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ABSTRACT 
MHD boundary layer flow and heat transfer of a viscoelastic fluid over an exponentially stretching sheet embedded in 
a thermally stratified medium subject to radiation and suction are examined. Using similarity transformation the 
governing boundary layer non-linear partial differential equations are converted into non-linear ordinary differential 
equations. Homotopy analysis method (HAM) is applied to get series solution. The convergence of the obtained series 
solution is discussed explicitly. It is found that the heat transfer rate at the surface increases in presence of thermal 
stratification. Fluid velocity decreases with increasing magnetic parameter. Fluid velocity decreases with increase of 
suction parameter. It is noticed that the temperature decreases with increase of suction parameter. Temperature 
gradient increases considerably with increase of stratification parameter. 
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INTRODUCTION  
 
In recent years, the study of non-Newtonian fluids has achieved a lot success due to their practical applications in 
various fields like manufacturing of foods and papers, manufacturing of plastic sheets, etc. The study of boundary layer 
flow over a continuous solid surface moving with a constant speed was first studied by Sakiadis [1] in 1961. Later     
Crane [2] extended this problem to a stretching sheet whose surface velocity varies linearly with a certain distance from 
a fixed point. Chang [3] derived a closed form solution of the non-Newtonian flow problem of Rajgoplal et al. [4]. 
Char [5] discussed the effects of magnetic field and power law surface temperature on heat and mass transfer from a 
continuous flat surface. Heat and mass transfer characteristics in the presence of transverse magnetic field were 
obtained by Abel et al. [6]. Raptis [7], Abel and Gousia [8] analysed the viscoelastic fluid flow and heat transfer in the 
presence of thermal radiation under various physical conditions.  
 
Most of the researchers concentrated on the flow analysis caused by stretching the sheet linearly. Magyari and 
Keller [9] focused on heat and mass transfer on boundary layer flow due to an exponentially continuous stretching 
sheet. Elbashbeshy [10] examined the flow and heat transfer characteristics over an exponentially stretching continuous 
surface with suction. Bidin and Nazar [11] presented the numerical solutions for the problem of boundary layer flow 
over an exponentially stretching sheet in the presence of radiation. 
  
The flow due to a heated surface immersed in a stable stratified viscous fluid has been investigated experimentally and 
analytically by Yang et al. [12]. Recently, Mukhopadhyay [13] analysed the MHD boundary layer flow and heat 
transfer towards an exponentially stretching sheet embedded in a thermally stratified medium by taking suction into 
account. 
 
Hence, the aim of the present work is to study the characteristics of MHD boundary layer flow and heat transfer of a 
viscoelastic fluid over an exponentially stretching sheet embedded in a thermally stratified medium in the presence of 
suction and radiation using HAM [14, 15]. 
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MATHEMATICAL FORMULATION 
 
Consider the flow of an incompressible viscoelastic electrically conducting fluid past a flat heated sheet coinciding with 
the plane 0=y  and the flow being confined to 0>y . The flow is generated due to stretching the sheet exponentially 
by the application of two equal and opposite forces along the x -axis. So that the sheet is stretched keeping the origin 
fixed. A variable magnetic field of strength B  is applied in the direction to normal the plate. The sheet is of 
temperature ( )xwT  and is embedded in a thermally stratified medium of variable temperature ( )xT∞  where 

( ) ( )xTxwT ∞> . It is assumed that ( ) L
x

ebTxwT 2
0 += , ( ) L

x

ecTxT 2
0 +=∞  where 0T  is the reference temperature, 

00, ≥> cb  are constants. 
 
The equations of continuity, momentum, energy and concentration for the flow of viscoelastic fluid are 
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where u  and v  are the velocity components in x  and y  directions, ν  is the kinematic viscosity, 0k is the elastic 
parameter, ρ  is the fluid density, σ  is the electrical conductivity of the fluid, T  is the temperature in the boundary 

layer, k  is the thermal conductivity, rq  is the radiative heat flux. 
 
The boundary conditions are 

.yasTTu
yatwTT)x(VvL

x
e0UwUu

∞→∞→→

==−===

,0
,0,,,                     (4) 

 
Here, the subscripts ∞,w  refer to the surface and ambient conditions, respectively. wU  is the stretching velocity, 0U  

is the reference velocity, L  is the reference lengt, ( ) 0>xV  is velocity of suction and ( ) 0<xV is velocity of blowing, 

( ) L
x

eVxV 2
0= , a special type of velocity at the wall is considered. Here 0V  is the initial strength of suction. 

It is assumed that the variable magnetic field ( )xB  is of the form: 

( ) ( ) ,2
0

L
x

exBxB =  

where 0B  is the constant magnetic field. 
 
