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ABSTRACT 
Ascending graphoidal tree cover of a graph G is a partition of edges of G into trees G1,G2,…,Gn such that 
|E(Gi)|<|E(Gi+1)| for all i=1 to n-1 and every vertex  of G is an internal vertex of at most one tree. In this paper, we 
investigate the ascending graphoidal tree cover for some standard graphs. 
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1. PRELIMINARIES 
 
In this paper we consider only simple graphs G. In [6], we introduce the concept of Ascending cover which is 
decomposition of G into edge disjoint sub graphs G1, G2,…,Gn such that |E(Gi)|<|E(Gi+1)| for all i=1 to n-1. It is 

observed that if ψ = {G1, G2,…,Gn} is an ascending cover of G then q=
n

i
i 1

n 1
| E(G ) | 1 2 n

2=

+ 
≥ + + + =  

 
∑   and if 

q=
n 1
2
+ 

 
 

 then |E(Gi)|=i, 1≤i≤n. Further if each Gi is connected, it is known as Continuous Monotonic Decomposition 

of G [6]. If each Gi is isomorphic to a sub graph of Gi+1 then it is known as Ascending Sub graph Decomposition. The 
concept of graphoidal cover was introduced by E. Sampath kumar and B. D. Acharya [1]. In [6]; we study Ascending 
graphoidal cover, which is ascending cover of G into internally disjoint paths, for some standard graphs. In [8], we 
defined and studied graphoidal tree cover which is partition of E(G) into internally vertex disjoint trees. Definitions 
which are not seen here can be found in [3] and [4]. In this paper, we propose to study Ascending graphoidal tree cover. 
 
2. MAIN RESULTS 
 
Throughout this paper we consider only connected graphs.   
 
Definition 2.1: Ascending Graphoidal Tree Cover (AGTC) of G is defined as ascending cover of G satisfying the 
following conditions: 

(i) each sub graph is isomorphic to a tree 
(ii) every vertex is an internal vertex of at most one tree. 

 
In other words, Ascending Graphoidal Tree Cover is a decomposition of G into edge-disjoint sub graphs G1, G2,…,Gn 
such that    

(i) |E(Gi)|<|E(Gi+1)| for all i=1 to n-1 
(ii) each sub graph is isomorphic to a tree 
(iii) every vertex is an internal vertex of at most one tree. 
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Lemma 2.2: If a (p, q) graph G admits AGTC then p≥ n+1. 
 
Proof: As nn | E(G ) | p 1≤ ≤ − , we have p≥ n+1. 

Theorem 2.3: Any path ( 2)nP n ≥  admits AGTC into q parts if and only if 
( 1)| ( ) |

2n
q qE P +

=  for some positive 

integer q.  
 

Proof: Label the vertices of nP  by (0, 1, 2,…, n-1) and suppose  
( 1)| ( ) |

2n
q qE P +

=  for some q. Then the Ascending 

graphoidal tree cover is as follows: 
( 1) ( 1) ( 1) ( 1), 1, 2, ,

2 2 2 2i
i i i i i i i iT − − − + = + + 

 
  for 1 i q≤ ≤ . 

 
Thus nP  admits AGTC into q parts for some positive integer q. The converse is straight forward. 
 

Theorem 2.4: Any cycle ( 3)nC n ≥  admits AGTC into q parts if and only if 
( 1)| ( ) |

2n
q qE C n +

= =  for some 

positive integer q.  
 

Proof: Label the vertices of nC  by (0, 1, 2,…, n-1) and suppose  
( 1)| ( ) |

2n
q qE C +

=  for some q. Then consider 

( 1) ( 1) ( 1) ( 1), 1, 2, ,
2 2 2 2i

i i i i i i i iT − − − + = + + 
 

  for 1 1i q≤ ≤ −  and 

( 1) ( 1) ( 1), 1, , 1,0
2 2 2q

q q q q q qT − − + = + − 
 

  is clearly AGTC of nC . 

 
Thus nC  admits AGTC. 
 
Theorem 2.5: The complete graph Kp admits AGTC into n parts if and only if p=n+1. 
 
Proof: Let p=n+1. Let 1 1 2( ) ( , )E G v v=  and 𝐸𝐸(𝐺𝐺𝑖𝑖) = {�𝑣𝑣𝑖𝑖+1, 𝑣𝑣𝑗𝑗 �: 1 ≤ 𝑗𝑗 ≤ 𝑖𝑖, 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1} and 1( ) {( , ) :n n jE G v v+=

 
1 }j n≤ ≤ . Clearly {G1, G2,…,Gn }  is a AGTC with |E(Gi)|=i, 1≤i≤n. Hence it is the required AGTC of G.  
 

Conversely if Kp admits AGTC into n parts, then 
( 1)| ( ) |

2p
n nE K +

=  and so p=n+1. 

 
Theorem 2.6: The wheel 1 1m mW K C −= +  admits AGTC into n trees if and only if n=3 and 4. 
 
Proof: Let 0 1 1( ) { , , , }m mV W v v v −=   where 0v  is the central vertex of mW . Since 0v  is of maximum degree and by 

the condition (ii) in the definition of Ascending graphoidal tree cover, we consider nG  as a star with 0v  as a central 

vertex. Let 0{( , ) :1 }n iG v v i n= ≤ ≤ . Then 1nG −  should be defined as a path of length n-1, say 1 2{( , , , )}nv v v .  

