i: mR N=ϕ →⊕  be an R − homomorphism. Then for each i , there 

exists  an R − homomorphism i i: M Nϕ →  such that i iϕ ι = π ϕ  where  n
i i 1 i i: N N=π ⊕ →  is  the projection map, 

and : mR Mι →  is the inclusion map. Put  n
1 1 n n i 1 iˆ ... : M N .=ϕ = ι ϕ + + ι ϕ →⊕  Then it is clear that ϕ̂  extends  

.ϕ                     
 
Lemma 2.5:    

(1) N  is  NPM -injective  if and only if  N  is  NPX -injective  for any submodule X  of .M  
(2) Any direct summand of an NPM - injective module is again NPM - injective. 

 
Proof: The sufficiency is trivial. For the necessity, let m X∈ with emR X⊄ and : mR Nϕ →  be an 

R − homomorphism. Since emR M,⊄  there exists an R − homomorphism  : M Nϕ →  such that 

2 1ϕ = ϕι ι   

where  1 : mR Xι →  and 2 : X Mι →  are the inclusion maps. Then  2ϕι  extends .ϕ  
(2)  By definition.                                                                                 
 
Lemma 2.6:  If m M∈  with emR M⊄  and  mR  is NPM -injective, then  mR M.⊕⊂   
 
Proof: Since mR  is NPM -injective, there exists an R − homomorphism : M mRϕ → such that mR1ϕι =   

where : mR Mι → is the inclusion map. Then by [1, Lemma 5.1], ι  is a split monomorphism, therefore  
mR M.⊕⊂                              
 
Theorem 2.7:  The following conditions are equivalent for a projective module .M  

(1) Every  m M∈  with emR M,⊄  mR  is projective.  
(2) Every factor module of an NPM -injective module is NPM -injective. 
(3) Every factor module of an injective R −module is NPM -injective. 

 
Proof:   
(1) (2)⇒   Let  N   be an NPM -injective, X  a submodule of. N , m M∈  with emR M⊄  and let  

: mR N / Xϕ →  be an R − homomorphism. Then by (1), there exists an R − homomorphism : mR Nβ →  such 
that ϕ = ηβ   where : N N / Xη →  is the natural R − epimorphism. Since N  is NPM -injective, there exists an 

R − homomorphism  : M Nϕ →  which is an extension of  β  to .M  Then ηϕ  is an extension of  ϕ  to .M  
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(2) (3)⇒  is clear. 
 
(3) (1)⇒  Let m M∈  with emR M,⊄  h : A B→  an R − epimorphism, and let  : mR Bα →  be an 
R − homomorphism. Embed A in an injective module E  [1, 18.6].  Let  : B A / Ker(h)σ →  be an R − isomorphism. 

Since E / Ker(h)  is NPM -injective, there exists an R − homomorphism  : M E / Ker(h)α →  such that  

1 2ι σα = αι  

where  1 : A / Ker(h) E / Ker(h)ι →  and 2 : mR Mι →  are the inclusion maps.  
 
Since  M  is projective, α  can be lifted to  : M E.β →  Let  x mR.∈  Then (x) a Ker(h)σα = + for some a A,∈  so 

(x) Ker(h) (x) (x) (x) a Ker(h)β + = ηβ = α = σα = +  where : E E / Ker(h)η →  is the natural R − epimorphism. 
Hence  (x) a Ker(h) Aβ − ∈ ⊂  so (x) A.β ∈   This shows that (mR) A.β ⊂  Therefore we have lifted .α                                                                              
 
3. NPQ-INJECTIVE MODULES                                                                                                
 
A right R -module M is called nonessential principally quasi –injective (briefly, NPQ -injective) if, it is NPM -
injective.   
 
Lemma 3.1: Let M  be a right R −module and RS End (M).=   Then the following conditions are equivalent. 

(1) M  is NPQ -injective.    

(2) M Rl r (m) Sm=  for each m M∈  with emR M.⊄  

(3) R Rr (m) r (n),⊂   where  m,n M∈  with emR M,⊄   implies that  Sn Sm.⊂  

(4) M R Ml (r (m) aR) l (a) Sm∩ = +   for all  a R∈   and m M∈  with emaR M.⊄  

(5) If : mR Mα →   is an R − homomorphism, emR M,⊄  then  (m) Sm.α ∈  
 
Proof:   
(1) (2)⇔  by Lemma 2.3 
 
(2) (3)⇒  If R Rr (m) r (n),⊂  where m,n M∈ with emR M,⊄  then M R M Rl r (n) l r (m).⊂  Then  

M R M RSn l r (n) l r (m) Sm⊂ ⊂ =   by (2).   
 
(3) (4)⇒  Let a R∈   and m M∈  with emaR M⊄  and let  M Rx l (r (m) aR).∈ ∩  

Then R Rr (ma) r (xa),⊂  and hence by (3),  Sxa Sma.⊂  Thus  xa (ma),= ϕ  Sϕ∈  and so M(x (m)) l (a).−ϕ ∈  

It follows that Mx l (a) Sm.∈ +  The other hand is clear. 
 
