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ABSTRACT

Let M bearight R -module. A right R -module N is called nonessential principally M -injective (briefly, NPM -
injective) if, for each nonessential principal submodule MR of M, any R -homomorphism from mRto N can be

extended to an R -homomorphism from M toN. M is called nonessential principally quasi —injective (briefly,
NPQ -injective) if, it is NPM -injective. In this paper, we give some characterizations and properties of NPQ -
injective modules.
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1. INTRODUCTION

Let R be a ring. A right R-module M s called principally injective (or P —injective), if every
R —homomorphism from a principal right ideal of R to M can be extended to an R -homomorphism from R to
M. Equivalently, 1,r;(a)=Ma forall a€R where | and rare left and right annihilators, respectively. This

notion was introduced by Camillo [2] for commutative rings.

In [7], Nicholson and Yousif studied the structure of principally injective rings and gave some applications. Nicholson,
Park, and Yousif [8] extended this notion of principally injective rings to the one for modules. In [5], W. Junchao

introduced the definition of JpC -injective rings, a ring R is called right Jpc -injective if for each ae€ R\Z,, any
R -homomorphism from aR to R can be extended to an R -homomorphism from R to R.

In this note we introduce the definition of NPQ -injective modules and give some characterizations and properties.
Some results on principally quasi-injective modules [8] are extended to these modules.

Throughout this paper, R will be an associative ring with identity and all modules are unitary right R —modules. For
right R—modules M and N, Hom. (M, N) denotes the set of all R —homomorphisms from M to N and

S=End, (M) denotes the endomorphism ring of M. If X is a subset of M the right (resp. left) annihilator of
X in R (resp. S) is denoted by Iy (X) (resp. I(X)). By notation N c®M (Nc® M) wemeanthat N isa

direct summand (an essential suomodule) of M.
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2. NPM -INJECTIVE MODULES

Recall that a submodule K of a right R —module M is essential (or large) in M if, every nonzero submodule L of
M, we have KL #0.

Definition 2.1: Let M be aright R -module. A right R -module N is called nonessential principally M - injective
(briefly, NPM -injective) if, for each nonessential principal suomodule MR of M,any R -homomorphism from

MR to N can be extended to an R -homomorphism from M to N.
F F
Example 2.2: Let R = 0 E where F is a field.
F F 0 0
(1) Let My = 00 and Ny = 0 E . Then N isnot M -injective but N is NPM -injective.

F F
(2) If My =R and Nq ZLO 0j,then N is NPM -injective.

o 0 F 0 0 _ F F 0 0)
Proof: (1) It is obvious that = . For any R -homomorphism o : - with
0 0 0 F 0 0 0 F
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Therefore N isnot M -injective.

00
We see that only [0 Oj is a nonessential principal submodule of M ,then N is NPM -injective.

0 F 0

nonzero proper nonessential principal submodules of M . Let @:X, = N be an R —homomorphism. Since

(O OJEX there exists X,,,X,, € F suchthat(p[[o OBZ(X“ Xlzj_
0 1 r 110 12 0 1 0 0
B (R () P4
01 0 1)10 1
Xy Xp (0 0 0 X,
o 5ot 5]

0
0

F F » 0 0 0 F
(2) For My =Ry and Ny = 00 , S0 it is clear that only X; = , X, = 0 and X, =N are

It follows that X, = 0.

~ ~(1 0
Define @:M — N by (p((o J):(

e I A e A

This show that ¢ is an extension of ¢ . By the similar proof of X, we can show for X, and itis clear for X,. Then
N is NPM -injective.

X ~
(1)2). Itis clear that ¢ is an R —homomorphism.
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Lemma 2.3: Let M and N be right R —modules. Then N is NPM -injective if and only if for each nonessential
principal submodule MR of M,

Hom, (M, N)m =1, (m).
Proof: Clearly, Hom, (M, N)m c I r; (m).

Let ne Iyry(m). Define @ :MR —nR by @(mr)=nr for every r € R. Then ¢ is well-defined because

(M) cry(n). It is clear that @ is an R —homomorphism. Since N is NPM -injective, there exists an
R —homomorphism (Ap: M — N such that (Apl,1 =1,0, where 1,:MR —->M and 1,:NR — N are the

inclusion maps. Hence n = (Ap(m) € Hom, (M, N)m.

