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ABSTRACT 
Let 𝐺𝐺 be simple graph of order 𝑛𝑛. 𝐴𝐴(𝐺𝐺) is the adjacency matrix of 𝐺𝐺 of order 𝑛𝑛 × 𝑛𝑛. The matrix 𝐴𝐴 (𝐺𝐺) is said to 
graphical if all its diagonal entries should be zero. The graph⎾ is said to be the matrix product (mod-2) of 𝐺𝐺 and 𝐺̅𝐺  𝑖𝑖𝑖𝑖 
𝐴𝐴(𝐺𝐺) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴(𝐺̅𝐺)(mod-2) is graphical and ⎾ is the realization of 𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐺̅𝐺)(mod-2). In this paper, we are going to 
study the realization of the Petersen graph 𝐺𝐺 and any 𝑘𝑘 − regular subgraph of 𝐺̅𝐺. Also some interesting 
characterizations and properties of the graphs for each the product of adjacency matrix under (mod-2) is graphical. 
 
Keywords: Adjacency matrix, Matrix product, Graphical matrix, Realization. 
 
 
1. INTRODUCTION 
 
Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a simple graph. The order of 𝐺𝐺 is the number of vertices of G. For any vertex 𝑣𝑣 ∈ 𝑉𝑉 the open 
neighborhood of 𝑣𝑣 is the set 𝑁𝑁(𝑣𝑣) = {𝑢𝑢 ∈ 𝑉𝑉/𝑢𝑢𝑢𝑢 ∈ 𝐸𝐸} and the closed Neighborhood of 𝑣𝑣 is the set 𝑁𝑁[𝑣𝑣] = 𝑁𝑁(𝑣𝑣) ∪ {𝑣𝑣}. 
For a set 𝑆𝑆 ⊆ 𝑉𝑉, the open neighborhood of S is 𝑁𝑁(𝑆𝑆) = 𝑈𝑈𝑣𝑣∈𝑠𝑠  𝑁𝑁(𝑣𝑣) and the closed Neighborhood of 𝑆𝑆 𝑖𝑖𝑖𝑖 𝑁𝑁[𝑆𝑆] =
𝑁𝑁(𝑆𝑆) ∪ 𝑆𝑆 
 
A set 𝑆𝑆 ⊆ 𝑉𝑉 is a dominating set if 𝑁𝑁(𝑆𝑆) = 𝑉𝑉 − 𝑆𝑆, 𝑜𝑜𝑜𝑜 equivalently, every vertex 𝑖𝑖𝑖𝑖 𝑉𝑉/𝑆𝑆 is adjacent to at least one 
vertex in 𝑆𝑆. 
 
Graphs considered in this paper are connected simple and undirected. Let G be any graph its vertices are denoted by 
{𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛} two vertices 𝑣𝑣𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑗𝑗 , 𝑖𝑖 ≠ 𝑗𝑗 are said to be adjacent to each other if there is an edge between them. An 
adjacency between the vertices 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑗𝑗  is denoted by 𝑣𝑣𝑖𝑖 ∼𝐺𝐺 𝑣𝑣𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑖𝑖 ≁𝐺𝐺 𝑣𝑣𝑗𝑗  denotes that 𝑣𝑣𝑖𝑖  is not adjacent with 𝑣𝑣𝑗𝑗  in 
the graph 𝐺𝐺. The adjacency matrix of 𝐺𝐺 is a Matrix 𝐴𝐴(𝐺𝐺) = �𝑎𝑎𝑖𝑖𝑖𝑖 � ∈ 𝑀𝑀𝑛𝑛  (𝑅𝑅) 𝑖𝑖𝑖𝑖  𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑗𝑗  are 
adjacent, and 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 otherwise, given two graphs G and H have the same set of vertices {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛},𝐺𝐺 ∪ 𝐻𝐻 
represents the union of graphs G and H having the same vertex set and two vertics are adjacent in 𝐺𝐺 ∪ 𝐻𝐻 if they are 
adjacent in at least one of 𝐺𝐺 and 𝐻𝐻. Graphs G and H having the same set of vertices are said to be edge disjoint, if 
𝑢𝑢 ~𝐺𝐺𝑣𝑣 implies that 𝑢𝑢 ≁𝐻𝐻 𝑣𝑣 equivalently, 𝐻𝐻 is a subgraph of G and G is a sub graph of 𝐻𝐻. 
 