Since 0v  is the internal vertex of nG , at most one of the edges 𝑣𝑣0𝑣𝑣𝑖𝑖(𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 − 1) say, 0 1nv v +  lies in 2nG −  and 

the remaining n-3 edges are from 1mC −  starting from 𝑣𝑣𝑛𝑛𝑣𝑣𝑛𝑛+1𝑣𝑣𝑛𝑛+2 … 𝑣𝑣2𝑛𝑛−3. If  (𝑣𝑣0𝑣𝑣𝑛𝑛+2) = 𝐺𝐺1 then one of the edges 
𝑣𝑣0𝑣𝑣𝑛𝑛+2, 𝑣𝑣0𝑣𝑣𝑛𝑛+3, … , 𝑣𝑣0𝑣𝑣2𝑛𝑛−2  do not belong to any subgraphs 𝐺𝐺𝑖𝑖(2 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 3). Hence there should be at most 2 

internal vertices in 2nG −  so that 2| ( ) | 4nE G − ≤  or 6n ≤ . As 
( 1)| ( ) |

2n
n nE G +

= , we have 
( 1) 2( 1)

2
n n m+

= − . 

 
That is, n(n+1)=4(m-1) and n≤6. Then we get n=3, 4. 
 
Converse is straight forward. 
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Theorem 2.7: The complete bipartite graph ,m nK  admits AGTC if and only if n=2m-1 or n=2m+1. 
 
Proof: Let 1 2( , )V V  be the bipartition of ,m nK  where 1 1 2{ , , , }mV u u u=   and 2 1 2{ , , , }nV v v v=  .  
 
Case (i): If n=2m-1. 
 
Consider 1 1( , )nT v u=  

2 1{( , ) /1 2}n iT v u i−= ≤ ≤  

3 2{( , ) /1 3}n iT v u i−= ≤ ≤  
                     

1{( , ) /1 }m n m iT v u i m− += ≤ ≤  

1 2{( , ) /1 } ( , )m n m i nT v u i m u v+ −= ≤ ≤ ∪  

2 1 3{( , ) /1 } {( , ) / 1 }m n m i jT v u i m u v n j n+ − −= ≤ ≤ ∪ − ≤ ≤  

3 2 4{( , ) /1 } {( , ) / 2 }m n m i jT v u i m u v n j n+ − −= ≤ ≤ ∪ − ≤ ≤  

                      

1{( , ) /1 } {( , ) / 2 }n i m jT v u i m u v n m j n= ≤ ≤ ∪ − + ≤ ≤ . 
 
Thus 1 2{ , , , }nT T T  is an AGTC for ,m nK  into n parts if n=2m-1. 
 
Case (ii): If n=2m+1. 
 
Consider 1 1 1( , )nT v u−=  

2 2{( , ) /1 2}n iT v u i−= ≤ ≤  

3 3{( , ) /1 3}n iT v u i−= ≤ ≤  
            

{( , ) /1 }m n m iT v u i m−= ≤ ≤  

1 1 1{( , ) /1 } ( , )m n m i nT v u i m u v+ − −= ≤ ≤ ∪  

2 2 2{( , ) /1 } {( , ) / 1 }m n m i jT v u i m u v n j n+ − −= ≤ ≤ ∪ − ≤ ≤  

3 3 3{( , ) /1 } {( , ) / 2 }m n m i jT v u i m u v n j n+ − −= ≤ ≤ ∪ − ≤ ≤  

              

1 1{( , ) /1 } {( , ) / 1 }n i m jT v u i m u v n m j n− = ≤ ≤ ∪ − + ≤ ≤ . 
 
Thus 1 2 1{ , , , }nT T T −  is an AGTC for ,m nK  into n-1 parts if n=2m+1. The converse of the above two cases are 
straight forward. 
 
The following examples illustrate the above theorem 2.7 for n=2m+1 and n=2m-1. 
 
Example 2.8: 
(i) Consider 4,9K

 
 
 
 
 
 
 
 
 
 
 
 



V. Maheswari*, A. Nagarajan / Ascending Graphoidal Tree Cover / IJMA- 7(8), August-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                       74  

 

 

 
Figure - 1 

 (ii) Consider 4,7K  

 
Figure - 2 
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Theorem 2.9: The Helm mH  admits AGTC into n parts if and only if n=5, 6 and 8 or m=5, 7, 12. 
 
Proof: Let 1 2 1 2( ) { , , , , , , , , }m m mV H c u u u v v v=    having c as the central vertex of mH .  The Helm mH  is 

shown as in Fig. 3. Since c is of maximum degree and by the definition of AGTC, we consider nG  as a star with c as 
its central vertex. 
 
Let {( , ) :1 }n iG c u i n= ≤ ≤ . Then 1nG −  should be defined as a tree having n-1 edges with atmost one of the edges 

from {( , ) : 1 }ic u n i m+ ≤ ≤  say 1ncu + ; by the definition of AGTC. Now suppose 2ncu +  lies in 2nG −  and the 

remaining edges of 2nG −  are from mC  and the pendant edges incident to mC . If 2 3,n nu u+ +  and 4nu +  are internal 

vertices of  2nG −  then by (ii) of AGTC definition any one of the edges 2 3 4, ,n n ncu cu cu+ + +  do not belong to any  of 

the sub graphs ,1 3.iG i n≤ ≤ −  So there should be at most 2 internal vertices in 2nG −  such that 2| ( ) | 6nE G − ≤  or 

8n ≤ . As 
( 1)| ( ) |

2m
n nE H +

= ,  

We have 
( 1)3

2
n nm +

= . 

6 ( 1), 3m n n m= + ≥  and 8n ≤ . 
Then we get n=5, 6 and 8. 
Converse is straight forward. 
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