Conversely, let me M with MR ¢° M and @: MR — N be an R —homomorphism. Then @(m) € I r, (M)

so by assumption, we have ¢@(m) = (T)(m) for some (Ape Hom, (M, N). This shows that N is NPM -injective.
Lemma24: Let N, (1<i<n) be NPM -injective modules. Then@®;; N, is NPM -injective.

Proof: Let me M with MR ¢® Mand @:mR — @, N, be an R —homomorphism. Then for each i, there
exists an R —homomorphism ¢, : M — N, such that ;1 = 7, where 7, 1@, N, — N, is the projection map,
and 1:mR — M is the inclusion map. Put @ =1,@, +...+ 1,0, : M — @, N,. Then it is clear that ¢ extends
0}

Lemma 2.5:
(1) N is NPM -injective ifand only if N is NPX -injective for any submodule X of M.
(2) Any direct summand of an NPM - injective module is again NPM - injective.

Proof: The sufficiency is trivial. For the necessity, let me Xwith MR ¢® Xandp:mMR — N be an
R —homomorphism. Since MR ¢° M, there exists an R —homomorphism (T): M — N such that (p:(Aptle
where 1, :MR — X and 1, : X = M are the inclusion maps. Then (Apt2 extends ¢.

(2) By definition.

Lemma2.6: If me M with MR ¢®* M and mR is NPM -injective, then MR =® M.

Proof: Since MR is NPM -injective, there exists an R —homomorphism ¢:M — mR such that 1 =1

where1: MR — Mis the inclusion map. Then by [1, Lemma 5.1], 1 is a split monomorphism, therefore
mR c® M.

Theorem 2.7: The following conditions are equivalent for a projective module M.
(1) Every me M with mR * M, mR is projective.
(2) Every factor module of an NPM -injective module is NPM -injective.
(3) Every factor module of an injective R —module is NPM -injective.

Proof:
D=2 Let N be an NPM -injective, X a submodule of. N, meM with mRe*M and let

@:MmR — N/X be an R —homomorphism. Then by (1), there exists an R —homomorphism 3: MR — N such
that @ =P wherenn:N — N/X is the natural R —epimorphism. Since N is NPM -injective, there exists an

R —homomorphism ¢: M —» N which is an extension of /3 to M. Then n(T) is an extension of @ to M.
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(2) = (3) isclear.

=@ Let meM with mRg*M, h:A—>B an R—epimorphism, and let o:mR —B be an
R —homomorphism. Embed A in an injective module E [1, 18.6]. Let o:B— A/Ker(h) be an R —isomorphism.

Since E/Ker(h) is NPM -injective, there exists an R —homomorphism a:M—>E/ Ker(h) such that 1,0 = &12
where 1, :A/Ker(h) — E/Ker(h) and 1, : MR — M are the inclusion maps.

Since M is projective, o, can be liftedto B:M — E. Let X € MR. Then ca(x) =a+ Ker(h) for some a e A, so

B(x)+Ker(h) =np(x) = &(X) =oa(x)=a+Ker(h) where n:E—E/Ker(h) is the natural R —epimorphism.
Hence B(x)—a e Ker(h) c A so B(x)eA. This shows that B(mR) < A. Therefore we have lifted o.

3. NPQ-INJECTIVE MODULES

A right R -module M is called nonessential principally quasi —injective (briefly, NPQ -injective) if, it is NPM -
injective.
Lemma3.1: Let M be aright R —module and S = End, (M). Then the following conditions are equivalent.

(1) M is NPQ -injective.

2) lyr(m)=Sm foreach me M with mR ¢° M.

(3) ry(m)cry(n), where m,neM with mR ® M, implies that Sn < Sm.

@ ly,(rs(mnaR)=1,(@)+Sm forall acR and meM with maR ¢° M.

(5) If a.:mR — M isan R —homomorphism, MR ¢°* M, then o(m) € Sm.

Proof:
@) < (2) by Lemma2.3

(2)=@) If r(m)cry(n), where mnemMwith MR g®*M, then I,r.(n)cl,r.(m). Then
Snclyrr(n) clyry (M) =Sm by (2).