The equation of continuity is satisfied by the stream function )y,x(ψ  defined by 

, .u v
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Following Rosseland approximation, the radiative heat flux is  
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where *σ  is the Stefan-Boltzman constant and *k  is the mean absorption coefficient. Further, we assume that the 

temperature difference within the flow is such that 4T is expressed as a linear function of temperature. Hence, 
expanding 4T  in Taylor series about 𝑇𝑇∞ and neglecting higher order terms, we obtain 

.43344
∞−∞≅ TTTT   
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Now, we introduce the following similarity transformations to convert the partial differential equations into ordinary 
differential equations: 
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where η  is the similarity variable, f  is the dimensionless stream function, )(ηθ  is a dimensionless temperature of 
the fluid in the boundary layer region. 
 
Substituting Equation (5) in Equations (2) to (4), we obtain 
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where
νL

wUk
k 0
1 = is the dimensionless viscoelastic parameter, 

0
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02
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= is the magnetic parameter,  

k*k

T*
R

34 ∞=
σ

is the radiation parameter, 
k

pC
Pr

ρν
=  is the Prandtl number,

b

c
St = is the stratification parameter. 

0>St  implies a stably stratified environment, while 0=St  corresponds to an unstratified environment. 
 
The transformed boundary conditions are 
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where ( )0or0

2
0

0 <>=

L
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ν
 is the suction (or blowing) parameter. 

 
HAM Solution  
 
In this section, we employ HAM to solve the equations (6) and (7) subject to the boundary conditions (8). We choose 
the initial guesses 0f  and 0θ of  f  and θ  in the following form 

( )
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,ef
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The linear operators are selected as 
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which have the following properties 

( )
( ) ,

,

0ηe5Cηe4C2L

0ηe3Cηe2C1C1L

=−+

=−++
                

where  54321 CandC,C,C,C  are the arbitrary constants. 
 
If [ ]10,p∈  denotes the embedding parameter and 2and1   are the non-zero auxiliary parameters then we 
construct the following zeroth-order deformation equations 
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( ) ( ) ( )( ) ( )[ ],;110;11 pfNpfpfLp ηηη =−−                                                               (9) 

( ) ( ) ( )( ) ( ) ( )[ ],;;220;21 p,pfNppLp ηθηηθηθ =−−                                                          (10) 
Subject to the boundary conditions 
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Based on equations (6) and (7), we define the nonlinear operators 21 and NN  as 
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When 0=p  and 1=p , we obtain 
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Thus, as p  increases from 0 to 1 then ( ) ( )p;p;f ηθη and  vary from initial approximations to the exact solutions of 
the original nonlinear differential equations. 
 
Now, expanding ( ) ( )ppf ;and; ηθη  in Taylor’s series w.r.to p , we have 
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If the initial approximations, auxiliary linear operators and non-zero auxiliary parameters are chosen in such a way that 
the series (15) to (16) are convergent at ,1=p  then 
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Differentiating Equations (9) and (10) m  times w.r.to p , setting 0,p =  and finally dividing with !m , we get the mth-
order deformation equations as follows 

( ) ( )( ) ( ),111 ηηχη f
mRmfmmfL =−−                                                          (20) 
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with the following boundary conditions  
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If we let )(and)(),( *** ηφηθη mmmf  as the special solutions of mth order deformation equations, then the general 
solution is given by 

*( ) ( ) ,1 2 3
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                                              (26) 

where the integral constants  )(iiC 5to1=  are determined using the boundary conditions. 
 
Convergence of HAM solution 
 
The convergence region and rate of approximation of series solutions obtained using HAM are mainly dependent on 
the non-zero auxiliary parameters 1  and 2 .  In order to find the appropriate values of 1  and 2 ,  -curves are 

plotted in Fig. 1. From the figure, it is clear that the valid regions of 1  and 2 are about [-1.0, 0.0]. Our computations 

indicate that the series converge in the whole region of η  when ..75021 −==   The convergence of homotopy 
solution for different orders of approximations is given in Table 1. 
 

 
Figure 1:  -curves of )(')(''f 0and0 θ for 20th order approximation when 

..S.St.Pr.R.M.k 10,20,710,50,50,101 ======  
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Table 1: Convergence of HAM solution for different orders of approximations when 

..S.St.Pr.R.M.k 10,20,710,50,50,101 ======  
Order )0(''f−  )0('θ−  

5 1.644127 0.484227 
10 1.645532 0.461557 
15 1.645720 0.451515 
20 1.645701 0.450992 
25 1.645705 0.450961 
30 1.646704 0.450954 
35 1.646704 0.450961 
40 1.646704 0.450954 
45 1.646704 0.450951 
50 1.646704 0.450951 

 
RESULTS AND DISCUSSION 
 
To ensure the accuracy of the applied method, the values of heat transfer rate )0('θ− are compared with the available 
results in the literature and are presented in Table 2.  
 