2. MATRIX PRODUCT (MODULO-2) OF PETERSEN GRAPHS 
 
Definition: 2.1 Let 𝐺𝐺 be a graph with 𝑛𝑛 vertices, m edges, the incidence matrix A of G is an 𝑛𝑛 × 𝑚𝑚 matrix A=�𝑎𝑎𝑖𝑖𝑖𝑖 �, 
where 𝑛𝑛 represents the number of rows correspond to the vertices and 𝑚𝑚 represents the columns correspond to edges 
such that  

�𝑎𝑎𝑖𝑖𝑖𝑖 � = �
1 𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎   𝑣𝑣𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝐺𝐺

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�  

It is also called vertex-edge incidence matrix and is denoted by ⋀˄(𝐺𝐺). 
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Definition: 2.2 A symmetric (0,1) − Matrix is said to be graphical if all its diagonal entries equal Zero. 
 
If B is a graphical matrix such that B=A(𝐺𝐺) for some graph G, Then we often say that G is the realization of graphical 
matrix B. 
 
Definition: 2.3 Let us Consider any two graphs 𝐺𝐺 and 𝐻𝐻 having same set of vertices. 𝐴𝐴 graph ┌ is said to be the matrix 
product of G and 𝐻𝐻. If 𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐻𝐻) is graphical and ┌  is the realization of 𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐻𝐻). We shall extend the above 
definition of matrix product of graphs when the matrix multiplications is considered over the integers modulo-2. 
 
Definition: 2.4 The graph ┌ is said to be a matrix product (mod-2) of graphs 𝐺𝐺 and 𝐺̅𝐺 if 𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐺̅𝐺)(mod-2) 𝑖𝑖𝑖𝑖 
graphical and ┌ is the realization of 𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐺̅𝐺) (mod-2). 
 
Definition: 2.5 Given graphs 𝐺𝐺 and 𝐻𝐻 on the same set of vertices {𝑣𝑣1,𝑣𝑣2, … 𝑣𝑣𝑛𝑛}, two vertices 𝑣𝑣𝑖𝑖   𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑗𝑗  (𝑖𝑖 ≠ 𝑗𝑗) are said 
to have a 𝐺𝐺𝐺𝐺 path if there exists a vertex  𝑣𝑣𝑘𝑘 , different from 𝑣𝑣𝑖𝑖   𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑗𝑗    such that 𝑣𝑣𝑖𝑖~𝐺𝐺  𝑣𝑣𝑘𝑘   𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑘𝑘~𝐻𝐻  𝑣𝑣𝑗𝑗  . 
 
Definition: 2.6 A graph is a parity  graph if for any two induced paths joining the same pair of vertices the path lengths 
have the same parity  (odd or even). 

 
Theorem: 2.7 Let 𝐺𝐺 be Petersen graph and 𝐺̅𝐺 be any 𝑘𝑘- regular sub graph of 𝐺𝐺 �  (𝑘𝑘 = 1,2,3,4,5,6). Then 𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐺̅𝐺) is a 
graphical matrix. 
 
Proof: Let 𝐶𝐶𝑛𝑛 = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛}. 𝑣𝑣𝑖𝑖  is adjacent with 𝑣𝑣𝑖𝑖−1 and 𝑣𝑣𝑖𝑖+1 such that 𝑣𝑣𝑛𝑛 = 𝑣𝑣𝑜𝑜 . Let �𝑎𝑎𝑖𝑖𝑖𝑖 � is the adjacent matrix of 
𝐺𝐺 and �𝑏𝑏𝑖𝑖𝑖𝑖 � is the adjacent matrix of  𝐺̅𝐺. 
 
Then, each 

�𝑎𝑎𝑖𝑖𝑖𝑖 � = �
1

0
�   
𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑖𝑖 + 1 (𝑜𝑜𝑜𝑜)𝑗𝑗 = 𝑖𝑖 − 1

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                           
              and 

 

�𝑏𝑏𝑖𝑖𝑖𝑖 � = �
1

0
�   
𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑖𝑖 + 1 (𝑜𝑜𝑜𝑜)𝑗𝑗 = 𝑖𝑖 − 1

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                           
 

 
Then,      𝐴𝐴(𝐺𝐺) AG� =��𝑐𝑐𝑖𝑖𝑖𝑖 � = 0 𝑖𝑖𝑖𝑖�  𝑖𝑖 = 𝑗𝑗, 𝑖𝑖 = 1,2 … ,𝑛𝑛 } 
 
Hence all diagonal entries of 𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐺̅𝐺) 𝑖𝑖𝑖𝑖 zero. So Peterson graph is graphical matrix. 
 