B)= (@) LetaeR and me M with maR ¢° M and let x €l,(r, (m)NaR).
Then Iy (ma) < ry(Xa), and hence by (3), Sxa < Sma. Thus Xa =@(ma), ¢ €S andso (x—¢(m)) el,, (a).
It follows that X € |, (a) +Sm. The other hand is clear.

(4) = (5) put a=1; in(4), then a(m)el,,r, (M) =1, (r, (M) N1R) =1, (L) +Sm = Sm because mIR ¢° M.

(5)= (@) Let me M with MR ¢®* M andlet ¢:mR — M bean R —homomorphism.
Then by (5), (M) € Sm so there exists an R —homomorphism ¢ €S is an extension of @ to M.

Following [8], a right R —module M is called a principal self-generator, if every element me M has the form
m =y(m,) forsome y:M — mR. If UR %0 is uniform, we call U a uniform element of M. We call a right R -

module M is a duo module if every submodule of M is fully invariant.

Theorem 3.2: Let M be aduo, NPQ -injective module and m,n e M with mR ¢° M.
(1) If MR embedsinto nNR, then Sm is an image of Sn.
(2) If NR isanimage of MR, then Sn can be embedded into Sm.
(3) If MR =nR, then Sm=Sn.
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Proof: (1) Let o:mMR — nR bean R —monomorphismand let 1, :mR — M and 1, :nR — M be the inclusion
maps. Since M is NPQ -injective, there exists an R —homomorphism 6:M—>M such that o, =1,0. Let
©:5n —>Sm defined by @(a(n)) = acAs(m) for every oL € S. Since ¢(a(n)) = a(a(M)) = a(c(M)) € a(NR), ¢
is well-defined. It is clear that ¢ is an S -homomorphism. Since 8|mR is monic and M is a duo module,

o(MR) = mR so 6(MR) ¢* M. Sincer, (6(m)) < r, (M), Sm < So(m) byLemma3.1Then m € Sa(m)  ¢(Sn).

(2) By the same notations as in (1), let 6: MR — NR be an R —epimorphism. Write s(ms) =n, S € R. Since M

is NPQ -injective, ccan be extended to 6:M—>M such that &1:120. Define ¢@:Sn —Sm defined by
o(a(n)) = acAs(ms) for every o €S. It is clear that @ is an S —homomorphism. If a(n) e Ker(p), then
0=0(a(n)) = (chs(ms) =ou(n). This shows that @ isan S —monomorphism.

(3) Follows from (1) and (2).

Theorem 3.3: LetM be a principal module which is a principal self-generator. Then the following conditions are
equivalent.

(1) M is NPQ -injective.

2) ls(Ker(a) nmR) =Is(m)+Sa forall meM and o €S with a(m)R «° M.
() I (Ker(a)) =Sa forall o €S with a(M) z® M.

(4) Ker(a) < Ker(B), where a,peS with o(M)z® M, implies that SPB < Sa.

Proof: (1) = (2) Clearly, l;(m)+Sa c Ig(Ker(a) nmR). Let B € I (Ker(a) NnmR).

Then 1, (a(m)) < 1, (B(M)), so I, (B(M)) < 1,1 (ae(m)). Since a(M)R z° M,

SB(m) < I, r (B(m)) < 1,1z (ce(m)) =Sa(m) by Lemma 3.1, so B(m)=ya(m) for some yeS. It follows that
(B—ya) lg(m), and hence B e ls(m)+Sc.

(2) = @3) If M=myR, take m=m, in(2).
(3) = (4) Ker(a) = Ker(B), then I (Ker(B)) I (Ker(a)). It follows that SB < I, (Ker(B)) < I (Ker(a.)) = Sa.

(4 = @) Let meM with mR ¢* M, ¢:mR — M bean R—homomorphism.

Since M is a principal self-generator, there exists 3 € S such that (m,) =m, so Ker(B) c Ker(op) and p(M) z* M.

Then by (4), SeB <SP hence of =B for some (Ap € S. This shows that (Ap is an extension of .

Theorem 3.4: Let M be a duo, NPQ -injective module. If U is a uniform element of M with UR &°® M, then
M, = {oc €S | Ker(a) "uR # 0} is a unique maximal left ideal of S containing I5(u).