(4) (5)⇒  Put Ra 1=  in (4), then M R R R M R(m) l r (m) l (r (m) 1R) l (1 ) Sm Smα ∈ = ∩ = + = because em1R M.⊄  
 
(5) (1)⇒  Let  m M∈  with emR M⊄  and let  : mR Mϕ →  be an R − homomorphism. 

Then by (5), (m) Smϕ ∈  so there exists an R − homomorphism ˆ Sϕ∈  is an extension of ϕ  to .M                                                                                                                                                                
Following [8], a right R −module M is called a principal self-generator, if every element m M∈  has the form 

1m (m )= γ  for some : M mR.γ →  If  uR 0≠  is uniform, we call u  a uniform element of .M  We call a right R -

module M  is a duo module if every submodule of M is fully invariant. 
 
Theorem 3.2:  Let M  be a duo, NPQ -injective module and m,n M∈  with emR M.⊄  

(1) If  mR  embeds into  ,nR  then  Sm  is an image of  .Sn  
(2) If  nR  is an image of  ,mR  then  Sn  can be embedded into .Sm  
(3) If  mR nR,  then  Sm Sn.  
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Proof:  (1)   Let   : mR nRσ →  be an R −monomorphism and let  1 : mR Mι →  and 2 : nR Mι →  be the inclusion 

maps.  Since M  is NPQ -injective, there exists an R − homomorphism  : M Mσ →  such that  1 2 .σι = ι σ  Let 

:Sn Smϕ →   defined by ( (n)) (m)ϕ α = ασ  for every Sα∈ . Since ( (n)) ( (m)) ( (m)) (nR),ϕ α = α σ = α σ ∈α  ϕ  

is well-defined. It is clear that ϕ  is an S -homomorphism.  Since  mRσ  is monic and M  is a duo module, 
(mR) mRσ ⊂ so e(mR) M.σ ⊄ Since R Rr ( (m)) r (m),σ ⊂ Sm S (m)⊂ σ byLemma3.1Then m S (m) (Sn).∈ σ ⊂ ϕ  
 
(2)  By the same notations as in (1), let : mR nRσ →  be an R − epimorphism. Write (ms) n,σ = s R.∈   Since M  

is NPQ -injective, σ can be extended to  : M Mσ →  such that  1 2 .σι = ι σ  Define  :Sn Smϕ →   defined by 

( (n)) (ms)ϕ α = ασ  for every Sα∈ . It is clear that ϕ  is an S − homomorphism. If (n) Ker( )α ∈ ϕ , then 
0 ( (n)) (ms) (n).= ϕ α = ασ = α  This shows that ϕ  is an S − monomorphism.    

 
(3) Follows from (1) and (2).                                                                                                        
 
Theorem 3.3: Let M be a principal module which is a principal self-generator. Then the following conditions are 
equivalent. 

(1) M  is NPQ -injective.    
(2) S Sl (Ker( ) mR) l (m) Sα ∩ = + α  for all m M∈   and  Sα∈  with  e(m)R M.α ⊄  

(3) Sl (Ker( )) Sα = α  for all Sα∈  with e(M) M.α ⊄  

(4) Ker( ) Ker( ),α ⊂ β  where  , Sα β∈   with  e(M) M,α ⊄   implies that  S S .β ⊂ α  
 
Proof:  (1) (2)⇒  Clearly,  S Sl (m) S l (Ker( ) mR).+ α ⊂ α ∩  Let Sl (Ker( ) mR).β∈ α ∩  

Then R Rr ( (m)) r ( (m)),α ⊂ β  so M R M Rl r ( (m)) l r ( (m)).β ⊂ α  Since e(m)R M,α ⊄  

M R M RS (m) l r ( (m)) l r ( (m)) S (m)β ⊂ β ⊂ α = α  by Lemma  3.1,  so (m) (m)β = γα  for some S.γ∈  It  follows that 

S( ) l (m),β− γα ∈  and hence  Sl (m) S .β∈ + α  
 
(2) (3)⇒  If  0M m R,=  take  0m m=  in (2). 
 
(3) (4)⇒  Ker( ) Ker( ),α ⊂ β  then  S Sl (Ker( )) l (Ker( )).β ⊂ α  It follows that S SS l (Ker( )) l (Ker( )) S .β ⊂ β ⊂ α = α  
 
(4) (1)⇒  Let m M∈  with emR M,⊄  : mR Mϕ →  be an R − homomorphism.  
 
Since M  is a principal self-generator, there exists Sβ∈  such that 1(m ) m,β =  so Ker( ) Ker( )β ⊂ ϕβ  and e(M) M.β ⊄  

Then by (4),  S Sϕβ ⊂ β  hence ϕβ = ϕβ  for some  S.ϕ∈ This shows that ϕ  is an extension of .ϕ                                                                    
 
Theorem 3.4:  Let M  be a duo, NPQ -injective module. If u  is a uniform element of M with euR M,⊄ then    

{ }uM S Ker( ) uR 0= α∈ α ∩ ≠ is a unique maximal left ideal of S  containing Sl (u).  