Table 2: Comparison of )(' 0θ−  for different values of PrRM ,,  when ..SStk 001 ===  

M  R  Pr  Bidin and Nazar [11] Seini and Makinde [16] HAM 
0.0 0.0 1.0 0.9547 0.954811 0.954783 
0.0 0.0 3.0 1.8691 1.869069 1.869067 
0.0 1.0 1.0 0.5315 -- 0.531503 
1.0 0.0 1.0 0.8611 0.861509 0.861427 
0.0 1.0 1.0 -- -- 0.334521 
1.0 0.1 2.14 -- -0.268846 -0.268849 

 
In the present study, the following default parameter values are adopted for computations:   

..S.St.Pr.R.M.k 10,20,710,50,50,101 ======  

 
Figure 2a: Velocity ( )η'f  for different values of S  

. 

 
Figure 2b: Shear stress ( )η''f  for different values of S . 
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Figures 2a and 2b illustrates the effects of suction parameter S  on velocity and shear stress profiles, respectively, for 
exponentially stretching sheet. From figure 2a it is observed that velocity decreases significantly with increasing 
suction parameter. From Figure 2b, it is very clear that the shear stress decreases initially with the suction parameter ,S  
but shear stress increases significantly after a certain distance η  from the sheet. It is observed that, when the wall 

suction ( )0>S  is considered, this causes a decrease in the boundary layer thickness and the velocity field is reduced.  
 

 
Figure 2c: Temperature ( )ηθ  for different values of S . 

 

 
Figure 2d: Temperature gradient ( )ηθ '  for different values of S . 

 
Figures 2c and 2d represent the temperature and temperature gradient profiles for variable suction parameter S . From 
figure 2c it is seen that temperature decreases with increasing suction parameter. The temperature gradient decreases 
initially with the suction parameter S , but it increases after a certain distance η  from the sheet. Far away from the 
wall, such feature is smeared out Figure 2d. Thus, suction at the surface has a tendency to reduce both the 
hydrodynamic and thermal boundary layer thicknesses. 
 

 
Figure 3a: Velocity ( )η'f  for different values of 1k . 
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Figure 3b: Temperature ( )ηθ  for different values of 1k . 

 
The effect of viscoelastic parameter on velocity and temperature is shown in Figures 3a and 3b. As shown in the figures 
velocity is decreasing while temperature is increasing with the increase of 1k . This is due to the tensile stress 
introduced by viscoelasticity which causes transverse contraction of the boundary layer. 
 
Figures 4a and 4b illustrate the influence of magnetic parameter on velocity and temperature profiles.  As M  increases, 
the Lorentz force which has the tendency to slow down the motion of the fluid also increases. Hence, the velocity of the 
fluid decreases whereas temperature increases.  
 

 
Figure 4a: Horizontal velocity ( )η'f  for different values of M . 

 

 
Figure 4b: Temperature ( )ηθ  for different values of M . 

 
Figure 5a is the graphical representation of temperature profiles ( )ηθ for several values of stratification parameter St . 
It is found that the temperature decreases as the stratification parameter St  increases.  
 
The temperature gradient increases with an increase in stratification parameter St  as shown in the figure 5b. 
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Figure 5a: Temperature ( )ηθ  for different values of St . 

 
In case of higher Prandtl values the diffusion of heat away from the heated surface is very slow when compared to the 
smaller Prandtl values. Hence temperature decreases with the increase Prandtl number as shown in the figure 6. 

 
Figure 5b: Temperature gradient ( )ηθ'  for different values of St . 

 

 
Figure 6: Temperature ( )ηθ  for different values of Pr . 

 

 
Figure 7: Temperature ( )ηθ  for different values of R . 
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The effect of radiation parameter R  on temperature is displayed in Fig. 9. It is noticed that the temperature increases 
with the increase of R . This is due to the fact that the thermal boundary layer thickness increases with the increase of 
radiation parameter. 
 
CONCLUSIONS 
 
In the present analysis MHD boundary layer flow and heat transfer towards an exponentially stretching sheet embedded 
in a thermally stratified medium subject to suction and radiation are described. The effect of suction as well as 
magnetic parameter on a viscoelastic incompressible fluid is to suppress the velocity field which in turn causes the 
enhancement of the skin-friction coefficient. Rate of transport is reduced with the increasing magnetic field. The 
temperature decreases with increasing values of the stratification parameter. 
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