Theorem: 2.8 The diagonal entries of the matrix product 𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐻𝐻 ) are zeros if and only if for each vertex 𝑣𝑣𝑖𝑖 ∈ 𝐺𝐺 the 
cardinality of the set of vertices �𝑣𝑣𝑘𝑘 : 𝑣𝑣𝑘𝑘~𝐺𝐺  𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑘𝑘~𝐻𝐻  𝑣𝑣𝑖𝑖  � is even. 
 
Proof: Let    𝐴𝐴(𝐺𝐺) = �𝑎𝑎𝑖𝑖𝑖𝑖 �;  𝐴𝐴(𝐻𝐻 ) = �𝑏𝑏𝑖𝑖𝑖𝑖 � 
 
         𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐻𝐻 ) = �𝑐𝑐𝑖𝑖𝑖𝑖 �𝑖𝑖 = 1,2, … ,10   ;     𝑗𝑗 = 1,2, … ,10   [Since the adjacency matrices are symmetric] 
 
We have         𝑏𝑏𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑗𝑗𝑗𝑗 ; 𝑐𝑐𝑖𝑖𝑖𝑖 = �𝑎𝑎𝑖𝑖𝑖𝑖

𝑘𝑘

𝑏𝑏𝑘𝑘𝑘𝑘   

                            = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘 𝑏𝑏𝑗𝑗𝑗𝑗   (mod-2) 
 
Taking 𝑖𝑖 = 𝑗𝑗, we get that 𝑐𝑐𝑖𝑖𝑖𝑖 = 0 iff 𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖  ≠ 0 for even number of cases. The proof of the theorem follows 
immediately by noting that 𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖  ≠ 0 is equivalent to say that the 𝑖𝑖𝑡𝑡ℎ  and 𝑘𝑘𝑡𝑡ℎ  vertices are adjacent in both the graphs. 
 
Lemma: 2.9 The (𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ   (𝑖𝑖 ≠ 𝑗𝑗) entry of the matrix product 𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐻𝐻) is either 0 𝑜𝑜𝑜𝑜 1 depending on whether the 
number of  𝐺𝐺𝐺𝐺 paths from 𝑣𝑣𝑖𝑖  to 𝑣𝑣𝑗𝑗   is even or odd respectively. 
 
Lemma: 2.10 The product  𝐴𝐴(𝐺𝐺) 𝐴𝐴(𝐺̅𝐺) (G is a Petersen graph and 𝐺̅𝐺 is any 𝐾𝐾-regular sub graph of G) is graphical if 
and only if the following statements are true   

i) For every i (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛), there are even number of vertices 𝑣𝑣𝑘𝑘  such that 𝑣𝑣𝑖𝑖~𝐺𝐺  𝑣𝑣𝑘𝑘  and 𝑣𝑣𝑘𝑘~𝐺̅𝐺  𝑣𝑣𝑖𝑖, 
ii) For each pair of vertices 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑗𝑗   (𝑖𝑖 ≠ 𝑗𝑗) the number of 𝐺𝐺𝐺𝐺 paths and 𝐻𝐻𝐻𝐻 paths from 𝑣𝑣𝑖𝑖  to𝑣𝑣𝑗𝑗  have same 

parity. 
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Example: 2.11 Consider a Petersen graph 𝐺𝐺 and a 2 regular sub graph of its complement is shown in figure 1.2  

𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

0 0 0 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 0 1
1 0 0 0 0

0 1 1 1 0
1 1 0 1 0
1 0 1 1 1
1 1 0 0 1
1 0 0 0 0

0 1 0 0 0
0 0 1 1 1
0 1 1 1 1
1 0 1 1 1
1 0 0 0 1

0 0 1 1 1
0 0 1 0 0
0 0 0 1 1
1 0 1 0 0
1 1 1 1 0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

and the cocktail parity graph shown in figure 1.3 is the graph realizing  A(𝐺𝐺) 𝐴𝐴(𝐺̅𝐺) is graphical. 
 