 
Proof:  Since uR  is uniform, uM  is a left ideal of .S  It is clear that S ul (u) M S.⊂ ≠    

Let  X  be a left ideal of S containing Sl (u)  and X S.≠  If uX M ,α∈ − then  Ker( ) uR 0.α ∩ =  Since M  is a 

duo module, e(u)R Mα ⊄ and so by Theorem 3.3 we have S SS l (Ker( ) uR) l (u) S X= α ∩ = + α ⊂   a 

contradiction. Thus  uX M .⊂                     
 
Definition 3.5:  Let  M  be a right R − -module, RS End (M)= .  The module M  is called almost NPQ -injective 

if, for each nonessential principal submodule mR of ,M there exists an S -submodule mX of M such that  

M R ml (r (m)) Sm X= ⊕  as left S -modules. 
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Theorem 3.6:  Let M  be a right R -module,  RS End (M)=  and m M∈  with emR M.⊄     

(1) If RHom (mR,M) S Y= ⊕  as left S -modules,  then  M Rl (r (m)) Sm X= ⊕  as left S - modules,  

where { }X f (m) : f Y .= ∈  

(2) If   M Rl (r (m)) Sm X= ⊕   for some  X M⊂   as left  S - modules,  then we have  RHom (mR,M) S Y= ⊕   

as left  S - modules,  where { }RY f Hom (mR,M) : f (m) X .= ∈ ∈  

(3) Sm  is a direct summand of M Rl (r (m))  as left S - modules if and only if S  is a direct summand of  

RHom (mR,M)  as left  S - modules. 
 
Proof:  Define  R M R: Hom (mR,M) l (r (m))θ →  by (f ) f (m)θ =  for every Rf Hom (mR,M).∈  It is obvious that 

θ  is an S -monomorphism. For M Rx l (r (m)),∈ define g : mR M→  by g(mr) xr=  for every r R.∈  Since 

R Rr (m) r (x),⊂ g  is well-defined, so it is clear that  g  is an R -homomorphism.  Then (g) g(m) x.θ = =  Therefore 

θ  is an S -isomorphism. Let (m) Sm.α ∈  Since M R(m) l (r (m)),α ∈  there  exists RHom (mR,M)ϕ∈  such that 

( ) (m),θ ϕ = α so (m) (m).ϕ = α  Define   : M Mϕ →  by  (x) (x)ϕ = α  for every x M.∈  It is clear that ϕ  is an 

R -homomorphism and is an extension of .ϕ  Then  (m) (m) ( ).α = ϕ = θ ϕ This shows that Sm (S).⊂ θ The other 

inclusion is clear. Then (S) Smθ = and { }X (Y) f (m) : f Y .= θ = ∈  Then the Lemma follows.                       
 
Theorem 3.7:  The following conditions are equivalent: 

(1) M  is almost NPQ -injective.   

(2) There exists an indexed set { }mX : m M∈  of S -submodules of  M  with the property that if  emR M,⊄  

m M,∈ then M R ma ll (r (m) aR) (X : a) Sm∩ = +  and ma l M(X : a) Sm l (a)∩ ⊂  for all a R,∈ where  

{ }ma l ma(X : a) n M : na X= ∈ ∈  if  ma 0≠  and  ma l M(X : a) l (aR)=  if  ma 0.=     
 
Proof:  
(1) (2)⇒  Let m M∈  with emR M.⊄  Then there exists an S -submodule mX  of M  such that  

M R ml (r (m)) Sm X= ⊕  as left S -modules.  Let a R.∈  If ma 0,= then RaR r (m)⊂   so (2) follows. If ma 0,≠  

then any  M Rx l (r (m) aR)∈ ∩  we have  R Rr (ma) r (xa)⊂  and so   M R M R maxa l (r (xa)) l (r (ma)) Sma X∈ ⊂ = ⊕   

because emaR M.⊄  Write xa (ma) y= α +  where  Sα∈  and may X .∈  Then  ma(x (m))a y X ,−α = ∈  so 

ma lx (m) (X : a) .−α ∈  It follows that  ma lx (X : a) Sm.∈ +  This shows that M Rl (r (m) aR)∩ ⊂ ma l(X : a) Sm.+   
 
Conversely, it is clear that   

M RSm l (r (m) aR).⊂ ∩  Let  ma ly (X : a) .∈  Then ma M Rya X l (r (ma)).∈ ⊂  If  Ras r (m) aR,∈ ∩  then 

mas 0= and so  yas 0.=  Hence M Ry l (r (m) aR).∈ ∩ This shows that ma l(X : a) ⊂ M Rl (r (m) aR).∩  

Therefore  M Rl (r (m) aR)∩ = ma l(X : a) Sm.+   
 
If  ma l(m) (X : a) Sm,β ∈ ∩  then  ma(m)a X Sma 0.β ∈ ∩ =  Hence M(m) l (a).β ∈  
 
(2) (1)⇒  Let m M∈  with emR M.⊄  Then there exists an S -submodule mX  of M such that  

M R M R m ll (r (m)) l (r (m) R) (X :1) Sm= ∩ = +  and  m l M(X :1) Sm l (1) 0.∩ ⊂ =  
 
Note that m l m(X :1) X .=  Then (1) follows.                                                                              
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