Proof: Since UR is uniform, M, is a leftideal of S. Itis clear that Ig(u) = M, #S.
Let X bealeftideal of S containing Ig(u) and X #S. If . € X—M,, then Ker(a) "uR =0. Since M isa
duo module, o(U)R &° Mand so by Theorem 3.3 we have S=I (Ker(a)"uR)=I5(u)+SacX a

contradiction. Thus X < M.

Definition 3.5: Let M be aright R —-module, S=End;(M). The module M is called almost NPQ -injective
if, for each nonessential principal submodule MRof M, there exists an S -submodule X _ of M such that
I, (rz(M)) =Sm@ X as left S -modules.
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Theorem 3.6: Let M be aright R -module, S=End,(M) and me M with mR ¢° M.
(1) If Hom,(MR,M)=S@Y as left S-modules, then I,,(r;(m))=Sm®@ X as left S- modules,
where X = {f(m):f e Y}.
@ 1f 1, (rz(M))=SmM@ X forsome XM asleft S-modules, then we have Hom,(mR,M)=S®Y
asleft S -modules, where Y = {f € Hom,(mR,M):f(m) e X}.
(3) Sm s a direct summand of I,(r;(m)) as left S- modules if and only if S is a direct summand of
Hom, (MR, M) as left S - modules.

Proof: Define 0:Hom,(mR,M) — 1, (r,(m)) by 6(f) =f(m) for every f € Hom,(mR, M). It is obvious that
@ is an S -monomorphism. For X €|, (r; (M)), define g: MR — M by g(mr) =xr for every r € R. Since
r. (M) c r;(X), g is well-defined, so it is clear that @ isan R -homomorphism. Then ¢(g) = g(m) = x. Therefore
0 is an S -isomorphism. Let o(m) € Sm. Since a(m) e, (r;(m)), there exists ¢ € Hom, (mR, M) such that

8(¢) = a(m), so @(m) = a(m). Define ¢:M —M by (Ap(X) =a(X) for every x e M. It is clear that (I) is an

R -homomorphism and is an extension of @. Then a(m) = (T)(m) = 6((?)).This shows that Sm c 6(S). The other
inclusion is clear. Then O(S) =Smand X =6(Y) ={f(m):f € Y}. Then the Lemma follows.

Theorem 3.7: The following conditions are equivalent:
(1) M isalmost NPQ -injective.

(2) There exists an indexed set {Xm ‘me M} of S -submodules of M with the property that if MR &° M,
me M, then |,(r;(m)naR)=(X,,:a),+Sm and (X , :a),nSmcl,(a) for all aeR,where
(Xpe:a),={neM:naeX}if ma=0and (X,:a) =I,(@R) if ma=0.

Proof:
D=(2 Let meM with mR® M. Then there exists an S-submodule X, of M such that

[y (rs(M)) =SM® X as left S -modules. Let a € R. If ma=0,then aR —r,(m) so (2) follows. If ma # 0,
then any X el (r;(m)MaR) we have ry(ma)cry(xa) andso xael,, (ry(xa)) c I, (r,(Ma)) =Sma® X,

because maR ¢° M. Write xa =o(ma)+Yy where €S and ye X,,. Then (X—a(m))a=ye X, so

ma?

X—o(m) e (X, :a),. Itfollows that X € (X, :a), +Sm. This shows that 1, (r, (m) NaR) c (X, :a), +Sm.

Conversely, it is clear that
Smcl,(rr(m)naR). Let ye(X,,:a),. Then yaeX_, cl,(rr(ma)). If asery(m)naR, then

mas=0and so Yyas=0. Hence yel,(rz(m)naR).This shows that (X, :a), < l,,(rs(m)NaR).
Therefore 1, (r;(m)naR) = (X, :a), +Sm.

If B(m)e(X,, @), "Sm, then B(m)ae X, , nSma=0. Hence B(m)el,, (a).

(=@ Let meM with mRg® M. Then there exists an S-submodule X, of M such that
I, (e (M) =1, (rs(M)NAR)=(X, :1),+Sm and (X, :1),nSmcl,, (1) =0

Note that (X, :1), = X,. Then (1) follows.
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