 
Figure-1.1 

 

 
Figure-1.2 

 

 
Figure-1.3 



Stephen John.B*, S. Jency (St.) / Matrix Product (modulo-2) of Petersen Graphs / IJMA- 7(8), August-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                      142  

 
A 𝐻𝐻 be any 2-regular sub graph of 𝐺̅𝐺 on 10 vertices for which ┌ is the graph realizing 𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) 
 
Theorem: 2.12 For any graph  𝐺𝐺 and its compliment 𝐺̅𝐺 on the set of vertices �𝑣𝑣1,,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛� the following statements 
are equivalent 

(i) The matrix product 𝐴𝐴(𝐺𝐺) A(𝐺̅𝐺)is graphical. 
(ii) For every 𝑖𝑖 and 𝑗𝑗, 1≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛,𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺𝑣𝑣𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺𝑣𝑣𝑗𝑗 = 0  (mod-2) 

(iii) The graph 𝐺𝐺 is parity regular. 
 
Proof: Note that (𝑖𝑖𝑖𝑖) <=> (𝑖𝑖𝑖𝑖𝑖𝑖) follows from the definition of parity regular graphs. Now, we shall prove(𝑖𝑖) <=>
(𝑖𝑖𝑖𝑖).  
 
Let �𝐴𝐴(𝐺𝐺)�

𝑖𝑖𝑖𝑖
= �𝑎𝑎𝑖𝑖𝑖𝑖 � for all 𝑖𝑖 = 1,2, … ,𝑛𝑛 ; 𝑗𝑗 = 1,2, … ,𝑛𝑛 from the definitions of the complement of a graph and GH 

path, 
𝐻𝐻 = 𝐺̅𝐺 implies that 
𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺𝑣𝑣𝑖𝑖 = Number of walks of length 2 from 𝑣𝑣𝑖𝑖  to 𝑣𝑣𝑗𝑗  in G + Number of 𝐺𝐺 𝐺̅𝐺 paths from 𝑣𝑣𝑖𝑖  to 𝑣𝑣𝑗𝑗 + 𝑎𝑎𝑖𝑖𝑖𝑖           (1) 

 
Similarly, 𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺𝑣𝑣𝑗𝑗 = Number of walks of length 2 from 𝑣𝑣𝑗𝑗  to 𝑣𝑣𝑖𝑖  in G + Number of 𝐺𝐺 𝐺̅𝐺 paths from  𝑣𝑣𝑗𝑗  to 𝑣𝑣𝑖𝑖 + 𝑎𝑎𝑗𝑗𝑗𝑗        (2) 
for every distinct pair of vertices 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑗𝑗 . 
 
Since  𝐺𝐺 𝐺̅𝐺 path from 𝑣𝑣𝑗𝑗  to 𝑣𝑣𝑖𝑖  is a  𝐺̅𝐺 𝐺𝐺 path from 𝑣𝑣𝑖𝑖  to 𝑣𝑣𝑗𝑗 . 
 
Comparing the right hand sides of (1) to (2), we get that 𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) is graphical if and only if 𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺𝑣𝑣𝑖𝑖 ≡ 𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺𝑣𝑣𝑗𝑗   (𝑚𝑚𝑚𝑚𝑚𝑚-
2) 
 
Remark: 2.13 It is also possible for one to prove (𝑖𝑖)  =>  (𝑖𝑖𝑖𝑖), by taking 𝐴𝐴(𝐺̅𝐺) = 𝐽𝐽 − 𝐴𝐴(𝐺𝐺) − 𝐼𝐼 in the matrix products 
𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) and 𝐴𝐴(𝐺̅𝐺) 𝐴𝐴(𝐺𝐺), where 𝐽𝐽 is the 𝑛𝑛 × 𝑛𝑛 matrix with all 1’s and I is the 𝑛𝑛 × 𝑛𝑛 identity matrix. 

 
Theorem: 2.14 Consider a graph 𝐺𝐺 and its complement 𝐺̅𝐺 defined on the set of vertices {𝑣𝑣1,𝑣𝑣2, … 𝑣𝑣𝑛𝑛}. Then 
𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) = 0 and the diagonal value of  [𝐴𝐴(𝐺𝐺)]2 = 1 if 𝑖𝑖 = 𝑗𝑗. 
 
Theorem: 2.15 Let 𝐺𝐺 be a graph and its complement 𝐺̅𝐺 defined on the set of vertices {𝑣𝑣1,𝑣𝑣2, … 𝑣𝑣𝑛𝑛}.  
Then 𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) = 𝐴𝐴(𝐺𝐺) iff [𝐴𝐴(𝐺𝐺)]2 is either a null matrix or the matrix 𝐽𝐽 with all entries equal to 1. 
 
Proof: Let, 𝐴𝐴(𝐺𝐺) = (𝑎𝑎𝑖𝑖𝑖𝑖 ), we have 

𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺𝑣𝑣𝑖𝑖 ≡ number of walks of length 2 from 𝑣𝑣𝑖𝑖  to 𝑣𝑣𝑗𝑗  in 𝐺𝐺(mod-2)  for 𝑖𝑖 ≠ 𝑗𝑗                                                  (A) 
 
Now,  𝐺𝐺 is a parity regular and therefore, 𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺𝑣𝑣𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺𝑣𝑣𝑗𝑗 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚-2)  
 
So, from (A) we get that �𝐴𝐴(𝐺𝐺)�2

 is either 0 𝑜𝑜𝑜𝑜 𝐽𝐽. 
 
Conversely, Suppose that �𝐴𝐴(𝐺𝐺)�2

 is either 𝑂𝑂 𝑜𝑜𝑜𝑜 𝐽𝐽. If �𝐴𝐴(𝐺𝐺)�2 = 0 we get that the degree of all the vertices in 𝐺𝐺 are 
even and �𝐴𝐴(𝐺𝐺)�2 = 𝐽𝐽 would mean that degree of all the vertices are odd. By taking 𝐴𝐴(𝐺̅𝐺) = 𝐽𝐽 − 𝐴𝐴(𝐺𝐺) − 𝐼𝐼 
                                = 𝐽𝐽 + 𝐴𝐴(𝐺𝐺) + 𝐼𝐼   [since we know that the minus (−) is the same as the plus (+) under modulo-2)] 
 
Therefore, we get   𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) = 𝐴𝐴(𝐺𝐺)(𝐽𝐽 + 𝐴𝐴(𝐺𝐺) + 𝐼𝐼) 

      = 𝐴𝐴(𝐺𝐺)𝐽𝐽 + �𝐴𝐴(𝐺𝐺)�2 + 𝐴𝐴(𝐺𝐺) 
 
In each case, �𝐴𝐴(𝐺𝐺)�2

 is 𝑂𝑂 𝑜𝑜𝑜𝑜 𝐽𝐽, we get that the right hand side of the above reduces to 𝐴𝐴(𝐺𝐺). Which also characterizes 
the graphs 𝐺𝐺 with property 𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) = 𝐴𝐴(𝐺𝐺) in terms of characteristics of 𝐺̅𝐺. 
 
Theorem: 2.16 Let 𝐺𝐺 be a graph with adjacency matrix 𝐴𝐴(𝐺𝐺). Then the following statements are equivalent. 

i) �𝐴𝐴(𝐺𝐺)�2 = 𝐴𝐴(𝐺𝐺)     𝑖𝑖. 𝑒𝑒. ,   𝐴𝐴(𝐺𝐺) is idempotent 
ii) 𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) = 0 and the degree of every vertex in 𝐺𝐺 is even. 
iii) The number of 𝐺𝐺𝐺̅𝐺 paths of length 2 between every pair of vertices is even and the degree of every vertex in 𝐺𝐺 

is even. 
 
Proof: (𝑖𝑖) => (𝑖𝑖𝑖𝑖). �𝐴𝐴(𝐺𝐺)�2

 is graphical implies that the diagonal entries of �𝐴𝐴(𝐺𝐺)�2
 are zeros, we get that degree of 

each vertex in 𝐺𝐺 is zero (modulo-2).  
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In other words, degree of each 𝐴𝐴(𝐺𝐺)𝐽𝐽 = 0. 
 
Therefore, 𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) = 𝐴𝐴(𝐺𝐺)(𝐽𝐽 − 𝐴𝐴(𝐺𝐺) − 𝐼𝐼) = −�𝐴𝐴(𝐺𝐺)�2 − 𝐴𝐴(𝐺𝐺) = 0 
 
Whenever �𝐴𝐴(𝐺𝐺)�2 = 𝐴𝐴(𝐺𝐺) 
 
(𝑖𝑖𝑖𝑖) => (𝑖𝑖𝑖𝑖𝑖𝑖) follows from Theorem 2.15 
 
(𝑖𝑖𝑖𝑖𝑖𝑖) => (𝑖𝑖) follows from Theorem 2.12 
 
The graph 𝐺𝐺 as shown in figure 1.1 such that �𝐴𝐴(𝐺𝐺)�2 = 𝐴𝐴(𝐺𝐺) and the degree of every vertex of 𝐺𝐺 is even. Further, 
𝐴𝐴(𝐺𝐺)𝐴𝐴(𝐺̅𝐺) = 0. 
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